

Abstract—Imprecise hardware challenges the traditional

notion that correctness is an immutable priority, by systematically

trading off efficacy (precision) against efficiency (power, area,

performance, and cost). Evaluating the impact of such tradeoffs

on output quality using, e.g., Monte Carlo simulations is a

time-consuming and non-deterministic process. This paper

presents two analytic modeling techniques for evaluating error

properties and output quality in imprecise arithmetic circuits,

based on Interval Arithmetic and Affine Arithmetic. Experiments

show that these techniques offer significant speedups over

previous methods, as well as promising estimation accuracy.

I. INTRODUCTION

ower has become the limiting factor in digital systems. The

demand for higher computing capacity continues to rise,

but power has reached a limit due to thermal and delivery

issues. Imprecise hardware (IHW), also known as stochastic

computation [1, 2], or Better than Worst-Case Design [3], has

been proposed as a solution to tackle this problem. Compared to

traditional hardware designed to always compute correctly,

IHW allows occasional computation errors but achieves higher

performance and/or lower power. Any resulting errors can be

relegated to dedicated error correction circuits and software, or

even left uncorrected, given the error-tolerant nature of many

applications. This paper focuses on deterministic arithmetic

IHW, which alters the logic function of the performed

computation either at design time, or dynamically at runtime.

Examples include supporting only a subset of the input

combinations [4, 5], voltage overscaling [1, 2], and data width

reduction. The introduced errors can be uniquely determined by

the input but the mapping function is not easy to determine.

The benefits of IHW are largely determined by (1) the level

of performance/power improvement offered by imprecise

computation, and (2) the amount of output quality degradation

caused by errors. Significant power reduction and performance

increase from IHW have been reported [4, 5, 6], and new IHW

techniques are being developed. However, the consequences of

IHW on output quality require further investigation. Typically a

system with IHW components is simulated with random inputs

in order to obtain an output profile with acceptable quality. This

is a time-consuming task, especially for complex systems.

Imprecise hardware expands the design space by relaxing the

correctness requirement, thus faster error estimation is crucial

to the effective exploration of the space. Moreover, simulations

are usually nondeterministic and unreliable as output profiles

can be influenced by the size and scope of the simulations.

This paper presents two methods that enable analytic

modeling of the statistical distributions and bounds of errors

introduced by IHW. These methods are based on Interval

Arithmetic and Affine Arithmetic [7] and are modified to

handle the characteristics of IHW errors. Compared to

simulations, they provide orders-of-magnitude speedup and

have the potential for stronger error bound guarantees.

II. CHARACTERIZING IMPRECISE HARDWARE ERRORS

A. Error as a Distribution

Although the error is a deterministic function of the input in

deterministic IHW, many applications are concerned with the

output error statistics (e.g. error rate). Such errors have been

modeled as a random additive signal independent of the input,

following a certain distribution. Fixed point error distributions

can be effectively described by a Probability Mass Function

(PMF) [8] which is a discrete function in the error-frequency /

error-magnitude plane. Each bar (e.g., see Fig 1) indicates a

non-zero error probability. The base of a bar on the x-axis

indicates the magnitude range of the error and the height of the

bar indicates its error frequency. The error-free condition is

also represented on the plot as two bars next to ε. Thus the

y-values of all bars sum to 1, because a PMF includes all

error-free and error-present conditions, and ε partitions the

x-axis into negative (left) and positive errors (right). The x-axis

is
2log -based, so for example, a bar bounded by marker -8 and

-7 to the right of ε represents errors with magnitude between
82−

 and
72−

. The error is assumed to be uniformly distributed

inside each interval bounded by two adjacent markers. Errors in

a floating-point system can be similarly characterized by a

probability density function (PDF). PMFs and PDFs can also

model the distribution of regular data during computation.

Fig. 1 shows sample PMFs of two types of IHW-induced

errors: (a) frequent small-magnitude (FSM) errors, and (b)

infrequent large-magnitude (ILM) errors. In these PMFs, the

binary point is assumed to be 12 bits to the left of the least

significant bit (i.e., the smallest possible error magnitude is

2
-12

). These PMFs are generated by simulating the ETAIIM

adder [4] and the Almost-correct adder [5] respectively, with 2

million random inputs uniformly drawn from [-1, 1].

