
Teaching Theoretical Computer Science
at the Undergraduate Level: Experiences, Observations,

and Proposals to Improve the Status Quo

Gabriel Robins

Computer Science Department
University of California, Los Angeles

Los Angeles, California 90025

Abstract

Theoretical computer science is a difficult
subject to teach at the undergraduate level for
several reasons. Although it is often a required
course for graduation, theoretical computer science
has the reputation of being a "tough course," so
most undergraduates postpone taking it until
absolutely necessary, namely, during their senior
year. To compound the problem, many students
who enter the course have very little theoretical or
mathematical background. If the material is not
motivated enough in its presentation to the
students, the students quickly drown in the
terminology and the abundant technical notation,
loosing their interest and patience in the process.
Since theoretical models constitute an extensive
infra-structure upon which rests much of computer
science, it is crucial that undergraduates acquire an
appreciation of these concepts before they leave
school. Based on observations I made while being
involved in teaching this course at UCLA for
several quarters, I have developed and used some
teaching techniques which have been quite
successful, both in increasing student interest, as
well as in enhancing their understanding of the
material. Finally, to help combat declining
academic standards, I propose and describe a new
course to be added to existing computer science
curricula, namely mathematical maturity and
problem solving.

1 Introduction

Theoretical computer science is a difficult
subject to teach at the undergraduate level for
several reasons. Although in most computer
science departments it is a required course for
graduation, theoretical computer science (formally
CS181 at the University of California) has the
reputation of being a "tough course," so most
undergraduates postpone taking it until absolutely
necessary, namely, during their senior year. To
compound the problem, many students who enter

the course have very little theoretical or
mathematical background; for example, some
students have never constructed an inductive proof
prior to entering this course, a rather disturbing
state of affairs.

If the material is not motivated enough in its
presentation to the students, the students usually
drown in the terminology and the abundant technical
notation, loosing their interest and patience in the
process. Since theoretical models constitute an
extensive infrastructure upon which rests much of
computer science, it is crucial that undergraduates
develop an appreciation of these concepts before
they leave school.

Based on observations I made while being
involved in teaching this course at UCLA for
several quarters, I have developed and used some
teaching techniques which have proven successful
both in increasing student interest, as well as in
enhancing their understanding of the material. The
techniques for improving the quality of this course
range from general presentation aids (e.g. using
multi-colored chalks to highlight certain
relationships), to giving common-sense intuitions
behind major theorems and logical formulae (e.g.
why regular languages have a pumping property, or
why negation switches existential and universal
quantifiers), to various creative techniques to
boost the "morale" of the class (e.g. distributing
cartoons at the beginning of each session).

In this paper I share my experiences
regarding the teaching of theoretical computer
science, and argue that most of the techniques I
used are general enough to be applicable in teaching
other technical courses. Finally, I propose and
describe a new course to be added to existing
computer science curricula, namely mathematical
maturity and problem solving. This course would
induce students to exercise their common-sense
and simple logic while improving their problem-
solving skills and enhancing their mathematical

1

sophistication.

The organization of the rest of this paper is
as follows: section 2 describes the typical
background of undergraduates entering the
theoretical computer science course, section 3
describes some general teaching techniques, section
4 describes teaching techniques that I specialized
for this particular course, section 5 describes the
textbook used in this course as well as possible
alternatives, section 6 makes several suggestions
to improve the status quo, and section 7
summarizes and concludes the present discussion.

2. The Course Reputation and Typical
Student Background

The vast majority of the undergraduates who
enter a theoretical computer science course simply
have no wish to attend it; rather, this course is
imposed upon them by the standard graduation
requirements for obtaining a degree in computer
science. Theoretical computer science has an awful
reputation among undergraduates, and students
therefore postpone enrolling in it until the very last
quarter prior to graduation. I have heard many
resentful undergraduates describe this course using
adjectives such as "dry", "boring", "unmotivated",
"contrived*, "impractical", and "too abstract-.
Interestingly, those very few students (usually
those who excel in the material) describe it as
"elegant", "challenging', "practical", and
"stimulating". To what is owed this discrepancy of
opinions?

Surely there exists a human tendency for
those who understand the material better to
automatically think more highly of it, but there is
more to this situation. I believe that the decline in
the level of undergraduate education as a whole is
manifested here. Undergraduates are allowed to
sail through a four-year degree while doing
relatively little abstract thinking or problem-
solving; they are forced to learn by rote and rarely
are assigned tasks which require serious
resourcefulness or insight. Every passing year
marks a noticeable average decline in the
mathematical maturity of college seniors, and an
average increase in their general apathy towards
their chosen fields.

Richard Feynman, the famous Nobel Prize-
winning physicist once said: "the power of
instruction is seldom of much efficacy except in
these happy dispositions where it is almost
superfluous" [Feynman]. I found this analysis to be
very accurate. Of a 50-student undergraduate

class, there are usually 2 or 3 individuals who get
near-perfect scores; I never see these individuals
during office hours, and they rarely solicit my
help; instead they rely on their ability to read the
text books independently at their own pace,
investing a lot of effort in the learning process. On
the other hand, another 4 or 5 other individuals
every quarter seem to monopolize about 90 percent
of my office hours, and for all the help I gave then)
they barely manage to pass the course.

The students in this course consist mainly of
computer science and engineering majors, but other
majors often take this course as well (for example,
mathematics, anatomy, architecture, and cognitive
science majors). Although most of the students
attending this course should have had considerable
exposure to mathematics, this is not at all apparent
during discussions with them. In fact, sometimes I
got the distinct feeling that the vast majority of the
students entering this course have never seen
simple summation formulae or know even the
simplest of theorems about graphs. Not that such
knowledge necessarily constitutes a prerequisite
for this course, but rather it is my experience that
the nebulous quality known as "mathematical
maturity" (or at least "mathematical curiosity") is
seriously lacking in these students.

