
 

Abstract—Imprecise hardware challenges the traditional 

notion that correctness is an immutable priority, by systematically 

trading off efficacy (precision) against efficiency (power, area, 

performance, and cost). Evaluating the impact of such tradeoffs 

on output quality using, e.g., Monte Carlo simulations is a 

time-consuming and non-deterministic process. This paper 

presents two analytic modeling techniques for evaluating error 

properties and output quality in imprecise arithmetic circuits, 

based on Interval Arithmetic and Affine Arithmetic. Experiments 

show that these techniques offer significant speedups over 

previous methods, as well as promising estimation accuracy. 

I. INTRODUCTION 

ower has become the limiting factor in digital systems. The 

demand for higher computing capacity continues to rise, 

but power has reached a limit due to thermal and delivery 

issues. Imprecise hardware (IHW), also known as stochastic 

computation [1, 2], or Better than Worst-Case Design [3], has 

been proposed as a solution to tackle this problem. Compared to 

traditional hardware designed to always compute correctly, 

IHW allows occasional computation errors but achieves higher 

performance and/or lower power. Any resulting errors can be 

relegated to dedicated error correction circuits and software, or 

even left uncorrected, given the error-tolerant nature of many 

applications. This paper focuses on deterministic arithmetic 

IHW, which alters the logic function of the performed 

computation either at design time, or dynamically at runtime. 

Examples include supporting only a subset of the input 

combinations [4, 5], voltage overscaling [1, 2], and data width 

reduction. The introduced errors can be uniquely determined by 

the input but the mapping function is not easy to determine. 

The benefits of IHW are largely determined by (1) the level 

of performance/power improvement offered by imprecise 

computation, and (2) the amount of output quality degradation 

caused by errors. Significant power reduction and performance 

increase from IHW have been reported [4, 5, 6], and new IHW 

techniques are being developed. However, the consequences of 

IHW on output quality require further investigation. Typically a 

system with IHW components is simulated with random inputs 

in order to obtain an output profile with acceptable quality. This 

is a time-consuming task, especially for complex systems. 

Imprecise hardware expands the design space by relaxing the 

correctness requirement, thus faster error estimation is crucial 

to the effective exploration of the space. Moreover, simulations 

are usually nondeterministic and unreliable as output profiles 

can be influenced by the size and scope of the simulations. 

This paper presents two methods that enable analytic 

modeling of the statistical distributions and bounds of errors 

introduced by IHW. These methods are based on Interval 

Arithmetic and Affine Arithmetic [7] and are modified to 

handle the characteristics of IHW errors. Compared to 

simulations, they provide orders-of-magnitude speedup and 

have the potential for stronger error bound guarantees. 

II. CHARACTERIZING IMPRECISE HARDWARE ERRORS 

A. Error as a Distribution 

Although the error is a deterministic function of the input in 

deterministic IHW, many applications are concerned with the 

output error statistics (e.g. error rate). Such errors have been 

modeled as a random additive signal independent of the input, 

following a certain distribution. Fixed point error distributions 

can be effectively described by a Probability Mass Function 

(PMF) [8] which is a discrete function in the error-frequency / 

error-magnitude plane. Each bar (e.g., see Fig 1) indicates a 

non-zero error probability. The base of a bar on the x-axis 

indicates the magnitude range of the error and the height of the 

bar indicates its error frequency. The error-free condition is 

also represented on the plot as two bars next to ε. Thus the 

y-values of all bars sum to 1, because a PMF includes all 

error-free and error-present conditions, and ε partitions the 

x-axis into negative (left) and positive errors (right). The x-axis 

is 
2log -based, so for example, a bar bounded by marker -8 and 

-7 to the right of ε represents errors with magnitude between 
82−

 and 
72−

. The error is assumed to be uniformly distributed 

inside each interval bounded by two adjacent markers. Errors in 

a floating-point system can be similarly characterized by a 

probability density function (PDF). PMFs and PDFs can also 

model the distribution of regular data during computation. 

