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1 Introduction

In this chapter we address performance-driven interconnect synthesis, which seeks to optimize

circuit performance by minimizing signal delays to critical sinks. Timing-driven wiring geometries

are in general quite different from optimal-area (i.e., Steiner) interconnect trees, especially as die

sizes continue to grow while feature dimensions steadily shrink.1 The exposition below focuses

on selected approaches to performance-driven routing, and details key historical research devel-

opments that helped usher in the era of high-performance interconnect synthesis. For extensive

surveys on this subject, see [19, 50]. For a general overview of computer-aided design (CAD) of

very large scale integrated (VLSI) circuits, see some of the classical textbooks [40, 80, 90, 93, 95].

As transistor sizes continued to dramatically shrink while their switching speeds have increased

into the multi-gigahertz range, the circuit performance bottlenecks migrated from the devices

themselves to the wires that interconnect them. Indeed, it was observed in the late 1980’s that

given the VLSI scaling trends at that time, interconnection delay was already contributing up

to 70% of the clock cycle in circuits [6, 30, 99]. Performance-driven layout design thus started

to receive much research attention, especially timing-driven placement, which has a particularly

significant effect on signal delays [30, 43, 56, 70, 73, 99]. However, during that early era in the

evolution of VLSI CAD, routing solutions were typically not available during the placement phase.
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1In routing non-critical nets (or sinks), rather than optimize delay we instead seek to minimize overall wirelength,

an objective which gives rise to variants of the classical Steiner problem [12, 16, 17, 18, 31, 53, 55, 65, 82, 88]. On
the other hand, modern ultra-deep-submicron VLSI CAD seeks to optimize and tradeoff various combinations of
objectives and criteria, such as delay, skew, area, density, manufacturability, reliability, power, electromigration,
parasitics, noise, and signal integrity [4, 9, 20, 54, 59, 62, 75, 96].



Performance-driven methods of the early 1990’s therefore used simple (e.g., geometric or linear)

estimates of interconnection delay to drive the placement process, sacrificing modeling accuracy

in favor of computational tractability.

For a given timing-driven placement, a corresponding timing-driven routing seeks to minimize

source-to-sink signal delays. In order to optimize circuit performance, early timing-driven rout-

ing methods relied on e.g., net priorities [80], static timing analysis [32], hierarchical approaches

[57], and A* search [79]. Since the early 1990’s there has been a steady shift from technology-

independent routing methodologies to technology-dependent interconnect synthesis. Analyses of

the Elmore delay formula [34] for distributed RC trees [72, 89, 102] motivated cost-radius tradeoffs

that depended on the underlying technology [3, 5, 23, 24, 63]. Thus, routing tree constructions that

were based on various technology parameters, net criticalities, and other timing or performance

issues provided improvements over the previous static, technology-oblivious methods [62].

Several early works abandoned the algorithmic convenience and analytic simplicity of classical

geometric objectives, and began to address the less tractable but more realistic “actual delay”. For

example, an early sequence of papers by Boese, Kahng, and Robins [7, 8, 9, 10] proposed new classes

of delay objectives, along with improved-performance routing algorithms that directly optimized,

e.g., the Elmore delay. These works also established the fidelity of Elmore-based constructions

relative to accurate delay simulators (e.g., SPICE) [62]. That is, it was observed that optimizing

the Elmore delay tends to also minimize real delay.

In parallel with these advances, sink-dependent delay objectives were recognized as more crit-

ical than net-dependent delay minimization. Because the timing-driven placement and routing

design loop usually iterated tightly with static timing estimation, critical-path information was

often available during routing. Thus, formulations which optimized delays with respect to a set

of critical sinks proved more effective than ones that optimized delays in individual nets while

ignoring the critical sinks [62]. The near-optimality of minimum-delay routing heuristics was also

quantified empirically, showing e.g., that certain simple heuristics achieved almost optimal critical

sink delays [9, 10, 62, 69]. Other advances in timing-driven interconnect synthesis for improv-

ing circuit performance included various approaches to wiresizing, non-Hanan routing, non-tree

topologies, and arborescence trees. The remainder of this chapter will discuss some of these topics

and techniques in greater detail.
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2 Wirelength-Radius Tradeoffs

Researchers in interconnect synthesis observed that while low-wirelength routing trees have smaller

capacitance-related delays, low-radius interconnects have shorter pathlength-related signal propa-

gation delays [62].2 However, there exists an inherent conflict between these two objectives (i.e.,

minimizing overall tree cost vs. minimizing source-to-sink pathlengths), and when one of these

two objectives is optimized, the other objective typically suffers (Figure 1). Indeed, shortest-paths

trees (i.e., those produced by Dijkstra’s classical algorithm [29]), have the best possible source-

to-sink pathlengths but usually induce high overall tree cost (Figure 1(a)). On the other hand,

minimum spanning trees (i.e., those produced by Prim’s classical algorithm [81]), have optimal

tree cost but produce potentially high source-to-sink pathlengths (Figure 1(b)).

 ( a ) ( b )  ( c )

Figure 1: Candidate interconnection trees for the same net, where the
signal source pin is located at the center and the sinks are located on the
circumference of a circle: (a) a shortest paths tree; (b) a minimum spanning
tree; and (c) a tradeoff low-cost low-radius hybrid tree.

In order to simultaneously optimize both the routing tree radius as well as its cost, the following

formulation was proposed [22]:

The Bounded-Radius Minimum Routing Tree (BRMRT) Problem: Given a parameter

ǫ ≥ 0 and a signal net with radius R, find a minimum-cost routing tree T with radius(T ) ≤

(1 + ǫ) ·R.

2We define the radius of a routing tree/topology to be its maximum source-to-sink pathlength, and its cost to
be its total wirelength. Similarly, the radius of a net is defined as its farthest source-to-sink distance. Distances
and wirelengths are usually measured using the Manhattan / Rectilinear norm, although alternative interconnect
architectures with more complicated underlying metrics have recently become popular, such as “preferred direction”
routing and λ-geometries [14, 15, 16, 64, 68, 77, 92, 100, 104].
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The user-specified parameter ǫ controls the tradeoff between the competing minimum-radius and

minimum-cost objectives. Setting ǫ = 0 induces a minimum-radius (i.e., shortest paths) tree,

while increasing ǫ loosens the radius restriction, thus allowing further tree cost optimization. At

the other extreme, setting ǫ = ∞ results in a minimum-cost spanning tree. Note that these

definitions and formulations easily generalize from spanning trees to Steiner trees (i.e., where new

points/vias may be added to further optimize total wirelength). However, in performance-driven

layout, where a fast delay estimator is employed in a tight iterative design loop, spanning trees

are typically easier to compute than Steiner trees. Moreover, a spanning tree can usually be easily

converted into a corresponding Steiner solution (e.g., by edge-overlapping), without disimproving

its original radius.

