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ABSTRACT We solve a discrete version of the classic
Plateau problem, which asks for a minimal surface spanning a
given curve. Our algorithm is based on a network-flow for-
mulation that finds minimal slabs, intuitively corresponding to
minimal "surfaces" of prescribed thickness. We let the slab
thickness approach zero in order to obtain the desired minimal
surface.

The Plateau problem is to find a surface of minimum area that
spans a given curve. The problem is named after J. Plateau
(1801-1883), who performed an extensive series of experi-
ments using metal wire to represent curves and soap films to
model minimal spanning surfaces. Since then, many of the
great mathematicians of the 19th and 20th centuries have
contributed to the theory of minimal surfaces, culminating
with the discovery of the general analytical solutions by
Douglas (1) and Rad6 (2) in the 1930s (for recent reviews, see
refs. 3-5). The general Plateau problem is stated as follows:

Plateau Problem (P1). Given a Jordan curve F* in 93, find
a surface D* of minimum area having boundary F*.
A surface has minimal area if and only if it has zero mean

curvature at each point, but this characterization is noncon-
structive. In many instances, analytic solutions are known to
exist but remain virtually impossible to find; solutions to
specific cases of the Plateau problem have been individually
discovered and proved over the last two centuries (3). Recent
work has used numerical methods-e.g., the finite element
approaches of refs. 6 and 7-to solve restricted instances of
the Plateau problem; these are reviewed in ref. 8.
The present discussion treats the special class of instances

of the Plateau problem, first described by Rad6 (2), which
satisfy the following conditions: (i) the orthogonal projection
F of the given boundary r* onto the xy plane is simple (i.e.,
non-self-intersecting), and (ii) the solution D* admits a func-
tional representation z = f(x, y), where f is continuous and
has domain D equal to the subset of the xy plane bounded by
r. Thus, we have the following:

Restricted Plateau Problem (P2). Given a Jordan curve r*
in 9J3 which has projection r onto the xy plane that is
homeomorphic to a circle, find a surface D* [having func-
tional representation z = f(x, y)] of minimum area having
boundary r*.

Conceptually, we may visualize the Jordan curve r* as
being embedded in the lateral wall of a cylinder that has D as
its cross section. More precisely, this cylinder is the solid
given by cyl(r*)deW {(x, y, z) (x, y) E D, Izi s M} for some
M sufficiently large. The minimal surface D* therefore sep-
arates the cylinder into two parts, T and B, lying respectively
above and below D*. We generalize standard formulations in
that we do not search for a minimal (zero-thickness) surface.
Rather, we compute a minimal r-separating slab that has
prescribed thickness r > 0 and that separates the cylinder into

T and B, with every point of T at least distance r from every
point of B (Fig. 1). The term slab intuitively corresponds to
a "thick surface" (e.g., think of an orange peel) that has
non-zero volume. Our method will solve for the r-separating
slab that contains the curve F* and has minimum volume. As
r approaches zero, this problem naturally reduces to the
restricted Plateau problem (P2).

In addition to allowing the solution to have thickness r > 0,
we further generalize the classic Plateau formulation by
allowing a positive weight function w: cyl(F*) +9 to be
defined at every point within the cylinder. We therefore have
the following:

Thickness-rPlateau Problem (P3). Given a Jordan curve IP,
a weight function w: cyl(F*) -* 9+, and a thickness r> 0,
find an r-separating slab D* C cyl(F*) that contains r* and
has minimum total weight.
Note that a minimal slab of thickness r1 will not necessarily

be contained in a minimal slab of thickness r2 > r1. (These
intuitive ideas are formalized in ref. 8. The idea of r-separa-
tion is discussed in ref. 9.)
The thickness-r Plateau problem (P3) minimizes the inte-

gral of the weight function over the volume of the slab.
However, note that with numerical approaches (e.g., refs. 6
and 7) the space is discretized relative to a given fixed grid or
sampling granularity h. The Plateau formulation easily ex-
tends to finding a minimal discrete r-separating slab, as we
have formally shown in ref. 8. Intuitively, as the granularity
quantum h of the grid approaches zero, the solution of the
discrete instance will converge to the solution for the corre-
sponding continuous (P3) instance.
We now sketch our network-flow-based solution for such

discrete Plateau instances. Recall [cf. ref. 10] that a flow
network q = (N, A, s, t, c, c') is a directed graph with node
set N; a set of directed arcs A C N x N; a distinguished
source s E N and a distinguished sink t E N; an arc capacity
function c : A > 9+ that specifies the capacity ci 20 ofeach
arc au E A; and a node capacity function c' : N 9j+ that
specifies the capacity c! .0 of each node ni E N. An infinite
capacity may be modeled by specifying a sufficiently large
finite capacity. Aflow in q assigns to each arc a, a value uj,
with 0 s ou s cu. An arc au is called saturated if 4, = cu. Flow
is conserved at every node except s and t and cannot violate
node capacities:

y7ij = 14'jk S cj, nj $ s, t.
I k

[1]