3. Some Teaching Techniques

In this section I outline several teaching
techniques and practices that I have found to be
valuable towards increasing student interest in the
material, as well as in enhancing their
understanding of same.

3.1. Using Colored Chalk

I found that when writing at the board, it is
extremely helpful to use colored chalk instead of
plain white chalk. Using several colors, I am able
to color-code diagrams in order to highlight certain
relationships among the concepts discussed,
thereby enhancing the students' comprehension of
the material. Color-coding also works quite well in
overhead-transparency slide presentations.

One drawback to using colored chalk is that
one rarely finds colored chalk available in standard
classrooms, perhaps because it is somewhat more
expensive than ordinary white chalk. The second
drawback of using colored chalk in the classroom is
that unless the students are also taking notes in
colored ink, some of the information will be lost
when the students copy down colored diagrams

2

from the board. This problem is easily solved by
advising the students during the first meeting to
obtain a multi-colored pen if they do not own one
already (a standard 4-colored pen may be
purchased for less than two dollars). This scheme
has proved quite successful in practice.

3.2. Giving Students a Copy of Slides

3.2.1. When giving a presentation
involving overhead transparencies, I always
photocopy my slides ahead of time so I can
distribute the copies at the beginning of my lecture.
Students find this practice extremely helpful, since
they don't have to worry about "missing" anything
while taking notes. The disadvantage of this
scheme is of course the cost involved in the
photocopying.

I believe that this is a very small price to
pay, however, since this scheme increases student
comprehension and therefore reduces the amount of
help they will require outside of class. Note that I
am not arguing that office hours do not have their
place, but rather that if the comprehension of the
students is increased, then less effort would have
to be spent by the instructor in addition to the
lectures themselves.

3.3.
Morale

Cartoons as a Tool to Improve

Often at the beginning of a lecture I distribute
to the students a sheet containing some cartoons.
This serves to break the tension, alleviate the
boredom, and encourage students to attend section.
One student has literally admitted that the only
reason she attended the discussion section is that
she knew she would get to see some new cartoons
each time. I found that these cartoons also improve
the morale of the class, especially when a
particular cartoon is somewhat relevant to a topic
being presently discussed in class. Many students
have also shown these cartoons to their friends and
family, inducing some additional excitement about
class meetings.

My favorite cartoonist is Gary Larson,
because his cartoons exhibit insight, present novel
points of view, and possess a certain "pseudo-
intellectual" quality, much like does Woody Allen
humor [Larson]. Another favorite cartoonist is
Matt Groening, who has put out some very amusing
anthologies about the life of students [Groening].
The photocopying cost here is negligible (say one or
two dollars per class meeting), while the

psychological benefits are numerous.

3.4. Reaching the Students Through
Familiar Examples

Often students find it difficult to understand
very fundamental logical relationships and
propositions. In such situations I find it remarkably
useful to relate the material to the students in a
manner familiar to them, couching the logic in
terms they can easily grasp. For example, once the
students had some trouble understanding why
exhibiting an efficient algorithm is usually much
more difficult than proving than none exist, so I
gave the following analogy: if I wanted to convince
someone that I am a millionaire, it would suffice to
show that my bank account has a seven-figure
balance; on the other hand, suppose that I wanted to
convince you that I am not a millionaire, how can I
convince someone of it? Showing a low balance on
my bank account does not suffice, for maybe I still
own very expensive real estate, or perhaps some
gold bullion in a numbered Swiss bank account, etc.,
etc. Now everyone in the class had realized why an
non-existence proof had to be so
powerful/exhaustive kind of a proof - since all
possibilities had to be individually considered and
disproved in turn, and there are usually an infinity
of scenarios one must defeat or argue about.

As a second example, numerous students had
trouble understanding why logical negation switches
existential and universal quantifiers in a
proposition, in the sense that if P(x,y) is a logical
formula over two variables, "V" denotes universal

quantification, "3 denotes existential

quantification, and ""-" denotes negation, then in

general we may write the following: - (V x 3 y

P(x,y)) = (3 x V y - P(x,y)). The last form

seemed rather cryptic to the students until I said
"please replace x by a pjLLn. y by a house, and
interpret P(x,y) to mean 'person x owns house y.'
What does the left-hand-side mean to you now?"
To this everyone correctly replied "NOT[every
person owns A house]". When I next asked for an
interpretation of the right-hand-side, now they all
correctly replied "som. person does not own &nU
house", the equivalence of the two forms now being
obvious to everyone.

As a last example, some students had
difficulty grasping the meaning of the pumping
lemma for regular languages, which appears quite
technical at first (and even second) glance. I

3

wanted the students to remember not only the
lemma itself, but be able to derive it from first
principles at any time! To this end I constructed
the following intuitive explanation: *suppose you
have a regular language accepted by some finite
automaton. Then take a long input string in the
given language, and start 'feeding' it to the
automaton, one symbol at a time. The finite
automaton is of fixed size, and it changes states at
every symbol it 'digests'; but the input is longer
than the number of states, so if you keep feeding it
symbols, the poor finite automaton must eventually
cycle back onto itself and re-enter some previously
visited state. Now look at the sequence of symbols
that caused this cycle, and Io-and-behold it can be
fed to the helpless beast over and over again, as
many times as one wishes, followed by the ending
sequence of our original string, so that the entire
input sequence is also a string in our original
language. In this manner, every sufficiently long
string in a regular language induces an infinite
family of strings, all of which must also be in the
language!" After hearing this intuitive explanation,
properly illustrated with color-coded diagrams,
almost none of the students forgot the proof for the
pumping lemma, even many weeks later.