The earliest heuristic to solve the BRMRT problem was the “Bounded-Prim” (BPRIM) ap-

proach of [22, 24], which follows the general structure of Prim’s minimum spanning tree algorithm

[81]. While simple to implement and effective in practice over typical inputs, this approach can

produce trees with cost arbitrarily larger than optimal in the worst case. “Shallow-light” tree con-

structions avoid such worst-case scenarios by simultaneously bounding both the worst-case radius

and the worst-case cost of the resulting routing tree [5, 23, 24, 63].

The basic approach of algorithms such as the Bounded-Radius Bounded-Cost (BRBC) method

[24] is as follows: (a) traverse a minimum spanning tree in depth-first order; (b) insert additional

edges whenever the prescribed radius bound is violated; and (c) return the shortest paths tree

over the resulting graph (see Figure 2). The BRBC algorithm produces a tree with radius at most

(1 + ǫ) times optimal, and cost at most (1 + 2

ǫ
) times optimal [24, 62].

The BRMRT problem formulation and the BRBC algorithm generalize to regimes where we

seek a low-radius tree that spans a vertex subset in an underlying graph, while using the remaining

graph vertices as potential Steiner points to minimize the overall interconnection cost. Note that

when ǫ =∞, the classical Graph Steiner problem is a special case of this generalization. A BRBC

Steiner analog first constructs an approximate minimum-cost Steiner tree T that spans the target

vertex subset, and then proceeds with the remaining radius-minimization optimization as before.

This will yield a routing tree with radius bounded by (1 + ǫ) times optimal, and cost bounded by

(1 + 2

ǫ
) times the cost of T .

Note that the cost of the heuristic Steiner tree T can itself be bounded by a constant times
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BRBC Algorithm [24, 62]

Input: Graph G = (V,E) (with radius R, source s0 ∈ V ), ǫ ≥ 0
Output: Spanning tree TBRBC with r(TBRBC ) ≤ (1 + ǫ) ·R

and cost(TBRBC ) ≤ (1 + 2

ǫ
) · cost(TM )

Q = TM

L = depth-first tour of TM

Sum = 0
For i = 1 to |L| − 1

Sum = Sum + dist(Li, Li+1)
If Sum ≥ ǫ · distG(s0, Li+1) Then

Q = Q ∪ { edges in minpathG(s0, Li+1)}
Sum = 0

Output TBRBC = shortest paths tree of Q

Figure 2: The bounded-radius bounded-cost (BRBC) spanning tree algo-
rithm [24, 62] produces a tree TBRBC with radius at most (1 + ǫ) · R and
cost at most (1 + 2

ǫ
) · cost(TM).

optimal. For example, if we use the best-known general graph Steiner heuristic of Robins and

Zelikovsky [87, 88] which has an approximation bound of 1 + ln 3

2
≈ 1.5493 times optimal for

arbitrary weighted graphs, then the resulting Steiner-BRBC tree cost bound will be (1+ ln 3

2
)·(1+ 2

ǫ
)

times optimal for general graphs. The underlying geometry can be exploited to further improve

the cost bound of Steiner-BRBC to 2 · (1 + 1

ǫ
) times optimal for any metric. In particular, for the

Manhattan and Euclidean geometries, this general bound can be further improved to 3

2
· (1 + 1

ǫ
)

times optimal and 2√
3
· (1 + 1

ǫ
) times optimal, respectively. For λ-geometries (which allow wiring

angles of iπ
λ

[92]), a cost bound of ( 2√
3
cos π

λ
) · (1 + 1

ǫ
) times optimal can be shown for BRBC [62].

Experimental benchmarks indicate that both the BPRIM and BRBC algorithms run quickly

and indeed yield a smooth tradeoff between tree cost and tree radius [24, 62]. In fact, on typical

nets, the cost-radius tradeoff is on average significantly more favorable than suggested by the theo-

retical bounds. For example, for 10 pins and ǫ = 1, BRBC offers an average of 21% savings in tree

radius over optimal, at the expense of only 13% average rise in tree cost over optimal. Moreover,

the interconnects produced by BPRIM and BRBC have significantly better delay characteristics

than classical Steiner trees, as verified by accurate timing simulators (e.g., SPICE) [24, 62].

An alternative approach to the wirelength-radius tradeoffs is the AHHK algorithm [3], which

integrates Prim’s minimum spanning tree algorithm [81] and Dijkstra’s shortest path tree algorithm
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Figure 3: Examples of AHHK tree in the Euclidean plane, with c = 1

3

(radius 15.9 and cost 26.4) in (a) and c = 2

3
(radius 10.3 and cost 29.7) in

(b). The edge labels indicate the order of adding the edges in the algorithm.

[29]. Prim’s algorithm minimizes the total wirelength, while Dijkstra’s algorithm minimizes the

tree radius (i.e., the source-to-sink pathlengths). Thus, these two classic algorithms address, albeit

separately, two major concerns in performance-driven interconnect synthesis. On the other hand,

these two algorithms can be implemented similarly, by starting from the source node and adding

one edge at a time until all the specified vertices in V are spanned.

The main difference between these two algorithms is the criterion for selecting which edge to

be added at each iteration. Prim’s algorithm [81] selects the edge with the minimum length. In

particular, Prim’s algorithm iteratively adds to the growing tree T a new node vj and edge eij,

where vi ∈ T and vj ∈ V − T are chosen to minimize the edge length |eij|. In contrast, Dijkstra’s

algorithm [29] attempts to minimize the pathlength from the source node when selecting an edge.

Specifically, Dijkstra’s algorithm iteratively adds to the growing tree T a new node vj and edge

eij , where vi ∈ T and vj ∈ V − T are chosen to minimize the the sum of the edge length |eij| and

the pathlength li from the source node to vertex vi in T .

Generalizing this similarity between the two traditional methods of Prim and Dijkstra, the

AHHK algorithm iteratively adds to the growing tree T a new node vj and edge eij , where vi ∈ T

and vj ∈ V − T are chosen to minimize the the sum of the edge length |eij | and the pathlength li

from the source node to vertex vi in T times a fixed constant c. In this hybrid scheme, the chosen

constant 0 ≤ c ≤ 1 serves to smoothly trade off total wirelength againt tree radis (i.e., source-

to-sink pathlengths). In particular, when c = 0, the resulting AHHK tree is identical to Prim’s
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minimum psanning tree, and when c = 1, the resulting AHHK tree it is the same as Dijkstra’s

shortest paths tree. Varying the value of c between 0 and 1 results in intermediate tradeoff trees

between the two extremes of Prim’s and Dijkstra’s constructions. Figure 3 gives examples of

AHHK trees for different values of the tradeoff parameter c.

Steiner node

Figure 4: Examples of converting a spanning tree into a rectilinear Steiner
tree through edge overlapping.