Fig. 1. PMF examples: (a) FSM errors by ETAIIM adder, and (b) ILM errors by

Almost-correct adder

B. Interval Arithmetic and Affine Arithmetic

Two classical methods to estimate variable ranges during

numerical computations are Interval Arithmetic (IA) and Affine

Arithmetic (AA) [7]. The former uses a single interval [
lx ,

rx]

to represent each variable, while the latter uses a so-called

affine form:
nnxxxxx εεε L+++= 22110

ˆ , where
0x is the

central (mean) value of the distribution,
iε are independent

Analytic Error Modeling for Imprecise Arithmetic Circuits

Jiawei Huang
1
, John Lach

1
, and Gabriel Robins

2

1
Charles L. Brown Department of Electrical and Computer Engineering,

2
Department of Computer Science

University of Virginia, Charlottesville, VA 22903, {jh3wn, jlach, robins}@virginia.edu

P

uniformly-distributed variables in the range [-1, 1], and
nxx L1

are coefficients.

IA is easy to compute, but the ranges produced are often too

conservative, i.e. the bounds are not tight. AA improves on this

by considering the first-order correlations of error signals

through the sharing of
iε . AA generally produces tighter

bounds than IA but uses more complex computations.

However, both techniques are only capable of representing

symmetric distributions. Highly asymmetric distributions such

as the errors produced by IHW (Fig. 1) are not representable by

either IA or AA.

In order to represent asymmetric error distributions using

PMF, we propose some modifications to IA/AA. Instead of

representing the entire distribution with a single interval or

affine form, we use multiple intervals or affine forms.

C. Modified Interval Arithmetic

Modified Interval Arithmetic (MIA) represents every bar of

the PMF as a uniformly distributed interval. Thus, the entire

PMF can be expressed as:

Zn

X

X

X

X

nPMF
nn

nn

X ∈

=≤≤−

=≤≤

<−≤≤−

>≤≤

=
++++

+−+

 ,

1-n if ,)02Pr(

0n if ,)20Pr(

-1n if ,)22Pr(

0n if ,)22Pr(

)(
23

1

ε

ε

εε

εε

 (1)

Errors with magnitude below ε2 are considered error-free. The

specific value of ε is application-dependent but usually can be

set to match the ULP (unit in the last place) of the system.

Operations in MIA can be decomposed into simple operations

between two intervals, which can be easily analyzed. However,

MIA has a serious limitation called range explosion. Since

intervals carry no information about variable correlation, a

variable which appears multiple times in one expression will be

treated as a new variable every time it is encountered. This may

cause the final estimated range to be overly pessimistic.

D. Modified Affine Arithmetic

Affine arithmetic considers first-order variable correlation

and yields tighter bounds. Modified Affine Arithmetic (MAA)

uses a collection of affine forms to represent one error

distribution, one for each bar in the PMF:

+++

+++

+++

=

M

L

L

L

22-321-30-33

12-211-20-22

02-101-10-11

 :

 :

 :

βα
βα
βα

xxxP

xxxP

xxxP

PMFX

 (2)

where
jix ,
 are the coefficients and L,,βα are error symbols.

Each affine form occurs with probability
iP .

When two PMFs expressed in MAA operate with each other,

every affine form of the first PMF operates with every affine

form of the second. In order to preserve the probability

equivalence, we introduce a concept called exclusive set, which

refers to a group of affine symbols that originate from the same

distribution. Any variable which appears for the first time will

produce a new exclusive set: the symbols used in all of its affine

forms are mutually exclusive. They are denoted using the same

symbol, such as α or β in (2), with a unique subscript.

Through repeated and cross computations, these symbols will

be occur in many derived PMFs. When two PMFs operate, only

those affine forms with no conflicting symbols (symbols that

belong to the same exclusive set) are allowed to operate with

each other. The reason is that symbols in the same exclusive set

are originally an integral part of the same distribution (denoted

as D). If a certain affine form of a derived variable contains a

symbol in the exclusive set, it means this interval is a result of

taking a value in that original part of D. Having two conflicting

symbols in the same affine form is thus an impossible event.

For affine forms, addition, subtraction and scaling by a

constant are affine operations which result in a perfect affine

form. Multiplication and division are non-affine operations

whose result cannot be exactly represented in an affine form.

Approximations are performed to convert the result into a

closest affine form, but overshoot and undershoot can occur. In

certain situations, the range estimates of AA can be worse than

those of IA. For example, for two variables A and B uniformly

distributed in the interval of (-1, 0) and (0, 1) respectively, their

product in affine form, is represented by the form

32121 25.025.025.025.0)5.05.0)(5.05.0(εεεεε +−+−=++−

which spans the range (-1, 0.5), but the actual range of the

product is (-1, 0).