Fig. 1 shows sample PMFs of two types of IHW-induced 

errors: (a) frequent small-magnitude (FSM) errors, and (b) 

infrequent large-magnitude (ILM) errors. In these PMFs, the 

binary point is assumed to be 12 bits to the left of the least 

significant bit (i.e., the smallest possible error magnitude is 

2
-12

). These PMFs are generated by simulating the ETAIIM 

adder [4] and the Almost-correct adder [5] respectively, with 2 

million random inputs uniformly drawn from [-1, 1]. 

 
Fig. 1. PMF examples: (a) FSM errors by ETAIIM adder, and (b) ILM errors by 

Almost-correct adder 

B. Interval Arithmetic and Affine Arithmetic 

Two classical methods to estimate variable ranges during 

numerical computations are Interval Arithmetic (IA) and Affine 

Arithmetic (AA) [7]. The former uses a single interval [
lx ,

rx ] 

to represent each variable, while the latter uses a so-called 

affine form: 
nnxxxxx εεε L+++= 22110

ˆ , where 
0x  is the 

central (mean) value of the distribution, 
iε  are independent 
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uniformly-distributed variables in the range [-1, 1], and 
nxx L1

are coefficients. 

IA is easy to compute, but the ranges produced are often too 

conservative, i.e. the bounds are not tight. AA improves on this 

by considering the first-order correlations of error signals 

through the sharing of 
iε . AA generally produces tighter 

bounds than IA but uses more complex computations. 

However, both techniques are only capable of representing 

symmetric distributions. Highly asymmetric distributions such 

as the errors produced by IHW (Fig. 1) are not representable by 

either IA or AA. 

In order to represent asymmetric error distributions using 

PMF, we propose some modifications to IA/AA. Instead of 

representing the entire distribution with a single interval or 

affine form, we use multiple intervals or affine forms. 

C. Modified Interval Arithmetic 

Modified Interval Arithmetic (MIA) represents every bar of 

the PMF as a uniformly distributed interval. Thus, the entire 

PMF can be expressed as: 
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Errors with magnitude below ε2  are considered error-free. The 

specific value of ε  is application-dependent but usually can be 

set to match the ULP (unit in the last place) of the system. 

Operations in MIA can be decomposed into simple operations 

between two intervals, which can be easily analyzed.  However, 

MIA has a serious limitation called range explosion. Since 

intervals carry no information about variable correlation, a 

variable which appears multiple times in one expression will be 

treated as a new variable every time it is encountered. This may 

cause the final estimated range to be overly pessimistic. 

D. Modified Affine Arithmetic 

Affine arithmetic considers first-order variable correlation 

and yields tighter bounds. Modified Affine Arithmetic (MAA) 

uses a collection of affine forms to represent one error 

distribution, one for each bar in the PMF: 
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where 
jix ,
 are the coefficients and L,,βα  are error symbols. 

Each affine form occurs with probability 
iP . 

When two PMFs expressed in MAA operate with each other, 

every affine form of the first PMF operates with every affine 

form of the second. In order to preserve the probability 

equivalence, we introduce a concept called exclusive set, which 

refers to a group of affine symbols that originate from the same 

distribution. Any variable which appears for the first time will 

produce a new exclusive set: the symbols used in all of its affine 

forms are mutually exclusive. They are denoted using the same 

symbol, such as α  or β  in (2), with a unique subscript. 

Through repeated and cross computations, these symbols will 

be occur in many derived PMFs. When two PMFs operate, only 

those affine forms with no conflicting symbols (symbols that 

belong to the same exclusive set) are allowed to operate with 

each other. The reason is that symbols in the same exclusive set 

are originally an integral part of the same distribution (denoted 

as D). If a certain affine form of a derived variable contains a 

symbol in the exclusive set, it means this interval is a result of 

taking a value in that original part of D. Having two conflicting 

symbols in the same affine form is thus an impossible event. 