Once an AHHK spanning tree is obtained, it can be converted to a rectilinear Steiner tree

using edge overlapping. That is, if the bounding boxes of two tree edges overlap, the overlapping

portions can form a new edge with one end being a Steiner node, as illustrated in Figure 4. Such

edge overlappings can usually reduce wirelength with respect to the original spanning tree.3 If

there are multiple options for edge overlapping at a given step, we can break ties by giving priority

to overlapping edges that yield the greatest wirelength reduction.

3 Steiner Arborescences

Historically, the primary application of rectilinear Steiner minimum trees in VLSI CAD has been

in global routing, since older physical design paradigms did not require the modeling of wires in

the placement and floorplanning stages. However, the last several generations of technology have

made it necessary to model the impact of wiring much earlier in the design process. For example,

during placement, physical synthesis, and even floorplanning, we commonly wish to perform static

timing analysis in order to evaluate the performance of the current design iteration. To predict

achieve this with reasonable accuracy, a model of the wiring of each net must be available. Since

3While edge overlapping is a practical technique that reduces wirelength in typical scenarios, there are known
pathological pointset instances where edge overlapping over any minimum spanning tree does not yield any wire-
length savings whatsoever [61], whereas other Steiner-point inducing methods can still yield substantial savings
[41, 60].
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blocks and cells may move quite often during these earlier phases of the physical design process,

it is imperative to be able to efficiently and accurately estimate wiring delays.

Such interconnect estimation was traditionally formulated as the Steiner problem. However,

given the scaling trends in VLSI technology, a Steiner tree often results in inaccurate timing es-

timates, which may in turn misguide the floorplanning, placement, and physical synthesis design

phases. On the other hand, Elmore delay analyses and cost-radius tradeoffs have motivated re-

search into routing constructions that simultaneously optimize interconnect length, source-sink

paths, and a quadratic objective that optimizes the sum of source-sink path lengths [62]. In par-

ticular, it was discovered that a minimum-cost rectilinear Steiner arborescence (RSA) heuristically

addresses all of these objectives reasonably well [26], and thus provide highly accurate (as well as

efficient) timing estimates.

The Rectilinear Steiner Arborescence (RSA) problem: Given a signal net S in the Man-

hattan plane with source pin s0, find a minimum-cost Steiner tree T that spans S, where the

pathlengths in the tree T from s0 to every sink is equal to the corresponding Manhattan distance.

The RSA problem seeks a “minimum-cost shortest-paths Steiner tree” (Figure 5), and is thus

a special case of the Steiner version of the BRMRT problem discussed above (where ǫ = 0).

The RSA problem originated with early works such as [76] and [28]. Efforts were made to find

a polynomial-time optimal arborescence algorithm, resulting in a proliferation of RSA heuristics

[26, 44, 67, 85, 101], until it was finally proven that the RSA problem is NP-complete [97].

s0

Figure 5: A minimum-cost rectilinear Steiner arborescence.

The first well-known effective rectilinear Steiner arborescence heuristic was proposed in [85].

Given a signal net in the Manhattan plane, the heuristic of [85] maintains a set of points, originally
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being all of the pins of the net, and repeatedly merges (i.e., connects) in this set a pair of points/pins

whose bounding box is farthest from the source pin. This process terminates when the resulting

arborescence spans the entire net. Choosing a new merge point that is dominated by two existing

points allows the greatest flexibility for subsequent merges to optimize wirelength while always

maintaining the shortest paths property of partial solutions. Figure 6 describes this heuristic more

formally, while Figure 7 gives an illustrative execution example. The running time of this method

is O(n log n).

Algorithm: Rectilinear Steiner Arborescence (RSA) [85]
Input: A set of sink vertices {v1, v2, ...vn} in the first quadrant
Output: A rectilinear Steiner arborescence rooted at (0, 0)
Let Γ be the set of subtrees (Initially Γ = ∅)
For each sink vi at location (xi, yi)

Insert into Γ a subtree Ti rooted at (xi, yi) which contains only vi

While |Γ| > 1 Do
Find two subtrees Tj and Tk in Γ such that xr + yr is maximum,

where xr = min(xj , xk) and yr = min(yj , yk)
Create a new subtree Tr by creating a new root at (xr, yr)
Connect the new root to (xj , yj) and (xk, yk) by a horizontal and/or a vertical edge
Remove Tj and Tk from Γ
Insert Tr into Γ

Construct a tree T by connecting (0, 0) to (xr, yr) by a horizontal and/or a vertical edge
Return T

Figure 6: The rectilinear Steiner arborescence (RSA) algorithm [85].

Empirical studies indicate that for typical nets, the RSA heuristic of [85], as well as the “A-

tree” construction of [26], both yield solutions with average cost within 4% of the optimal RSA

cost. On the theoretical side, both of these approaches have been proven to produce rectilinear

arborescence trees that are never worse than twice the optimal [85], and pathological examples

were found where both methods meet this twice-optimal worst-case bound [62]. Whereas previous

approaches typically handle cases where the sinks lie in the first quadrant (with respect to a net’s

source pin), an extension to all four quadrants, with running time O(n log n), was given in [27].

The RSA problem was generalized to arbitrary graphs as follows [1]. For an arbitrary weighted

graph G = (V, E) and two nodes u, v ∈ V , let minpathG(u, v) denote the cost of a shortest path

between u and v in G. The graph Steiner arborescence problem can now be defined.
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Figure 7: The rectilinear Steiner arborescence (RSA) heuristic of [85]. The
solid circle in (a) is the source and the hollow circles are sinks. The first 4
iterations are shown in (b)-(e). At the beginning (a), there are 7 (1-node)
subtrees, one per sink, plus the source itself. In (b) a pair of (distant-
from-the-source) subtrees is merged to form a new subtree, resulting in 5
remaining subtrees. Trees continue to merge during subsequent iterations,
resulting in the final RSA shown in (f).

The Graph Steiner Arborescence (GSA) Problem: Given a weighted graph G = (V, E),

and a specified net N ⊆ V with source pin/node n0 ∈ N to be interconnected in G, construct a

least-cost spanning tree T = (V ′, E ′) with N ⊆ V ′ ⊆ V and E ′ ⊆ E such that minpathT (n0, ni) =

minpathG(n0, ni) for all ni ∈ N .

As with the rectilinear arborescence problem, the GSA problem is NP-complete [1]. Construct-

ing an arborescence can be viewed as folding or overlapping paths within a shortest paths tree,
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so as to induce the maximum wirelength savings while maintaining shortest paths. Indeed, this is

the operational principle of the RSA heuristic of [85], among others. In order to generalize this

strategy to arbitrary graphs, we define dominance in weighted graphs as follows [1].