MAA also suffers from a practical issue of storage

explosion. When two PMFs containing N and M affine forms

operate, in general the resulting PMF will contain N×M affine

forms. The size of intermediate PMFs can thus grow

exponentially. This problem does not reduce estimation

accuracy, but implementation inefficiency may diminish the

practical value of MAA. There are several ways to address this

issue. First, we can use a larger scaling factor between

neighboring intervals (e.g. 4 instead of 2) while constructing

the MAA. This reduces the number of terms of each MAA.

Second, affine forms with low frequency or low magnitude can

be merged into their neighboring affine form. Finally, all

single-use variables can be represented with only one PMF.

MIA and MAA can model hardware errors resulting from

sources other than IHW. For example, errors from algorithmic

approximation or PVT variations can all be modeled as such.

Once the errors are represented in one of the PMF formats

mentioned above, their hardware details become irrelevant. The

error statistical properties are preserved in PMF, so the

following error analysis is implementation-independent.

III. ERROR PROPAGATION MODEL

This section presents a primitive model for error propagation

across a single operation, to derive the output PMF using input

PMF. Fig. 2 shows the model setup.
inDPMF and

outDPMF

denote input/output error-free data PMF (assuming all

operators are precise).
inEPMF and

outEPMF are pure error

PMF. The actual PMFs involving imprecise operations are

denoted
inPMF and

outPMF .
opEPMF is the error PMF

introduced by the imprecise operator *Op , which can be

characterized by a priori simulations and is also a function of

design parameters params. The relationships among the

various quantities are also shown in Fig. 2.

Exclusive sets

Fig. 2. Error propagation model of an imprecise arithmetic 2-operand operation

The principal task of error propagation is to determine the

transfer functions f, g, u and v for common operations (ADD,

SUB, MUL, and DIV). More complex operations can be

studied by decomposing them into the four basic operations.

Functions u and v are pre-characterized in order to reduce

derivation time. The imprecise operators in the design are

pre-characterized with extensive simulation, and the results are

stored in lookup tables. The table indices are single-interval

distributions of the two operands, and the entry contains the

PMF and EPMF resulting from the imprecise operation. For

example, entry (i, j) contains the
outPMF and

opEPMF for the

two operands between [1
2,2

−−− ii] and [1
2,2

−−− jj],

respectively. Operations with constants (e.g. 0.2x) are

characterized similarly, but the result is a characterization

vector instead of a table. Simulations cover a range no smaller

than the dynamic range during the derivation. Functions u and v

take the full-spectrum input PMFs and iterate over each interval.

For every interval pair, we perform a lookup in the

characterization table. The returned
outPMF and

opEPMF will

be merged to form the final full-spectrum
outPMF and

opEPMF .

Any imprecise operator with the same setting needs to be

characterized only once. With the
opEPMF obtained as above,

we derive
outDPMF and

outEPMF (functions f and g) as in Fig.

3.

DIVoutout

out

MUL

out

out

SUBout

out

ADDout

out

EPMFEPMFDPMFEPMFDPMFxcorrEPMFEPMF

DPMFDPMFDPMF

tgftgfnconvolutiodivision

EPMFEPMFEPMF

DPMFEPMFEPMFDPMFEPMF

DPMFDPMFDPMF

tgftgfnconvolutiotionmultiplica

EPMFEPMFxcorrEPMFEPMF

DPMFxcorrDPMFDPMF

EPMFEPMFEPMFEPMF

DPMFDPMFDPMF

)//()]*([

/ /

d)()()(//::

*) ** (*

) ** (*) ** (

 **

d)/()()(**::

*

)ncorrelatio-(cross :

**

)on(convoluti *:

2221

21

21

2121

21

21

21

21

21

=

=

≡−

=

=

≡−

=

=

=

=

∫

∫

∞

∞−

∞

∞−

τττ

τττ

DIV

MUL

SUB

ADD

Fig. 3. Performing functions f and g for imprecise ADD, SUB, MUL & DIV

If we use an MIA-based representation, the propagation

follows the rules in Figs. 2 and 3. For MAA-based

representation, only DPMF and EPMF are represented in MAA

form. DPMF and EPMF propagations are simply basic AA

operations [7] with exclusive-set rules applied. The rules in Fig.