When explaining technical formulae and
relationships in an informal manner as above, one
must make certain that the students are aware of
the informality inherent in the explanation. These
examples illustrate only how an instructor may
appeal to student intuition utilizing notions from
everyday life; while intuitive arguments are never
a substitute to mathematical rigor, in my
experience they can greatly amplify comprehension
of the latter. For an amusing set of arguments of
why intuition will never be completely substituted
by rigor, the reader is encouraged to examine the
classic paper of [De Millo, Perlis, and Lipton].

3.5. Calling on the Class and on
Individual Students

Students who managed to obtain extra-credit
points during class meetings were very proud of it,
especially when I would ask them to explain their
answers to the rest of the class or even present
their solution on the blackboard. This would also
give them a chance-to practice public-speaking, and
one of the students even thanked me for being given
such an opportunity. When a student presents a
solution on the board, however, it is important not
tc humiliate or ridicule him/her, even if they are
totally wrdng; instead, I might say 'nice try, but
not quite...* All such interactions should be geared

towards encouraging them to speak up and be
assertive.

3.6. Informal Course Evaluations

Since normal teaching evaluations are
conducted too late in the quarter for either the
teacher nor the students to benefit out of the
revelations resulting from such evaluations, I
conduct an early informal evaluation of myself by
my students. I care very much about my students'
progress and comments, and I use their feedback to
further improve my style, presentations, and the
areas of material on which I should concentrate
more. These evaluations are take-home and
anonymous; they typically includes questions such
as the following:

" How do you feel about having extra-credit
problems at the beginning of each section?

"* Do you feel the problems I am giving you are
too easy? Too hard?

"* Am I going over the material too slow? Too
fast?

" Am I helpful in answering questions? During
office hours?

"* Am I too formal? Not formal enough? Too
serious? Not serious enough?

"* Do I appear organized? Not organized? Is my
style confusing?

"* How do you feel about having a chance to go to
the board and present your solutions? Do you
welcome it? Does it intimidate you? Do you
like it?

"* What should I do more of?
"* What should I do less of?
"* Do I seem to direct my discourse at the bulk of

the class? The top half? The top forth? Only a
few people? Why does it seem that way?

" What do you think about the homeworks? Too
many? Too few? Too hard? Too easy? Too
boring? Anything else?

" What do you think about the textbook? Too
formal? Too informal? Interesting? Easy to
read and follow?

" How do you feel about theoretical computer
science at this point?

"* Any other comments about myself? My style?
" Any other comments about the subject? The

problems? The course?
"• Just for fun, write some comment here that

you would like me to read in front of the class
out loud; remember, this is anonymous!

3.7. Homework and Examination
Solutions

4

Solutions to all homework assignments are
worked out in detail, neatly type-set, and
distributed to the class, so that the students have a
precise written record of what the correct
solutions look like. The only drawback I see in this
practice is the photocopying cost involved in the
duplication of old assignments. If this cost becomes
prohibitive, these solution sets may either be
placed on reserve at the various libraries so that
the students can duplicate them at their own
expense, or else these sets may be reproduced as
official course-notes and sold to the students. My
personal opinion is that the cost-to-benefit ratio
associated with this practice is extremely
favorable.

Solutions to examination -problems are
treated in a similar manner: they are worked-out in
detail by either myself or the grader, neatly type-
set, and distributed to the students. I also
distribute to the students several old examinations
from previous quarters. Some instructors are
reluctant to do this, but it came to my attention
that several fraternity houses regularly provide
their members with old examinations as a
"standard service." Some students are also able to
receive these materials from their friends who
have attended the same course in previous
quarters. This selected trickle of information puts
the rest of the students at a distinct disadvantage.
My practice of distributing old exams to everyone
eliminates this unfair advantage by giving everyone
the same competitive edge.

3.8. Giving the Students My Home
Phone Number and Address

I always give my students my home phone
number, as well as a postal mailing address. Many
instructors are apprehensive about having their
students know their private home phone number,
but my experience has shown that the students
usually exercise excellent judgement in such
matters: they only call about urgent matters, such
as regarding missing an exam, etc. During an
average quarter, I only receive about half-dozen
phone calls at home from my students, and always
at very reasonable hours of the day. Meanwhile,
all the rest of the students may take comfort in the
knowledge that if they have to contact me, all they
need to do is simply pick up the phone and call me.
Again, I use this device to put their minds at ease
and establish a certain rapport of closeness with
them.

3.9. Encouraging Students to
Exchange Information

Just as students would like to have access to
my own phone number and address, they would like
to have a way of reaching each other. To overcome
student shyness, while still respecting the privacy
of others, I developed the following scheme: I pass
a sheet of paper around the room, instructing
students that towards enhancing the information
transfer potential with respect to this course,
anybody who puts their name and phone number on
that sheet will be given a list of everybody else
who did the same. It was observed empirically that
about two-thirds of a typical class would
participate in this mechanism by submitting their
phone number.

3.10. Public Speaking

Speaking in front of a crowd is naturally a
stressful task, but if a lecturer feels nervous in
front of the audience, the resulting awkwardness
is not particularly conducive to learning. Several
years ago I took a course in public-speaking, in
order to improve my effectiveness as a lecturer. I
learned various techniques of establishing rapport
with an audience, preparing lectures, and delivering
speeches. This knowledge has helped me a great
deal, and I would highly recommend that every
lecturer should be exposed to some sort of formal
training in public speaking.