Definition 3.1 Given a weighted graph G = (V, E), and nodes {n0, p, s} ⊆ V , we say that p

dominates s if minpathG(n0, p) = minpathG(n0, s) + minpathG(s, p)

Thus, a node p dominates a node s if there exists a shortest path from the source n0 to p that

also passes through s (Figure 8(a)). Keeping in mind that the shortest path between a pair of

nodes in a graph may not be unique, MaxDom(p, q) is defined as a node in V dominated by both

p and q, which maximizes the distance minpathG(n0,MaxDom(p, q)) to the source node n0 (Figure

8(b)). The dominated vertex MaxDom is chosen to be as far from the source node as possible, so

as to yield the greatest possible wirelength overlap between the two paths, while still maintaining

the shortest-paths property with respect to the two target nodes.

p

s

minpath
G

minpath
G 0(n  ,s)

(s,p)

minpath
G 0(n  ,p)

n
0

m =MaxDom (p,q)

p

minpath
G 0
(n  ,m)

q

n
0

(a) (b)

Figure 8: Defining dominance in graphs: (a) Graph node p dominates
node s when minpathG(n0, p) = minpathG(n0, s) + minpathG(s, p) ; (b)
shows MaxDom(p, q) with respect to p and q. In order to maximize the
wirelength savings, we seek the farthest point m = MaxDom(p, q) from the
source n0, where q and p both dominate m.

The above definitions enable the following Path-Folding Arborescence (PFA) heuristic [1], as

follows. Starting with the set of nodes N that initially contains the net (i.e., the source and all

the sinks), we find a pair of nodes p and q in N such that m =MaxDom(p, q) in G is farthest away

from the source node n0 among all such pairs. We then replace p and q in N with m, and iterate

until only the source remains in N . The overall graph Steiner arborescence solution is formed

by using shortest paths in G to connect each MaxDom(p, q) to p and to q (Figure 9). Empirical
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experiments indicate that the PFA method is effective in producing shortest-paths trees with

low wirelength (i.e. PFA’s average wirelength is close to that of the best existing graph Steiner

heuristics) [1]. This observation was reconfirmed in [4], where it was demonstrated that using

rectilinear arborescences during physical synthesis only induces an average of 2-4% wirelength

penalty over rectilinear Steiner trees, while offering substantial accuracy gains in performance

estimation.

Path-Folding Arborescence (PFA) algorithm [1]

Input: Weighted graph G = (V,E) and net N ⊆ V with source n0 ∈ N

Output: A low-cost shortest-paths tree spanning N in G

M = N

While N 6= {n0} Do
Find a pair {p, q} ⊆ N such that m =MaxDom(p, q)

has maximum minpath(n0,m) over all {p, q} ⊆ N

N = {N − {p, q}} ∪ {m}
M = M ∪ {m}

Output the tree formed by connecting each node p ∈M

(using a shortest path in G) to the nearest node in M that p dominates

Figure 9: The graph-based Path-Folding Arborescence (PFA) heuristic [1]:
M initially holds all the nodes to be spanned, and is then augmented with
the MaxDom Steiner points found during each iteration.

A different approach to the graph Steiner arborescence problem generalizes the Iterated 1-

Steiner (I1S) approach of Kahng and Robins [60, 62] to yield an effective “Iterated Dominance”

(IDOM) arborescence methodology for arbitrary weighted graphs [1]. The IDOM heuristic itera-

tively selects a single Steiner point that minimizes the cost of the spanning arborescence over all

the sinks and Steiner points selected thus far. The reason that we iterate a spanning arborescence

construction in order to produce a Steiner arborescence tree is that the former is easy to compute4,

while the latter is NP-complete. The IDOM heuristic thus repeatedly (and greedily) finds Steiner

candidates that reduce the overall spanning arborescence cost, and includes them into the growing

set of Steiner nodes (Figure 10).

In order to achieve an improved runtime for the IDOM approach, Alexander and Robins [1]

4Recall that a node p dominates a node s if there exists a shortest path from the root to p passing through s.
An optimal spanning arborescences can be computed efficiently by using a shortest path to connect each sink to
the closest sink/source that it dominates, and then computing Dijkstra’s [29] shortest paths tree over the graph
formed by the union of these paths.
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(a) KMB
cost = 16

max path = 16

(b) IGMST
cost = 14

max path = 12

(c) DJKA
cost = 19

max path = 8

(d) IDOM
cost = 14

max path = 8

Figure 10: Four routing solutions for the same 4-pin net (the signal source is
the gray-shaded square, and the solid squares are sinks): (a) the solution
produced by the KMB graph Steiner heuristic of [66]; (b) the optimal
Steiner tree, which is also the solution produced by the Graph Iterated
1-Steiner algorithm of [41, 62]; (c) Dijkstra’s shortest paths tree [29]); (d)
the optimal Steiner arborescence, which is also the solution produced by
the IDOM algorithm of [1]. Note that the IDOM solution in (d) is optimal
in terms of both total wirelength as well as maximum pathlength (although
this double-optimal outcome is unusual).

defined the DOM heuristic, which is a restricted version of the PFA heuristic (Figure 9), except

where MaxDom(p, q) is selected only from N instead of allowed to be an arbitrary node in V .

This substantially speeds up the search for MaxDom(p, q) at each iteration, since N is typically

much smaller than V . The DOM subroutine constructs an arborescence by using a shortest path

to connect each sink in N to the closest sink/source in N that it dominates, and then computes a

shortest paths tree over the graph formed by the union of these paths.
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Given a set of Steiner candidate node S ⊆ V −N , the cost savings of S with respect to DOM

is defined as ∆DOM(G, N, S) = cost(DOM(G, N))−cost(DOM(G, N ∪ S)). The IDOM approach

starts with an initially empty set of Steiner candidates S = ∅. It then finds a node t ∈ V − N

which maximizes ∆DOM(G, N, S ∪ {t}) > 0, and repeats this procedure with S ← S ∪ {t}. The

wirelength required by DOM to span N ∪S will decreases with each added node t, and the overall

construction terminates when there is no t ∈ V − (N ∪ S) such that ∆DOM(G, N, S ∪ {t}) > 0.

The final overall solution is DOM(G, N ∪S). This method is described in Figure 11, and a sample

execution is gven in Figure 12.

Iterated Dominance (IDOM) Algorithm [1]

Input: A weighted graph G = (V,E), a net N ⊆ V with n0 ∈ N

Output: A low-cost arborescence T ′ = (V ′, E′) spanning N ,
where N ⊆ V ′ ⊆ V and E′ ⊆ E

S = ∅
Do Forever

T = {t ∈ V −N | ∆DOM(G,N,S ∪ {t}) > 0}
If T = ∅ Then Return DOM(G,N ∪ S)
Find t ∈ T with maximum ∆DOM(G,N,S ∪ {t})
S = S ∪ {t}

Figure 11: The Iterated Dominance (IDOM) algorithm [1] for producing
arborescences in arbitrary weighted graphs.