A node ni is called saturated if XI4ij = cj. Because flow is
conserved, the total amount of flow from the source must be
equal to the total flow into the sink; we call this quantity the
value 4 of the flow:

[2]
i J

A flow with the maximum possible value is called a maximum
flow. An s-t cut in a network is a set (N',A') of nodes N' C
N and arcs A' C A, such that every path from s to t uses at
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FIG. 1. An r-separating slab b* relative to a given contour P.

least one node of N' or at least one arc of A'. The capacity
c(N', A') of a cut is the sum of the capacities of all nodes and
arcs in the cut. The max-flow min-cut theorem (10) states that
the maximum flow value is equal to the minimum cut capac-
ity. Moreover, the nodes and arcs ofany minimum s-t cut are
a subset of the saturated nodes and saturated arcs in some
maximum s-t flow.
To solve the discrete Plateau problem, we partition cyl(F*)

into small cubes of side h and represent every cube by a node
with weight equal to the total weight of the cube. We then
form a flow network over this grid of nodes by (i) giving each
node a flow capacity equal to its weight and (ii) introducing
an infinite-capacity arc between two nodes if the distance
between these nodes is r or less. This ensures that the set of
nodes in any minimum s-t cut will have thickness of at least
r-i.e., the cut will correspond to a discrete r-separating slab.
Note that r> h > 0, and as h -O 0, r -o 0, and hir -- 0, the

minimum r-separating slab in this discrete representation
approaches the minimum surface in the continuous problem.
We may use the max-flow min-cut theorem to solve the

discrete Plateau problem after applying two transformations
(see ref. 8 for details): (i) we introduce a source s connected
to all nodes on the lateral wall of the cylinder below the
Jordan curve F*, and we introduce a sink t connected to all
nodes on the cylinder wall above J7*; (ii) we convert the

node-capacitated network into an equivalent arc-capacitated
flow network.
The first transformation forces the minimum surface to

span the curve r*, while the second transformation enables
us to apply standard algorithms to compute a maximum s-t
flow. The maximum s-t flow will determine a minimum s-t
cut-i.e., a minimum-weight source-sink separator in the
original node-weighted representation-which by the above
discussion corresponds to the desired minimal r-separating
slab.
Computational experience has confirmed the validity of

our approach (8). The algorithm finds a minimal surface
within polynomial time-e.g., using the network-flow
method of ref. 11 yields 0(n2) time complexity, where n is the
number ofnodes in the discrete grid representation ofcyl(l*).
Moreover, our methodology solves a generalized problem
formulation-namely, with arbitrary weight function and
prescribed solution thickness.

Partial support for this research was provided by the National
Science Foundation and by the Army Research Office. G.R. was
supported by an International Business Machines Graduate Fellow-
ship.

1. Douglas, J. (1931) Trans. Am. Math. Soc. 33, 263-321.
2. Rad6, T. (1933) On the Problem ofPlateau (Springer, Berlin).
3. Fomenko, A. T. (1990) The Plateau Problem, Part I: Historical

Survey (Gordon & Breach, Amsterdam).
4. Fomenko, A. T. (1990) The Plateau Problem, Part Il: The

Present State of the Theory (Gordon & Breach, Amsterdam).
5. Fomenko, A. T. & Tuzhilin, A. A. (1991) Elements of the

Geometry and Topology ofMinimal Surfaces in Three-Dimen-
sional Space (Am. Math. Soc., Providence, RI).

6. Tsuchiya, T. (1986) Math. Comp. 46, 517-529.
7. Hinata, M., Shimasaki, M. & Kiyono, T. (1974) Math. Comp.

28, 45-60.
8. Hu, T. C., Kahng, A. B. & Robins, G. (1992) Optimal Solution

ofa Class ofInstances ofthe Discrete Plateau Problem (Dept.
of Computer Sci., Univ. of California, Los Angeles), Tech.
Rep. CSD-920006.

9. Gomory, R. E., Hu, T. C. & Yohe, J. M. (1974) Can. J. Math.
26, 1418-1429.

10. Ford, L. R. & Fulkerson, D. R. (1961) Flows in Networks
(Princeton Univ. Press, Princeton, NJ).

11. Ahuja, R. K., Odin, J. B. & Tarjan, R. E. (1987) Improved
Time Bounds for the Maximum Flow Problem (Dept. of Com-
puter Sci., Princeton Univ., Princeton, NJ), Tech. Rep. CS-
TR-118-87.

9236 Mathematics: Hu et al.