For affine forms, addition, subtraction and scaling by a 

constant are affine operations which result in a perfect affine 

form. Multiplication and division are non-affine operations 

whose result cannot be exactly represented in an affine form. 

Approximations are performed to convert the result into a 

closest affine form, but overshoot and undershoot can occur. In 

certain situations, the range estimates of AA can be worse than 

those of IA. For example, for two variables A and B uniformly 

distributed in the interval of (-1, 0) and (0, 1) respectively, their 

product in affine form, is represented by the form 

32121 25.025.025.025.0)5.05.0)(5.05.0( εεεεε +−+−=++−  

which spans the range (-1, 0.5), but the actual range of the 

product is  (-1, 0).  

MAA also suffers from a practical issue of storage 

explosion. When two PMFs containing N and M affine forms 

operate, in general the resulting PMF will contain N×M affine 

forms. The size of intermediate PMFs can thus grow 

exponentially. This problem does not reduce estimation 

accuracy, but implementation inefficiency may diminish the 

practical value of MAA. There are several ways to address this 

issue. First, we can use a larger scaling factor between 

neighboring intervals (e.g. 4 instead of 2) while constructing 

the MAA. This reduces the number of terms of each MAA. 

Second, affine forms with low frequency or low magnitude can 

be merged into their neighboring affine form. Finally, all 

single-use variables can be represented with only one PMF. 

MIA and MAA can model hardware errors resulting from 

sources other than IHW. For example, errors from algorithmic 

approximation or PVT variations can all be modeled as such. 

Once the errors are represented in one of the PMF formats 

mentioned above, their hardware details become irrelevant. The 

error statistical properties are preserved in PMF, so the 

following error analysis is implementation-independent. 

III. ERROR PROPAGATION MODEL 

This section presents a primitive model for error propagation 

across a single operation, to derive the output PMF using input 

PMF.  Fig. 2 shows the model setup. 
inDPMF and

outDPMF

denote input/output error-free data PMF (assuming all 

operators are precise). 
inEPMF and

outEPMF  are pure error 

PMF. The actual PMFs involving imprecise operations are 

denoted
inPMF and 

outPMF . 
opEPMF is the error PMF 

introduced by the imprecise operator *Op , which can be 

characterized by a priori simulations and is also a function of 

design parameters params. The relationships among the 

various quantities are also shown in Fig. 2. 

Exclusive sets 



 

 

 
Fig. 2. Error propagation model of an imprecise arithmetic 2-operand operation 

 

The principal task of error propagation is to determine the 

transfer functions f, g, u and v for common operations (ADD, 

SUB, MUL, and DIV). More complex operations can be 

studied by decomposing them into the four basic operations. 

Functions u and v are pre-characterized in order to reduce 

derivation time. The imprecise operators in the design are 

pre-characterized with extensive simulation, and the results are 

stored in lookup tables. The table indices are single-interval 

distributions of the two operands, and the entry contains the 

PMF and EPMF resulting from the imprecise operation. For 

example, entry (i, j) contains the 
outPMF  and 

opEPMF  for the 

two operands between [ 1
2,2

−−− ii ] and [ 1
2,2

−−− jj ], 

respectively. Operations with constants (e.g. 0.2x) are 

characterized similarly, but the result is a characterization 

vector instead of a table. Simulations cover a range no smaller 

than the dynamic range during the derivation. Functions u and v 

take the full-spectrum input PMFs and iterate over each interval. 

For every interval pair, we perform a lookup in the 

characterization table. The returned 
outPMF  and

opEPMF will 

be merged to form the final full-spectrum
outPMF and

opEPMF . 

Any imprecise operator with the same setting needs to be 

characterized only once. With the 
opEPMF obtained as above, 

we derive 
outDPMF and

outEPMF   (functions f and g) as in Fig. 