The IDOM approach is a general template for producing arborescences for designated subgraphs

(i.e., nets) in arbitrary weighted graphs (i.e., underlying routing grids) [1]. Moreover, the IDOM

heuristic escapes the known twice-optimal worst-case examples of previous arborescence heuristics,

both in the rectilinear plane as well as in arbitrary weighted graphs.5 The IDOM approach

outperforms the previous heuristics on empirical benchmarks [1], including in FPGA routing,

which is inherently a graph-based regime. Subsequent graph arborescence algorithms, including

fast polynomial-time heuristics as well as exponential-time optimal algorithms were introduced in

[21].

5There exist very rare worst-case graphs which force IDOM to produce a tree with cost logarithmic factor times
optimal, matching the best known non-approximability results for the graph Steiner arborescence problem [1].
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Figure 12: An execution example for the IDOM algorithm: (a) a Graph
Steiner Arborescence (GSA) problem instance with source node A (gray),
sink nodes {B, C, D} (solid), and graph edge weights shown; (b) initial
DOM solution over the contracted pathlengths distance graph (over the
net N{A, B, C, D}), having cost 8; (c) Steiner candidate S3 produces a
savings of ∆DOM= 2, which reduces the overall tree cost from 8 to 6; thus
S3 is retained as a Steiner point; (d) Steiner candidate S2 is the final Steiner
point with positive ∆DOM, and further reduces the solution cost from 6
to 5; (e) the final IDOM solution (having cost 5), with paths re-expanded
relative to the original input graph.

4 Elmore Delay -Based Routing Constructions

Objectives such as minimum tree cost, bounded radius, cost-radius tradeoffs, and even arbores-

cences were all motivated by analyses of the Elmore delay approximation [34, 72, 89, 102]. How-

ever, these objectives are merely abstractions which do not directly optimize delay. This section

describes approaches that optimize Elmore delay directly while synthesizing a routing tree.
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The earliest Elmore-based routing approach is the Elmore routing tree (ERT) spanning con-

struction of Boese, Kahng and Robins [10, 62, 86] (Figure 13). Similarly to Prim’s MST algorithm

[81], the ERT heuristic starts with a tree T = (V, E) initially containing only the source s0, and

then repeatedly finds a terminal si ∈ V and a sink sj ∈ S − V so that adding edge (si, sj) to

T minimizes the maximum Elmore delay to any sink in the growing tree. The greedy approach

implicit in the ERT algorithm easily generalizes to any delay model by using the corresponding

delay estimator in the inner loop of Figure 13. For example, [106] proposed the use of a Two-Pole

simulator within a similar greedy construction, and [98] used this strategy for MCM routing under

a second-order delay model.

Elmore Routing Tree (ERT) Algorithm [10]

Input: signal net S with source s0 ∈ S

Output: routing tree T over S

1. T = (V,E) = ({s0}, ∅)
2. While |V | < |S| do
3. Find si ∈ V and sj ∈ S − V that minimize the maximum Elmore

delay from s0 to any sink in the tree (V ∪ {sj}, E ∪ {(si, sj)})
4. V = V ∪ {sj}
5. E = E ∪ {(si, sj)}
6. Output resulting spanning tree T = (V,E)

Figure 13: The ERT Algorithm [10] directly uses the Elmore delay formula
in a greedy routing tree construction.

The ERT algorithm template can produce a timing-driven Steiner Elmore routing tree (SERT)

when new sinks are allowed to connect anywhere along an edge in the growing tree, inducing

a Steiner node at that connection point [9]. Following the ERT approach, the SERT variant

greedily minimizes the maximum source-to-sink Elmore delay at each tree-growing step. To allow

additional optimization leeway, embeddings of L-shaped edges can remains indeterminate (within

their bounding boxes) for as long as possible during the execution. The SERT variant produces

a /em Steiner topology with low source-to-sink Elmore delays. Figure 14 depicts the execution of

the SERT heuristic on a sample 8-sink net.

In performance-driven layout, timing-critical paths are determined using timing analysis, and

then cells along these paths are placed closer together [30, 43, 56, 70, 73, 99]. Timing analysis thus

iteratively drives changes within the placement as well as global routing phases. In order to avoid
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Figure 14: Execution of the SERT Steiner tree construction [10] for an
8-sink net. The source terminal is labeled 1, and the remaining sinks are
numbered in the order of their distance from the source.

the “placement-routing mismatch” where inherently net-dependent methods fail to exploit the

critical-path information available during iterative performance-driven layout, Boese, Kahng and

Robins [10] proposed formulations that extend the basic (S)ERT scheme to accommodate critical

sinks. They proved the NP-completeness of the Critical Sink Routing Tree problem (CSRT)

problem [8], and provided efficient heuristics that combine Steiner construction, delay estimation,

and global slack removal [10].

To address the CSRT formulation, Boese, Kahng and Robins generalized their SERT method to

produce a “Steiner Elmore Routing Tree with identified Critical sink” (SERT-C) [10]. The SERT-
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C heuristic begins with a tree containing a direct connection (s0, sc) between the source and the

specified critical sink, and then grows the routing tree around it while minimizing the Elmore delay

(or an alternate delay model) from the source to the critical sink (Figure 15). Figure 16 illustrates

the execution of SERT-C for various choices of the critical sink (using the same 8-sink signal net

as in Figure 14). The SERT-C algorithm can be implemented to run within time O(n2 log n) for

n-pin nets. Similarly to the ERT and SERT approaches, SERT-C’s direct optimization of the

Elmore delay allows considerable flexibility with respect to the underlying technology parameters,

delay model, and specific input instance.

The methods described above easily extend to higher dimensions and alternate metrics and

geometries, including to non-Manhattan interconnect architectures such as “preferred direction”

routing and λ-geometries [14, 15, 16, 64, 68, 77, 92, 100, 104]. The Elmore-based routing tree con-

struction methods of [9] influenced followup works on performance-driven routing trees, addressing

additional issues such as buffer insertion, wirelength estimation, alternative delay models, timing

constraints, and antenna effects [2, 39, 46, 49, 51, 78, 103].

SERT-C Algorithm [10]

Input: A signal net S with source s0 ∈ S and critical sink sc ∈ S

Output: A critical-sink routing tree T over S

1. T = (V,E) = ({s0, sc}, {(s0, sc)})
2. While |V | < |S| do
3. Find sj ∈ S − V and (v, v′) ∈ E such that connecting sj

to a point x on (v, v′) minimizes the Elmore delay to sc

in the tree (V ∪ {sj , x}, E ∪ {(v, x), (v′, x), (x, sj)} − {(v, v′)})
4. V = V ∪ {sj, x}
5. E = E ∪ {(v, x), (v′, x), (x, sj)} − {(v, v′)}
6. Output resulting Steiner tree T = (V,E)

Figure 15: The SERT-C algorithm [10] directly incorporates the Elmore
delay formula into a greedy critical-sink routing tree construction.