Eye-contact is a very important aspect of
capturing the audience's attention. Another major
device that I use to establish rapport with an
audience is humor: everybody likes to laugh, and
when I get the students to laugh and enjoy
themselves, classroom moral is higher all around,
which in turn makes for a more positive learning
environment. I like to use various anecdotes,
especially ones which are (supposedly) true and
involve famous people; such anecdotes can serve to
make the students remember the material better,
especially if it is somehow tangentially related to
the topic under discussion.

For example, one of my favorite anecdotes
from professional folklore involves the great
physicist Niels Bohr: one day Bohr explained to a
class certain aspects of subatomic particle
interactions, when he happened to use the phrase
"close enough for all practical purposes." When
someone from the audience asked him to elaborate
on what that meant, Bohr explained: 'suppose all
the men in this room lined up along one side, while

5

all the women lined up along the opposite side of the
room, and with every passing minute, these two
parallel rows of individuals would move towards
each other in such a manner as to halve the distance
between them. Well, in theory, the men and the
women would never reach each other, but in
practice, they would very soon be close enough for
all practical Durposes." This anecdote will fit
nicely into a discussion of power series or limits.

3. 11. Extra Review Sections

I make it standard practice to schedule
additional review sections before the midterm and
the final examinations, in order to give the students
additional opportunity to ask questions and practice
the course material. The meeting times of these
additional sections is established by vote, in order
to maximize the number of students that will be
able to attend, and I have found that the students
that attend these review sessions tend to perform
better on the pending examination.

3.12. Off-the-wall Questions

Sometimes students ask the strangest
questions; it is important for the instructor to
encourage all questions, and never make the student
feel incompetent or stupid for asking the question.
It is very easy, and indeed enticing, for a professor
to develop an openly condescending attitude
towards the students, but I view this as a serious
flaw in a teacher. I go to great lengths to impress
upon the students that there is no such thing as a
stupid question, and I try to treat each query from
the class with the seriousness and respect it
deserves.

Human psychology is such that the
humiliation of others may prove (albeit
unconsciously) to be a source of elation; this is
unfortunate, and I believe that insulting or
intimidating the students is a poor practice which
fosters resentment, is not at all conducive to
learning, and only mirrors problems with the
personality of the teacher him/herself. A simple
antidote to looking down upon students is the
realization that most of them lead complex and
interesting lives, and that some of them are truly
experts at certain areas about which the professor
knows literally nothing about (such as martial arts,
team sports, business, arts, music, weapons, cars,
etc.) Keeping this attitude in mind, it would be
easier to respect the students, even when they do
not appear particularly well-versed in the course

material.

3.13. Open Book Examinations

I much prefer open-book examinations, both as
a student, and as an Instructor. As a student,
knowing that an exam is open-book puts my
mind at ease and relaxes me, because I am
assured that I need not memorize every trivial
detail of the material, but rather concentrate on
the important high-level ideas.

Since in an open-book exam students are able
to respond to certain questions simply by copying
the appropriate paragraphs out of the book, it
increases the work on the part of the instructor to
come up with questions the solutions for which will
not be readily found in the text; however, I think
this is an effort well-spent. Of course, some
simple definition-like questions may still be
included in the exam, just to make sure the
students know the basic concepts (or at least where
they may be found in the textbook...)

A small number of students, on the other
hand, dislike open-book examinations, believing that
this kind of an exam is automatically more difficult
than a closed-book examination. These students
much prefer to memorize whole textbooks rather
than try to be insightful. Although I can sympathize
with these individuals, I still maintain that testing
students on how resourcefully they can apply the
concepts gives a much better indication of their
mastery of the material than does a simple check of
their memorization potential. In any case, any
difficulty introduced via making an examination an
open-book one, me be mitigated via some degree of
leniency in grading.

3.13.1. Selling Examinations Hints
vs."Double Jeopardy"

Selling hints-for-points during an examination
is a device that can be used to increase the benefit
of examinations and reduce student anxiety. That
is, if a student becomes "stuck" on the first part of
an exam question but needs the answer to that part
in order to solve a subsequent part, the student
may be willing to give up a few points from their
total exam score in order to be given the correct
answer on the spot, either in full or in pail. It is
completely up to the discretion of the instructor
what is the point price of a given fraction of an
answer.

The hints may either be constructed,

6

"priced", and duplicated by the instructor ahead of
time and disbursed to the students upon request
during the examination, or else be given either
verbally or scribbled on the student's exam paper
when requested. The former method (of preparing
written hints ahead of time) is more uniform and
assures that all students will be treated equally and
fairly with respect to the hints given; however, it
involved more work on the part of the instructor.

My experience has been that if the students
know that they can buy hints during an examination,
they are more relaxed since they can cease to
worry about "double jeopardy" situation where the
solution to each question in a set depends upon the
previous question. In this sense the availability of
hints is more of a psychological crutch than a
physical aid; but since a calmer state of mind may
all by itself help improve student performance, this
scheme on the average offers considerable benefit,
at only a minimal cost in effort to the instructor.
For example, my experience has shown that during
3-hour examinations on a class of fifty students, a
total of half-dozen or so hints will be requested by
the class during the exam.

3.14. Extra-Credit Problems

I found that students are rather docile during
section, and their minds often tend to drift from the
material being discussed. To help combat the
declining attendance and the low energy level of the
students, the first thing I would do each time when I
came into the lecture room is put a couple of
problems on the board, and then announce that
anybody who solves any of these problems within
15 minutes will receive a few extra-credit points
towards the next homework assignment. The
students would then scramble to solve these
problems as fast as they can.