3. 
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Fig. 3. Performing functions f and g for imprecise ADD, SUB, MUL & DIV 

If we use an MIA-based representation, the propagation 

follows the rules in Figs. 2 and 3. For MAA-based 

representation, only DPMF and EPMF are represented in MAA 

form. DPMF and EPMF propagations are simply basic AA 

operations [7] with exclusive-set rules applied. The rules in Fig. 

3 must also be modified with convolution and cross-correlation 

replaced by AA addition/multiplication. The required 
opEPMF  

is obtained by doing the same table lookup as in MIA and 

converting the full-spectrum PMF into MAA form. 
 

IV. SYSTEM-LEVEL ERROR AGGREGATION 

In an IHW-based system, the designer is ultimately 

interested in the quality of the final output. Typically it is 

measured by comparing the DPMF and EPMF of the final 

output.  The one-op propagation rules presented previously can 

be used as a building block to propagate the DPMF and EPMF 

from the primary input to the primary output, in five steps: 

 

1) Construct the characterization vector and table by simulating the IHW with 

inputs being constants or drawn from various [ 1
2,2
−−− ii ] intervals. 

2) Propagate DPMF assuming precise operations and obtain DPMF for every 

data path using the rules from Fig. 3. 

3) Propagate the PMF and
opEPMF of every IHW component by looking up 

the characterization vector/table. 

4) Propagate EPMF using DPMF and
opEPMF obtained in Step 2 and 3 and 

rules from Fig. 3.  

5) Calculate output quality metric using the final output DPMF and EPMF. 
 

Even though this process takes five steps, it is still much 

faster than simulation (see Fig. 4) for two reasons. First, only 

distributions are propagated and no actual computation is 

needed. The simulation used to generate the characterization 

table can be pre-computed with no overhead. Second, Steps 2 

and 3 are independent and thus can be performed in parallel. 

Pure simulation is only parallelizable across different input data 

at the cost of additional expensive hardware. 

Since the output quality metric is as diverse as an application 

can be, its definition is beyond the scope of this paper. As an 

example, assume the quality metric is signal-to-noise ratio 

(SNR), to calculate it from output DPMF and EPMF, we have: 
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V. EXPERIMENTAL RESULTS 

Two types of computations are used for the experiment: 

consecutive addition and FIR filter. The former performs the 

summation of eight 20-bit inputs using a tree structure, and the 

latter involves four repeated multiply-accumulate (MAC) 

operations on a single 24-bit input. In both cases the input data 

are drawn from independent uniform distributions. The adders 

and multipliers involved are all IHW. The IHW adders have 

two forms: ETAIIM adder and Almost-Correct adder. The IHW 

multiplier is constructed from an imprecise adder following 

simple partial product generation + Wallace tree + final adder 

scheme. All imprecise adders and MIA are implemented as 

MATLAB functions. MAA is implemented in C++ by 

expanding the libaffa [9] open source library. An optimized 

multiplication rule is adopted from [10]. 

The goal of these experiments is to compare the estimation 

accuracy and runtime of simulation (sim), MIA, MAA and 

affine arithmetic (AA). Because theoretical numbers are not 

easily obtainable, simulation results with 1 million random 

drawings are regarded as the true error distribution. Hence the 

estimation accuracy for each method can be established by 

checking how close its estimate is to the simulation estimate. 

The two most important attributes of any error distribution 

are error rate (f) and maximum error magnitude (M). These can 



 

be evaluated from the PMF using the following formula: 

∑ <− εnn Mf  , 1:rateerror  1)  

0 , )max(:magnitudeerror  maximum 2) >nn fM  

Estimation time is affected by the computation complexity 

and, for simulation, the input size. We use the number of 

consecutive additions to represent computation complexity 

(ops) and tested complexity of 2, 4, 8 and 16. For simulation, 

we also vary the random input size. 