5 Non-Hanan Interconnect Synthesis

In older (pre 1990’s) VLSI regimes, where interconnect delay was mostly capacitive, resistance-

related delay components were negligible, and the objective of delay optimization therefore co-

incided with minimizing the total interconnect length. However, as discussed above, in more
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Figure 16: The SERT-C critical sink routing tree construction for an 8-
sink net, showing solutions for different choices of critical sink. The tree
constructed when the source sc is node 2 or node 6 is also the I1S solution,
and the tree constructed when sc is node 7 is also the generic SERT result.

modern VLSI technologies interconnect resistance began to dominate circuit performance, causing

optimized performance-driven interconnect to resemble minimum wirelength topologies less and

less. Another modern deviation from classical constructions involves the Hanan grid, which is

obtained by drawing horizontal and vertical lines through all the pins of a given net [42] (Figure

17). Hanan’s theorem states that there always exists a rectilinear minimum Steiner tree embedded

in the Hanan grid [42, 105].

19



sink sink

(b)(a)

sink sink

source source

Figure 17: An example of (a) a Hanan grid induced by a net, and (b) a
minimum Steiner tree embedded in the Hanan grid.

Boese, Kahng and Robins [9] proved that only points from the Hanan grid need be considered

in minimizing the weighted sum of critical sink delays. On the other hand, for the “minmax” objec-

tive of minimizing the maximum sink delay, better routing solutions are possible when considering

points that lie off the Hanan grid [9]. For example, in Figure 18 a non-Hanan point is required

to minimize the maximum source-sink delay during tree construction. Such examples illustrate

that the timing requirements at different sinks are often mutually-competing, and therefore good

approaches must consider all the sinks simultaneously, and utilize every available degree of opti-

mization to produce improved timing-driven interconnect solutions. In particular, the observation

that restricting Steiner nodes to be Hanan grid points is suboptimal motivates the problem of

non-Hanan interconnect synthesis.

Below we outline a general interconnect synthesis methodology that uses non-Hanan optimiza-

tion to yield better-performing interconnect topologies [49]. In particular, we address two problem

variants: (a) the minmax problem of minimizing the maximum source-to-sink delay, and (b) the

critical sink problem that seeks a specified delay at each sink. The later problem can be trans-

formed into a variant of the former problem, and optimal solutions may lie off the Hanan grid in

either variant. We next describe a procedure for constructing low-cost routing trees that satisfy

prescribed delay constraints at each sink.

Define the delay violation at each sink as its delay minus its required arrival time (RAT). A

positive delay violation value therefore implies that the corresponding delay constraint was not

met. On the other hand, a negative delay violation value indicates timing slack, and enables the

20



(x,0) (3,0)

(1,4)

(0,0)

b

a

Sink a

98.5

98.0

99.0

1.00.0 y0.33

Sink b

x

Delay

Figure 18: An example illustrating the efficacy of non-Hanan routing. We
assume unit resistance and unit capacitance per unit wirelength. The driver
has a source resistance of 6, and the sinks a and b have load capacitances
of 1 and 4.5 units, respectively. The variation in the Elmore delay at each
sink as the Steiner point x is moved from (0, 0) to (1, 0) is plotted on the
right. The maximum sink delay for the tree is minimized at the non-Hanan
point x = 0.33. The analyses of [9] can be used to show that a Steiner
point to the right of (1, 0) is suboptimal. Even more dramatic discrepancies
between Hanan and non-Hanan routings are achievable in larger examples.

possibility of further optimizing the routing tree cost by reducing the timing slacks. This tradeoff

motivates the Maximum delay Violation Elmore Routing Tree (MVERT) problem formulation, as

follows.

The Maximum delay Violation Elmore Routing Tree (MVERT) problem: Given a signal

net N with source v0 and a set of sinks Vsink = {v1, v2, ..., vn}, construct a Steiner routing tree

with minimum total wirelength, so that the delay violation at each sink is non-positive (i.e., meets

the corresponding timing constraints).

Since the routing tree topology is no longer restricted to the Hanan grid, the set of candidate

Steiner points is unbounded (as opposed to corresponding to the set of Hanan points as in classical

formulations). We must therefore find an efficient method for identifying the best (non-Hanan)

Steiner points that produce a good routing tree. We now describe a framework that utilizes

properties of the delay function in order to develop a simple and efficient algorithm to address this

challenge.

Following [9], define a maximal segment to be a set of contiguous edges, being either all vertical

or all horizontal. The work of [9] shows that the Elmore delay at each sink is a concave function

21



with respect to the location of a Steiner node moving along a maximal segment. This property also

holds for a soft edge which is an edge connecting two nodes vi, vj ∈ V , vi = (xi, yi), vj = (xj , yj),

such that: (1) xi 6= xj and yi 6= yj; and (2) the precise edge route between vi and vj is not yet

determined. The length lij of edge (vi, vj) is the Manhattan distance |xi−xj |+ |yi−yj|. The use of

soft edges avoids premature commitment to a specific geometric embedding of a wire in rectilinear

space, which enables further wirelength optimization later on [49].

For a general routing tree topology (Figure 19), consider the process of determining an optimal

connection between a new node vk to be attached to an existing edge eij . The dashed lines in

Figure 19 denote other nodes and edges of the existing routing tree, and CC represents the closest

connection point between node vk and edge eij . It can be shown that any connection downstream

of CC cannot yield an optimal solution [9]. Specifically, we seek an optimal connection point

within the bounding box defined by vi and CC. Suppose we connect vk to eij at point v′ = (x′, y′).

Let z = |x′− xi|+ |y
′− yi| be the Manhattan distance from v′ to vi. For convenience, we overload

the term CC to also denote its Manhattan distance to vi.

v

v

v

CC

v

0

i

j

k

v’

Figure 19: A general routing topology where a new node vk is to be con-
nected to an existing edge eij.

Following the work of [9], a delay function with respect to the connection locations for soft

edges under the Elmore delay model can be derived as follows. If a node is not downstream from

node vi, its Elmore delay from the source is:

f1 = Rd(Ct − cz) + λ0 + λ1(lik − z) (1)
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where λ0 and λ1 are constants, and Ct denotes the total capacitive load that would be seen from

the last stage of the driver if vk was connected to vi. The Elmore delay from vi to v′ is given by:

f ′ = rcz(
z

2
+ lij − z + lik − z) + rz(Cj + Ck). (2)

The delay from v′ to any node in the subtree Tj rooted at vj , can be calculated as:

f2 = r(lij − z)(
c(lij − z)

2
+ Cj) + λ2. (3)

Similarly, the delay from v′ to any node in subtree Tk is:

f3 = r(lik − z)(
c(lik − z)

2
+ Ck) + λ3. (4)

where λ2 and λ3 are constants. The Elmore delay of a sink in Tj is given by the sum of f1, f ′

and f2. The Elmore delay of a sink in Tk is the sum of f1, f ′ and f3. The Elmore delay of a sink

not downstream of vi, is simply f1. In all these cases, the delay is either a linear or a quadratic

function of the Manhattan distance z with non-positive coefficient for the second-order term. We

can therefore conclude that the delay for any sink is a concave function with respect to z, as

follows.