This scheme has had several positive effects.
First, many students stopped being late to class,
knowing that otherwise they would miss out on
those extra-credit problem sessions; in addition,
several students who rarely bothered to show up
for class, started instead to attend class meetings
regularly. Secondly, the energy level of the
students, as well as student participation has risen
dramatically. When" I would come into the room I
would notice the students alert, pen-in-hand, and
ready to solve problems for extra-credit.

I found that the same small group of students
would get the extra-credit points each time, so
from then on I included some easy problems as

well, increased the number of problems I gave each
time (to say, about five), made the point-value of
the problem proportional to its difficulty, and
announced that any one individual may solve at
most two problems. This scheme insured that the
extra-credit points would not be monopolized by the
same small set of students, causing frustration to
the less-abled or slower individuals; in other
words, everybody had a fair shot at gaining extra-
credit points during section.

Sometimes in the middle of a lecture, after
asking a rhetorical question and noting the many
blank stares from the students, I would write the
question down on the board and ask "if this question
was on the next exam, could you solve it?" Usually
this prodding still did not illicit a response from the
class, so I would then proceed to ask "for twenty
extra-credit points, would you solve it now?" At
this point the students would spring into action and
many of them very quickly came up with a solution.
The moral of these incidents is that if you want
something done, put a reward on it; this is
classroom-capitalism at its best.

3.1 5. The Lack of Initiative and
Curiosity In Students

Initiative and curiosity are qualities that are
visibly lacking in the majority of undergraduates.
Too many students blunder through the required
courses while expending just enough effort to
obtain passing grades; they typically are not
interested in any topic that is not going to be
covered in the examinations, and remain
disturbingly ignorant of even the existence of
entire (significant) subdisciplines of their major
field. Lest my critique of undergraduates should
appear too harsh, I do not expect every
undergraduate to concern themselves with current
research problems, but on the other hand I strongly
believe that students of any scientific discipline
should strive to familiarize themselves with, at
least in outline, the state of the art and the general
research trends in their field.

In particular, students of computer science
should glance regularly at general professional
publications such as Communications of the
Association for Computing Machinery (CACM). It
pays to be familiar with the literature, even if one
only has the time to only skim through tables-of-
contents and abstracts. I believe that if a_
department undertakes the practice to photocopy
the tables of contents of various technical journals
and post them on bulletin boards or in other

7

designated locations (or even hand them out to the
students), the students would be much better
informed of their chosen field.

4. A Self-Printing Program and Other
Extra-Credit Problems

In order to give the students a chance to earn
additional points towards improving their grade, I
usually assign some take-home extra-credit
problems, which may be turned in anytime before
the end of the quarter. I try to make these
problems challenging and at the same time amusing;
for example, one of my favorite problems to assign
for extra-credit is the following:

Problem: write a program that when executed,
prints out exactly itself and stops. No run-time
input whatsoever is allowed to be used by the
program (i.e., no reading the keyboard, files, pipes,
etc.) Any programming language may be used, but
note that the program must print itself out exactly,
right down to the last punctuation mark, tab, and
carriage return.

Although at first glance this task sounds
impossible, it is quite possible; moreover, there is
no "dirty trick" required, such as a special
command, or an obscure construct in a particular
language, since this problem is meant to be
essentially language-independent. I consider this an
elegant and a subtle problem, which despite its
short solution, often eludes experienced,
professional programmers. I also offer a few extra
points to the individual who finds the shortest
solution. The reader is encouraged to try to solve
this problem sometime.

The shortest solution I have yet seen to this
problem (only 66 characters long in C) is based on
one actually turned in by a resourceful student. I
would be very curious to see any shorter solutions
in C, or a proof that none exist. A natural
extension of this problem is to write a program
that prints itself b. A rather amusing
(yet sinister) application of the idea of self-
replicating programs is described by Ken
Thompson, one of the two original inventors of
UNIX, in his 1983 ACM I Award Lecture: using
self-replication it. is possible to embed a
particularly devious type of Trojan horse in
operating systems [Thompson].

5. The Textbook Used in this Course
a

The textbook used in this course is typically

Introduction to Automata Theory. Languages- and
Cmd•iJonJ~iQ.O by Hopcroft and UlIman. This is
altogether a good textbook, being both concise (less
than 400 pages), up-to-date (1979), and well-
written (Aho, Hopcroft, and Ullman are one of the
most prolific team of authors in all of computer
science). The main problem with this book is that
not enough of it can be covered in one quarter: out
of fourteen chapters, only the first six are usually
covered, and very rarely chapters seven and eight
are also introduced. This is rather discouraging
because it means that in a typical quarter there is
hardly any time to discuss Turing machines or
undecidability. A second problem is that students
complain that this textbook is too formal; this is a
less serious problem, as this complaint is likely to
exist no matter how the material was presented,
and besides, I have heard certain other students
complain that this text is not formal enough!

Other recent comparable texts exist, notably
[Papadimitriou, and Lewis], [Harrison], [Cohen],
[Savitch], [Salomma], [Davis, and Weyuker], and
[Harel]. Many of these texts follow the same
general format as does [Hopcroft, and Ullman]
modulo some peculiarities. [Harel] is by far the
most unconventional text in this lot. It is very
informal, which would make it quite accessible to
freshmen, and even non-majors, yet it manages to
cover advanced topics such as algorithms,
complexity, lower bounds, NP-completeness,
Turing machines, universality, undecidability,
recursive function theory, transformations,
parallelism, concurrency, and probabilistic
algorithms. It is full of clever diagrams and
amusing (but relevant!) quotations from the Old
Testament; in -addition, it contains a detailed
annotated bibliography for more in-depth reading.