Fig. 4 shows that simulation time grows linearly with input 

size but the proposed analytic methods are unaffected. All 

methods consume more time with increased complexity, but 

MAA grows the fastest (exponentially) due to storage 

explosion, making it a poor candidate for complex designs. In 

any case, MIA is at least 50 times faster than simulation. 

 
Fig. 4. Estimation time against input size and computation complexity 

 

Table 1. Comparison of estimated error rate 

Test-

case 

Consecutive add Order-4 FIR 

sim MIA MAA AA sim MIA MAA AA 

1 0.10 0.10 0.10 0.97 0.19 0.19 0.22 1 

2 3.0e-4 2.9e-4 2.8e-4 1 8.2e-5 2.3e-4 1.1e-4 1 

3 0.047 0.046 0.046 1 0.04 0.05 0.05 1 

 
Table 2. Comparison of estimated maximum error magnitude 

Test-

case 

Consecutive add Order-4 FIR 

sim MIA MAA AA sim MIA MAA AA 

1 0.012 0.063 0.011 0.024 1.1 2.0 2.0 4.1 

2 8 128 8 70 0.06 8.0 5.0 38.5 

3 8 128 8 71 0.06 8.0 8.0 16.0 
 

Table 1 and Table 2 compare the estimated error rate and 

maximum error magnitude of the four estimation methods. For 

each computation class (Consecutive add and Order-4 FIR), 

three architectural configurations are evaluated: (1) all ETAIIM 

adders/multipliers, (2) all ACA, and (3) a mixture of both. 

Qualitatively and across all estimation results, the ACA 

configuration has the lowest error rate and biggest error 

magnitude; while ETAIIM is the opposite. This observation 

conforms to the error characteristics of ETAIIM/ACA units 

(Fig. 1).  For different estimation methods, affine arithmetic 

(AA) clearly has the worst estimation accuracy due to its 

inability to model asymmetric data distributions. MIA exhibits 

fairly high estimation accuracy on error rate, but does poorly on 

error magnitudes. Compared to MIA, MAA has similar 

estimation accuracy on error rate, but gives considerable tighter 

error magnitude bounds. Since even simulation does not 

guarantee error bounds due to the large input size required to 

induce extreme errors, the true error bounds should be between 

the simulation and MAA estimates. The original IA is not 

compared because it models all data with a flat uniform 

distribution (interval), thus providing little information on error 

rate. Based on the simulated error rate and the data size (1 

million), we calculate that the true error rate lies in the ±15% 

confidence interval around the simulation value with at least 

85% confidence level, thus simulation is a reasonable baseline 

for error rate estimation. 

MIA and MAA are supposed to give upper bounds for the 

error magnitude. However, during the course of the 

experiments, we performed truncation of the MAA to reduce 

the estimation time. The number of affine forms in this case 

grows to over 8 million after 4 MAC operations, and we 

truncate low frequency MAA terms to make the runtime 

manageable, at the cost of estimation accuracy. It is necessary 

to develop techniques that mitigate the storage explosion 

problem for MAA to be useful in more complex applications. 

Table 3 summarizes the properties of the three error estimation 

methods. 
Table 3. Overview of error estimation methods 

Method Simulation MIA MAA 

Pros 
Statistically 

accurate 

Fastest, reasonably 

accurate 

Fast if low complexity, 

tight bounds 

Cons 
Slow, bounds 

too tight 

Loose bounds if 

variables correlate 

Storage explosion if 

high complexity 

VI. CONCLUSION 

Imprecise hardware is a viable emerging technology for 

power reduction. In order to safely deploy IHW in a system, we 

need to evaluate the IHW-induced error statistics. This work 

proposes two analytic error estimation methods that offer 

significant speedup over simulation with reasonable estimation 

accuracy. Their limitations and possible solutions are also 

addressed. In future works we will continue to refine the 

models to improve estimation accuracy, extend the methods to 

model errors induced by voltage scaling and guardband 

reduction, and addressing the storage explosion problem. 
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