Theorem 5.1 Under the Elmore delay model, the delay at any sink in the routing tree is a concave

function with respect to the Manhattan distance. [49].

Rewriting the constraints on the routing tree into the form t(vi) − q(vi) ≤ 0 for all sinks

vi ∈ Vsink, we see that the maximum delay violation must always be non-positive. Since by

Theorem 5.1, each of the t(vi)’s is a concave function of the connection point z, and since any

concave function shifted by a constant is a concave function, this implies that we must find a

reconnection point z such that the maximum of the set of concave functions is non-positive. This

is pictorially shown in Figure 20 for a net with four sinks u, v, w, and y, all of which have the

same timing specification q. The maximum violation function (depicted by a thicker line) is a

piecewise concave function composed of three concave pieces. Note that the graph shows that sink

u is never critical in this case, for any value of z. The delay violation at each sink as a function of
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z is a concave function and the objective is to find a value of z closest to CC (corresponding to

a minimal increase in the net length) that satisfies all the timing constraints. In Figure 20, this

point is found to be z∗, and in general this point will be a non-Hanan point.

q

Sink u

Sink v

Sink y

Sink w

CC0 p z*b

Delay violation

z

Figure 20: Finding the optimal value of z that satisfies all the timing
constraints.

In searching for the point z∗, we observe that it is possible to perform a search on the value

of z from 0 to CC, while taking advantage of the fact that the value on each concave piece is

minimized at its intersection with the concave piece on either side (if such a piece exists), or at 0

or CC otherwise. In Figure 20, this translates to the fact that for the minmax problem, the only

candidate solutions are 0, p, b and CC. This permits a dramatic reduction of the search space

from the infinity of possible intermediate points between 0 and CC.

For the problem of meeting the timing constraints at each sink, several pruning strategies are

possible during the search. Consider a binary search on a concave segment with end points x1 and

x2 (x1 < x2) where the function values are f(x1) and f(x2), respectively. If f(x1) < Tspec < f(x2)

and Tspec < f(x1+x2

2
), as illustrated in Figure 21, then the search can completely eliminate the

interval [x1+x2

2
, x2]. This follows from the fact that any concave function over an interval is concave

over any continuous subinterval. By a symmetric argument, if Tspec ≥ f(x1+x2

2
), then the search

can be confined to the interval [x1+x2

2
, x2].
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Figure 21: Using piecewise concavity to speed up the optimization proce-
dure.

Optimal Connection Algorithm [49]
Input: Subtree Tk rooted at sink vk,

Partial routing tree T\Tk, edge eij ∈ T\Tk

Output: Optimal connection between vk and eij

1. Tentatively join vk to CC, ∆rit ← ∆max,
CSrit ← sink with ∆max, Srit ← (CC, ∆rit, CSrit)

2. If ∆rit ≤ 0, Return CC
3. Tentatively join vk to vi

CSlft ← sink with ∆max, Slft ← (vi, ∆max, CSlft)
4. Return Search(Slft, Srit)
Function: Search(Slft, Srit)
5. If ∆rit ≤ 0 , Return Srit

6. If (∆lft > 0 and CSlft == CSrit) or dist(vlft, vrit) < resolution
7. If ∆lft < ∆rit, Return Slft

8. Else Return Srit

9. vmid ← ((xlft + xrit)/2, (ylft + yrit)/2)
10. Join vk to eij at vmid, ∆mid ← ∆max

CSmid ← sink with ∆max, Smid ← (vmid, ∆mid, CSmid)
11. If ∆mid ≤ 0, Return Search(Smid, Srit)
12. Sr ← Search(Smid, Srit)
13. If ∆r ≤ 0, Return Sr

14. Sl ← Search(Slft, Smid)
15. If ∆l < ∆r, Return Sl

16. Else Return Sr

Figure 22: Algorithm for finding an optimal connection point between a sink and an edge [49].
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The pseudocode corresponding to this search is shown in Figure 22. The routing tree without

subtree Tk is denoted by T\Tk. The efficiency of the search can be greatly enhanced by taking

advantage of the piecewise-concave nature of the delay function. The search for z∗ occurs between

0 and CC in a binary search fashion, and begins at CC. If the value of the delay violation at CC

is negative, then we are done; otherwise we need to test the delay violation at 0. We use CS to

represent the critical sink that has the maximum delay violation ∆max = max{t(vi)− q(vi), ∀vi ∈

Vsink}. If ∆max is positive at both 0 and CC, and the critical sink at 0 is the same as at CC, then

there is no solution satisfying the timing constraints. In this case, we choose the solution that

yields the least delay violation between 0 and CC.

A more complicated situation occurs when ∆max at 0 is negative, or ∆max is positive at 0

but the corresponding critical sink is different from that at CC. Then, the search proceeds as a

quasi-binary search, as encoded in the function Search(Slft, Srit) in Figure 22. The notation S

indicates a solution which is a triple of the form (connection node, ∆max, critical sink), and Slft

and Srit denote the solutions at the left and right end of the search interval, respectively. If the

size of the interval is less than a user specified resolution, then the search terminates (lines 6-10

in Figure 22). On the other hand, if the connection at the middle point of the interval yields

a non-negative ∆max, then the search continues only on the right half of the interval (line 11 in

Figure 22); otherwise, the left half of the interval may be searched as well (lines 12-16 in Figure

22).

The MVERT algorithm [49] operates in two phases: (I) The initial tree construction phase,

where an initial tree is heuristically built to minimize delay; and (II) The cost-improvement phase,

where the tree is iteratively refined to reduce its cost while ensuring that it still meets all the

timing constraints. The tree construction in Phase I is similar to the SERT construction procedure

proposed in [9] (described above). Recall that the essential idea of the SERT method is based on

greedily building a Steiner tree using a Prim-like method. Starting with a trivial tree T consisting

of only the source v0, the tree is iteratively built by joining a sink vk outside the tree to an edge

(or the source) already in the tree, so as to yield a resulting new tree with minimum Elmore delay.

This process iterates until all the sinks are included in the tree.

The initial tree construction procedure above considers only Hanan grid points as candidate

Steiner points. It therefore attempts to connect each point to either the closest connection (CC),

the upstream end of a tree edge, or directly to the source node. If the delay associated with a CC
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connection is larger than the delay associated with a connection to the upstream edge endpoint,

then the algorithm will not choose the connection at CC. However, due to the interactions

between paths, MVERT solutions may lie at different (and possibly non-Hanan) points, and a

connection to the upstream end of an edge may result in a larger net length than is necessary. We

therefore examine the tree constructed in Phase 1 and move node connections from the upstream

end of an edge towards CC in order to reduce the tree length while still satisfying all the timing

constraints. The idea is illustrated in the example of Figure 18 for the constraint of 98.8 units,

where a connection to (y, 0) is preferable over a connection to (0.33, 0).