[Harel] is a pleasure to read, and I believe
would also be a pleasure to teach from. Naturally,
this text would have to be supplemented by some
additional material on regular and context-free
sets, but with this caveat, I would highly
recommend that [Harel] be used as a basic text in
this course, supplemented perhaps by selected
sections from [Hopcroft, and Ullman].

6. Some Proposals to Improve the
Status Ouo

6.1. Keeping the Students Informed

I often found that undergraduates are
sometimes extremely uninformed as to what goes
on in the department. For instance, on one occasion

8

I discovered that several computer science seniors
had never heard of the UCLA Computer Science
Department Quarterly publication, a bound booklet
that is published four times a year (in over one-
thousand copies) by the UCLA computer science
department. This publication details the official
policy, course, degree requirements, and program
information of the computer science department, as
well as faculty biographies and research interests.
To hear that some students have not been aware of
even the existence of this publication is disturbing.
Other times I found that world-class speakers had
given talks in our department, while many of our
students remained informed of these events.

To whom may the responsibility here be
attributed? While some students will never find
large amounts of initiative, they should
nevertheless be kept informed of the department's
professional activities. I would recommend that all
computer science students be given a copy of the
Quarterly upon its publication, and be mailed a
monthly schedule of computer science talks,
seminars, and other special events. I believe that
the postage/overhead costs involved with this
practice could be easily overshadowed by the
corresponding increase in student interest and
participation. Of course much of the initiative in
such matters must come from the students
themselves, but the department would do well to
endeavor to meet the students half-way.

6.2. Permanent Student Computer
Accounts

In order to keep students informed and in
contact, both with the department as well as with
each other, I suggest that they be given permanent
computer accounts when they are first enrolled, to
be cancelled only when they graduate or drop out.
This will enable anybody to reach everybody via
electronic mail, and will help establish a greater
sense of cohesiveness among the students.

The usual argument in favor of account
deactivation is that old accounts hog too much disk
space; this could be mitigated by a proper tape-
archive migration policy for aging/unused files.
Even without such a facility, mass-storage device
prices have sufficiehtly dropped in recent years as
to make such schemes financially viable.

6.3. A Proposal for Splitting Into
Two Courses

I believe that the main reason that theoretical
computer science is difficult to teach (and learn), is
that too much material is packed into one course.
Only with a tremendous effort can an instructor
manage to squeeze into one quarter the first 7 (out
of 14) chapters of [Hopcroft, and Ullman], and even
then, many of the topics will be left inadequately
covered (or completely neglected altogether). The.
serious computer science majors (and graduate
students) who enroll in this course are often held
back by less initiated non-computer science
majors, since the latter tend to greatly slow down
the pace of the course due to their lack of
mathematical sophistication. The result is that all
too often graduate students complete this course
while never having heard of NP-completeness, or
other equally important ideas.

My proposed solution to this problem is to.
break this course into two separate undergraduate
courses. The first course will introduce to the
students the various basic definitions,
mathematical abstractions, and proof methods
involved in theoretical computer science. Next, the
Chomsky hierarchy will be discussed, as well as
simple examples of languages of the various
common types, along with discussions of the
various machine models. The course will conclude
with a brief introduction to undecidability, NP
completeness, and a shallow discussion of
complexity theory.

The second course will go over the above
topics in much greater depths; in particular, it will
challenge the students with more difficult examples
of languages having (or not having) certain
properties, present a more refined partition of the
hierarchy of formal languages, discuss in detail
various restrictions and generalizations of
computation models, present numerous NP-
completeness proofs, and elaborate on some results
of complexity and lower-bound theory.

I would recommend that all engineering-
related students would be required to pass the first
course, but only the pure computer science majors
should be made to complete the second course.
This would ensure that non-computer science
majors will receive a solid exposure to all of the
important concepts of computer science theory yet
without drowning in rigor and notation, while
computer science majors would have an opportunity
to acquire a greater in-depth understanding of
selected relevant topics. In any case, the problem
with the status quo is that few topics are discussed
in very great detail, while other topics are left
completely unmentioned, and I believe that it is this

9

lack of balance that is primarily responsible for
many of the problems entailed in teaching
theoretical computer science at the undergraduate
level.

6.4.
Course

A Proposal for a Brand New

To combat mathematical apathy at the
undergraduate level, I would recommend adding to
the standard curriculum a course named
Mathematical Maturity and Problem Solving. This
course would expose students to a collection of
problems selected from basic mathematics,
introductory logic, riddle/puzzle books, and the
"Mathematical Themas' and "computer
recreations* sections of Scientific American. Any
problem which requires a certain wAha! insight to
solve (or is otherwise fun to solve) would be a good
candidate for inclusion in this course.

This course would, induce students to exercise
their common-sense and logic while improving their
problem-solving skills and enhancing their
mathematical sophistication. -A secondary goal of
this course would be to illustrate to the students
that computer science and mathematics could be a
fascinating field of inquiry, one in which problem-
solving is a most gratifying activity.
Supplementary texts for this course may include
[Polya], [Gardnerl], [Gardner2], [Gardner3],
[Gardner4], [Harel], [Bentley1], [Bemtley2], plus
a selected few others from a large number of
recreational mathematics books.