3 must also be modified with convolution and cross-correlation

replaced by AA addition/multiplication. The required
opEPMF

is obtained by doing the same table lookup as in MIA and

converting the full-spectrum PMF into MAA form.

IV. SYSTEM-LEVEL ERROR AGGREGATION

In an IHW-based system, the designer is ultimately

interested in the quality of the final output. Typically it is

measured by comparing the DPMF and EPMF of the final

output. The one-op propagation rules presented previously can

be used as a building block to propagate the DPMF and EPMF

from the primary input to the primary output, in five steps:

1) Construct the characterization vector and table by simulating the IHW with

inputs being constants or drawn from various [1
2,2
−−− ii] intervals.

2) Propagate DPMF assuming precise operations and obtain DPMF for every

data path using the rules from Fig. 3.

3) Propagate the PMF and
opEPMF of every IHW component by looking up

the characterization vector/table.

4) Propagate EPMF using DPMF and
opEPMF obtained in Step 2 and 3 and

rules from Fig. 3.

5) Calculate output quality metric using the final output DPMF and EPMF.

Even though this process takes five steps, it is still much

faster than simulation (see Fig. 4) for two reasons. First, only

distributions are propagated and no actual computation is

needed. The simulation used to generate the characterization

table can be pre-computed with no overhead. Second, Steps 2

and 3 are independent and thus can be performed in parallel.

Pure simulation is only parallelizable across different input data

at the cost of additional expensive hardware.

Since the output quality metric is as diverse as an application

can be, its definition is beyond the scope of this paper. As an

example, assume the quality metric is signal-to-noise ratio

(SNR), to calculate it from output DPMF and EPMF, we have:
22

)(

)(

=

=

EPMFE

DPMFE

A

A
SNR

noise

signal

V. EXPERIMENTAL RESULTS

Two types of computations are used for the experiment:

consecutive addition and FIR filter. The former performs the

summation of eight 20-bit inputs using a tree structure, and the

latter involves four repeated multiply-accumulate (MAC)

operations on a single 24-bit input. In both cases the input data

are drawn from independent uniform distributions. The adders

and multipliers involved are all IHW. The IHW adders have

two forms: ETAIIM adder and Almost-Correct adder. The IHW

multiplier is constructed from an imprecise adder following

simple partial product generation + Wallace tree + final adder

scheme. All imprecise adders and MIA are implemented as

MATLAB functions. MAA is implemented in C++ by

expanding the libaffa [9] open source library. An optimized

multiplication rule is adopted from [10].

The goal of these experiments is to compare the estimation

accuracy and runtime of simulation (sim), MIA, MAA and

affine arithmetic (AA). Because theoretical numbers are not

easily obtainable, simulation results with 1 million random

drawings are regarded as the true error distribution. Hence the

estimation accuracy for each method can be established by

checking how close its estimate is to the simulation estimate.

The two most important attributes of any error distribution

are error rate (f) and maximum error magnitude (M). These can

be evaluated from the PMF using the following formula:

∑ <− εnn Mf , 1:rateerror 1)

0 ,)max(:magnitudeerror maximum 2) >nn fM

Estimation time is affected by the computation complexity

and, for simulation, the input size. We use the number of

consecutive additions to represent computation complexity

(ops) and tested complexity of 2, 4, 8 and 16. For simulation,

we also vary the random input size.

Fig. 4 shows that simulation time grows linearly with input

size but the proposed analytic methods are unaffected. All

methods consume more time with increased complexity, but

MAA grows the fastest (exponentially) due to storage

explosion, making it a poor candidate for complex designs. In

any case, MIA is at least 50 times faster than simulation.

Fig. 4. Estimation time against input size and computation complexity

Table 1. Comparison of estimated error rate

Test-

case

Consecutive add Order-4 FIR

sim MIA MAA AA sim MIA MAA AA

1 0.10 0.10 0.10 0.97 0.19 0.19 0.22 1

2 3.0e-4 2.9e-4 2.8e-4 1 8.2e-5 2.3e-4 1.1e-4 1

3 0.047 0.046 0.046 1 0.04 0.05 0.05 1

Table 2. Comparison of estimated maximum error magnitude

Test-

case

Consecutive add Order-4 FIR

sim MIA MAA AA sim MIA MAA AA

1 0.012 0.063 0.011 0.024 1.1 2.0 2.0 4.1

2 8 128 8 70 0.06 8.0 5.0 38.5

3 8 128 8 71 0.06 8.0 8.0 16.0

Table 1 and Table 2 compare the estimated error rate and

maximum error magnitude of the four estimation methods. For

each computation class (Consecutive add and Order-4 FIR),

three architectural configurations are evaluated: (1) all ETAIIM

adders/multipliers, (2) all ACA, and (3) a mixture of both.