Non-Hanan Optimization Algorithm [49]
Input: Routing tree T (V, E)
Output: Optimized routing tree T ′

1. T ′ = T
2. Sort all the sinks in descending order of distance to source
3. For each vk ∈ Vsink

4. Disjoin vk and its subtree Tk from T
5. For each edge eij ∈ T\Tk

6. Reconnect vk to eij at FindOptimalConnection(Tk, T\Tk, eij)
7. If ∃ improvement compared to T ′, Then T ′ = T
8. Return T ′

Figure 23: The non-Hanan optimization algorithm [49].

This non-Hanan interconnect synthesis algorithm (shown in Figure 23) can be implemented as

follows [49]. We first sort all the sinks in descending order of distance from the source. We then

disconnect each sink vk (along with its downstream subtree Tk) and reconnect it back to the tree

at a better reconnection point, if possible (as determined by the subroutine of Figure 22). Thus

at each iteration we choose an edge that provides the largest wirelength improvement while still

still respecting the timing constraints. The computational complexity of the MVERT algorithm

is O(n4), where n is the number of sinks. The experimental results in [47] show that non-Hanan

optimization can in some instances provide considerable wirelength reduction as compared to other

timing-driven routing methods.
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6 Wiresizing

The fundamental tradeoffs between interconnect capacitance and resistance in modern VLSI tech-

nology suggests that in order to maximize performance, some wire segments should be made wider

than others. This motivates the technique of wiresizing, where every wire segment may have a

different width, independently of all the other wires. This degree of freedom afforded by wiresiz-

ing can be leveraged throughout every phase of the performance-driven physical layout process.

Historically, while early works wiresized mainly clock trees [37, 38, 83, 107] and power distribution

networks [33], the wiresizing of general interconnect became viable in the early 1990’s [25, 26, 45, 91]

due to the confluence of VLSI scaling trends and algorithmic advances. Wiresizing considerations

can be easily incorporated into all the routing constructions discussed above [62], and can even

drive the routing process itself [45], as well as other layout phases higher in the design hierarchy.

A more detailed discussion of wiresizing techniques may be found elsewhere in this book.

7 Non-Tree Routing

Historically, routing methodologies implicitly assumed that interconnections must have tree topolo-

gies. In retrospect, this was a natural constraint because a tree achieves electrical connectivity

using minimum wire, and the VLSI technology trends of the 1980’s were heavily skewed toward

wirelength and area minimization as the primary objective. However, as feature sizes shrank

dramatically and interconnect delays began to dominate circuit performance, researchers began

to investigate “non-tree” (i.e., general graphs) routing topologies. Aside from improving perfor-

mance, non-tree routing topologies offer other advantages, including the management of signal

reflections, increased reliability, and reduced skew in sink delays. Thus non-tree topologies were

used for power/ground distribution, where general graph topologies enhance reliability by lowering

current densities and electromigration damage [33, 35, 36], as well as for clock distribution, where

non-tree topologies can reduce skew and minimize the impact of manufacturing variation [71].

Adding extra wires to an existing routing tree can improve certain source-sink delays. While

additional wires will always increase the total tree capacitance, the creation of multiple source-sink

paths can substantially lower certain internode resistances. Thus, as VLSI interconnect becomes

thinner and more resistive, non-tree routing topologies become increasingly attractive. McCoy
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and Robins [75] have studied the following Optimal Routing Graph (ORG) problem, which is a

generalization of some of the routing problems discussed above.

The Optimal Routing Graph (ORG) Problem: Given a signal net S = {s0, s1, ..., sn} with

source s0, find a set N of Steiner points and routing graph G = (S ∪ N, E) such that G spans S

and minimizes t(G) =
n

max
i=1

t(si).

The ORG problem extends to critical-sink formulations as well as lumped RC and Elmore

delay models, which can be computed efficiently for general RC graph topologies [13, 74]. The

ORG problem is addressed algorithmically in [75] by starting with a reasonable initial topology

(e.g., a heuristic Steiner or spanning tree), and greedily adding new edges to this topology so

as to keep improving the specified delay objectives in the growing routing graph. Steiner points

may also be introduced during this process to further optimize both delay and wirelength. Using

a fast delay estimator to drive this process yields an efficient technique for synthesizing non-tree

routing topologies with significantly improved performance characteristics (in terms of skew as well

as delay), as compared with the corresponding initial trees [62, 75]. Non-tree routing topologies

can also be combined with wiresizing optimizations, as discussed above. More recently, non-tree

routings were used for manufacturign yield improvement [58] and robust performance [52].

8 Discussion and Future Research Directions

Given the numerous existing algorithms for performance-driven Steiner tree construction, CAD

practitioners are often faced with the question of which algorithm to choose for particular applica-

tions. In [4], a comparative study is performed for several Steiner tree algorithms [3, 9, 11, 21, 84].

One important result from [4] is that the wirelength of MRSA (Minimum Rectilinear Steiner Ar-

borescence) is not prohibitively large, even though MRSA constructions provide shortest paths

from the source to all sinks. Experiments with several industrial designs show that the average

wirelengths of heuristic rectilinear Steiner arborescences are only around 2-4% larger than those

of rectilinear Steiner minimum trees. Arborescence constructions (e.g., AHHK-based Steiner trees

with c = 1) are therefore a good option for acheiving minimum tree radii with relatively small

wirelength overhead.

As ultra-deep-submicron VLSI technology continues to evolve, new efficiently-computable mod-

els are needed to accurately capture the relationships and tradeoffs between high-performance
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routing and actual delays, parasitics, noise, signal integrity, reliability, power, manufacturability,

and yield. The techniques described in this chapter can be generalized to alternate metrics, geome-

tries, and novel interconnect architectures such as “preferred direction” routing and λ-geometries.

As VLSI engineering tolerances shrink, issues such as buffer insertion, wirelength estimation, and

antenna effects will have to be revisited. In particular, extensive application of buffers [94] for

performance improvement may drastically alter the landscape for interconnect topology construc-

tion. When buffers are inserted, the fanout size of subtrees between buffers are usually smaller

than that of unbuffered nets. Moreover, the construction of global topology connecting the sub-

trees should be aware of the concerns in buffering algorithms [2, 48]. As always, tighter and more

effective integration between timing-driven routing and other design phases will enable additional

optimizations of various combinations of objectives and criteria. Finally, when feature sizes be-

come small enough, entirely new issues such as quantum effects will have to be considered during

interconnect synthesis, as well as elsewhere in the design process.
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