Problems showcased in this course may
include ones that impinge upon the areas of graph
theory, Ramsey theory, combinatorics, trasfinite
arithmetic, formal language theory, distributed
computing, lower-bound theory, recursive function
theory, undecidability, and basic logic. I strongly
believe that undergraduates majoring in computer
science should at the very least be made aware of
the existence of each one of these areas of study.

7. Summary

Theoretical computer science is a difficult
subject to teach at the undergraduate level: many
students who enter the course have very little
theoretical or mathematical background, and if the
material is not motivated enough in its presentation
to the students, the students quickly drown in the
terminology and the abundant technical notation,
loosing th&ir interest and patience in the process.
Since theoretical models constitute an extensive

infra-structure upon which rests much of computer
science, it is crucial that undergraduates acquire an
appreciation of these concepts before they leave
school. I have developed and discussed some
teaching techniques which have proven successful
both in increasing student interest, as well as in
enhancing their understanding of the material.

One of the problems with the status quo ih
teaching theoretical computer science to
undergraduates is the disbalance that is created
when few topics are discussed in very great detail,
while other topics are left completely unmentioned.
I made a recommendation that the standard
undergraduate theoretical computer science course
be split into two separate courses. This would
ensure that non-computer science majors will
receive a solid exposure to all of the important
concepts of computer science theory yet without
risking being drowned in numerous technical
details, while computer science majors would have
an opportunity to acquire a greater in-depth
understanding of selected relevant topics.

Finally, to help combat declining academic
standards, I proposed and described a new course
to be added to existing computer science curricula,
namely mathematical maturity and problem solving.
This course would expose students to a diverse
collection of problems, riddles, puzzles, and proof
methods selected from basic mathematics and
introductory logic, and will be designed to cultivate
within students the nebulous quality of
"mathematical maturity".

8. Acknowledgements

Many thanks go to Professor Shelia
Grelbach for encouraging me to become involved
in the teaching of theoretical computer science at
UCLA, and for some insightful comments and
suggestions regarding this paper. I thank Professor
Eli Gafnl for enabling me to gain valuable
additional experience by allowing me to prepare and
deliver numerous lectures in his classes. Finally,
to the hundreds of students whose learning I had the
pleasure of assisting: I thank you for improving me
as a teacher.

9. Bibliography

Cohen, D., Introduction to computer Theory. John

Wiley, ans Sons, Inc., 1986.

Davis, M., and Weyuker, E., C
Complexity. and Lanouaaes: Fundamentals of

10

Computer Science, Academic Press, New York,
1983.

De Millo, R., Lipton, R., and Perlis, A., Social
Processes and Proofs of Theorems and Programs.
Communications of the Association for Computing
Machinery, 22, pp. 271-280, 1979.

Feynman, R., Leighton, R., Sands, M., The Fevnman
Lectures on Physics Addison-Wesley, Volume II, p.
5., 1963.

Gardner, M., New Mathematical Diversions, The
University of Chicago Press, Chicago, 1966.

Gardner, M., Ahal Gotcha: Paradoxes to Puzzle and
Delight W. H. Freeman and Company, New York,
1982.

Gardner, M., Wheels. Life. and Other Mathematical
Amusements, W. H. Freeman and Company, New
York, 1983.

Gardner, M., Knotted Doughnuts and Other
Mathematical Entertainments, W. H. Freeman and
Company, New York, 1986.

Groening, M., Scol is HUIL Pantheon Books, New
York, 1987.

Harel, D., Algorithmics: the Spirit of Computingo
Addison-Wesley, 1987.

Harrison, M., Introduction to Formal Language
Theory Addison Wesley, 1978.

Hopcroft, J., and UlIman, J., Introduction to
Automata Theory. Languages. and Computation,
Addison-Wesley, Reading, Massachusetts, 1979.

Larson, G., IThEar Sod, Andrews, McMeel, and
Parker, Kansas City, 1982.

Lewis, H., and Papadimitriou, C., Elements of the
Theory of Computation. Prentice-Hall, Englewood
Cliffs, New Jersey, 1981.

Polya, G., How to Solve It.

Robins, G., Class Notes for Theoretical Comouter

Science. Unpublished Manuscript, UCLA computer
Science Department, 1987-1988.

Salomma, A., Comgutation and Automata-

Cambridge University Press, 1985.

Savitch, W., Abstract Machines and Grammars,
Little, Brown and Company, 1982.

Thompson, K., and Ritchie, D., 1983 ACM A.M.
Turing Award Lecture Communications of the
ACM, Volume 27 Number 8, August, 1984, pp..
757-763

11

1 0. Table of Contents

1 Introduction .. 1
2 The Course Reputation and Typical Student Background 2
3 Some Teaching Techniques ... 2

3.1 Using Colored Chalk .. 2
3.2 Giving Students a Copy of Slides .. 3
3.3 Cartoons as a Tool to Improve Morale .. 3
3.4 Reaching the Students Through Familiar Examples 3
3.5 Calling on the Class and on Individual Students 4
3.6 Informal Course Evaluations ... 4
3.7 Homework and Examination Solutions ... 4
3.8 Giving the Students My Home Phone Number and Address 5
3.9 Encouraging Students to Exchange Information 5
3.10 Public Speaking .. 5
3.11 Extra Review Sections ... 6
3.12 Off-the-wall Questions .. 6
3.13 Open Book Examinations ... 6

3.13.1 Selling Examinations Hints vs."Double Jeopardy" 6
3.14 Extra-Credit Problems ... 7
3.15 The Lack of Initiative and Curiosity in Students 7

4 A Self-Printing Program and Other Extra-Credit Problems 8
5 The Textbook Used in this Course ... 8
6 Some Proposals to Improve the Status Quo .. 8