Qualitatively and across all estimation results, the ACA

configuration has the lowest error rate and biggest error

magnitude; while ETAIIM is the opposite. This observation

conforms to the error characteristics of ETAIIM/ACA units

(Fig. 1). For different estimation methods, affine arithmetic

(AA) clearly has the worst estimation accuracy due to its

inability to model asymmetric data distributions. MIA exhibits

fairly high estimation accuracy on error rate, but does poorly on

error magnitudes. Compared to MIA, MAA has similar

estimation accuracy on error rate, but gives considerable tighter

error magnitude bounds. Since even simulation does not

guarantee error bounds due to the large input size required to

induce extreme errors, the true error bounds should be between

the simulation and MAA estimates. The original IA is not

compared because it models all data with a flat uniform

distribution (interval), thus providing little information on error

rate. Based on the simulated error rate and the data size (1

million), we calculate that the true error rate lies in the ±15%

confidence interval around the simulation value with at least

85% confidence level, thus simulation is a reasonable baseline

for error rate estimation.

MIA and MAA are supposed to give upper bounds for the

error magnitude. However, during the course of the

experiments, we performed truncation of the MAA to reduce

the estimation time. The number of affine forms in this case

grows to over 8 million after 4 MAC operations, and we

truncate low frequency MAA terms to make the runtime

manageable, at the cost of estimation accuracy. It is necessary

to develop techniques that mitigate the storage explosion

problem for MAA to be useful in more complex applications.

Table 3 summarizes the properties of the three error estimation

methods.
Table 3. Overview of error estimation methods

Method Simulation MIA MAA

Pros
Statistically

accurate

Fastest, reasonably

accurate

Fast if low complexity,

tight bounds

Cons
Slow, bounds

too tight

Loose bounds if

variables correlate

Storage explosion if

high complexity

VI. CONCLUSION

Imprecise hardware is a viable emerging technology for

power reduction. In order to safely deploy IHW in a system, we

need to evaluate the IHW-induced error statistics. This work

proposes two analytic error estimation methods that offer

significant speedup over simulation with reasonable estimation

accuracy. Their limitations and possible solutions are also

addressed. In future works we will continue to refine the

models to improve estimation accuracy, extend the methods to

model errors induced by voltage scaling and guardband

reduction, and addressing the storage explosion problem.

REFERENCES

[1] N.R. Shanbhag, R.A. Abdallah, R. Kumar, D.L. Jones, “Stochastic
computation,” Design Automation Conference, pp. 859 –864, 2010

[2] S. Narayanan, J. Sartori, R. Kumar, D. Jones, “Scalable stochastic

processors,” Design, Automation and Test in Europe, pp. 335-338, 2010

[3] T. Austin, V. Bertacco, D. Blaauw, T. Mudge, “Opportunities and

challenges for better than worstcase design,” Asia and South Pacific

Design Automation Conference, vol. 1, pp. I/2 – I/7, 2005

[4] N. Zhu, W.L. Goh, K.S. Yeo, “An enhanced low-power high-speed adder
for error-tolerant application,” International Symposium on Integrated

Circuits, pp. 69–72, 2009

[5] A. Verma, P. Brisk, P. Ienne, “Variable latency speculative addition: A

new paradigm for arithmetic circuit design,” Design, Automation and Test
in Europe, pp. 1250–1255, 2008

[6] J. Huang, J. Lach, “Exploring the fidelity-efficiency design space using

imprecise arithmetic,” Asia and South Pacific Design Automation
Conference, pp. 579-584 , 2011

[7] L.H. de Figueiredo, J. Stolfi, “Self-validated numerical methods and

applications,” Brazilian Mathematics Colloquium, IMPA, 1997

[8] E.P. Kim, R.A. Abdallah, N.R. Shanbhag, "Soft NMR: Exploiting
statistics for energy-efficiency," International Symposium on SOC, pp.

52-55, 2009

[9] http://savannah.nongnu.org/projects/libaffa

[10] L.V. Kolev, “An improved interval linearization for solving non-linear

problems,” Numerical Algorithms, vol. 37, pp. 213-224, 2004