6.1 Keeping the Students Informed ... 8
6.2 Permanent Student Computer Accounts ... 9
6.3 A Proposal for Splitting Into Two Courses ... 9
6.4 A Proposal for a Brand New Course ... 1 0

7 Summary ... 1 0
8 Acknowledgements ... 1 0
9 Bibliography ... 10
10 Table of Contents .. 1 2

12

Teaching Theoretical Computer Science
at the Undergraduate Level: Experiences, Observations,

and Proposals to Improve the Status Quo

Gabriel Robins
Computer Science Department

University of California, Los Angeles

Abstract

Theoretical computer science is a difficult subject to teach at the undergraduate level for
several reasons. Although it is often a required course for graduation, theoretical computer
science has the reputation of being a "tough course," so most undergraduates postpone taking it
until absolutely necessary, namely, during their senior year. To compound the problem, many
students who enter the course have very little theoretical or mathematical background. If the
material is not motivated enough in its presentation to the students, the students quickly drown
in the terminology and the abundant technical notation, loosing their interest and patience in the
process. Since theoretical models constitute an extensive infra-structure upon which rests
much of computer science, it is crucial that undergraduates acquire an appreciation of these
concepts before they leave school. Based on observations I made while being involved in teaching
this course at UCLA for several quarters, I have developed some teaching techniques which have
been quite successful, both in increasing student interest, as well as in enhancing their
understanding of the material. Finally, to help combat declining academic standards, I propose
and describe a new course to be added to existing computer science curricula, namely
mathematical maturity and problem solving.

1 . Introduction

Theoretical computer science is a difficult subject to teach at the undergraduate level for
several reasons. Although in most computer science departments it is a required course for
graduation, theoretical computer science (formally CS181 at the University of California) has
the reputation of being a "tough course," so most undergraduates postpone taking it until
absolutely necessary, namely, during their senior year. To compound the problem, many
students who enter the course have very little theoretical or mathematical background; for
example, some students have never constructed an inductive proof prior to entering this course,
a rather disturbing state of affairs.

If the material is not motivated enough in its presentation to the students, the students
usually drown in the terminology and the abundant technical notation, loosing their interest and
patience in the process. Since theoretical models constitute an extensive infrastructure upon
which rests much of computer science, it is crucial that undergraduates develop an appreciation
of these concepts before they leave school: a UCLA graduate in computer science who has never
heard of NP-completeness certainly does not help the department in achieving its stated goal of
permanently establishing itself as first-rate in the nation.

Based on observations I made while being involved in teaching this course at UCLA for
several quarters, I have developed some general teaching techniques which have proven
successful both in increasing student interest, as well as in enhancing their understanding of the
material. The techniques for improving the quality of this course range from general

1

Teaching Theoretical Computer Science

presentation aids (e.g. using multi-colored chalks to highlight certain relationships), to giving
common-sense intuitions behind major theorems and logical formulae (e.g. why regular
languages have a pumping property, or why negation switches existential and universal
quantifiers), to various creative techniques to boost the "morale" of the class (e.g. distributing
cartoons at the beginning of each session).

In this paper I share my experiences regarding the teaching of theoretical computer
science, and argue that most of the techniques I used are general enough to be applicable in
teaching many other technical courses. Finally, I propose and describe a new course to be added
to existing computer science curricula, namely mathematical maturitX and problem solving.
This course would induce students to exercise their common-sense and simple logic while
improving their problem-solving skills and enhancing their mathematical sophistication.

The organization of the rest of this paper is as follows: section 2 describes the typical
background of undergraduates entering the theoretical computer science course, section 3
describes some general teaching techniques, section 4 describes teaching techniques that I
specialized for this particular course, section 5 lists some good exam questions, section 6
describes the textbook used in this course as well as possible alternatives, section 7 makes
several suggestions to improve the status quo, and section 8 summarizes and concludes the
present discussion.

2. The Course Reputation and Typical Student Background

The vast majority of the undergraduates who enter a theoretical computer science course
simply have no wish to attend it; rather, this course is imposed upon them by the standard
graduation requirements for obtaining a degree in computer science. Theoretical computer
science has an awful reputation among undergraduates, and students therefore postpone
enrolling in it until the very last quarter prior to graduation. I have heard many resentful
undergraduates describe this course using adjectives such as "dry", "boring", "unmotivated",
"useless", "contrived", "impractical", and "too abstract". Interestingly, those very few
students (usually those who excel in the material) describe it as "elegant", "fascinating",
"challenging", "practical", and "stimulating". To what is owed this discrepancy of opinions?

Surely there exists a human tendency for those who understand the material better to
automatically think more highly of it, but there is more to this situation. I believe that the
decline in the level of undergraduate education as a whole is manifested here. Undergraduates
are allowed to sail through a four-year degree while doing relatively little abstract thinking or
problem-solving; they are forced to learn by rote and rarely are assigned tasks which require
serious resourcefulness or insight. Every passing year marks a noticeable average decline in
the mathematical maturity of college seniors, and an average increase in their general apathy
towards their chosen fields.

Often when I solicit questions from an undergraduate class, the most predominant question
happens to be "do we have to know this for the final exam?" It greatly disturbs me as a teacher
to witness such student apathy. Once I announced to a class that although I will grade them very
leniently, the final I composed for the class was "designed to make them think"; this was
immediately followed by groans and complaints from many of the students, whereupon I almost
had to apologize to the class for not giving instead questions that can instead be answered
mechanically by rote.

On another occasion I asked a class of fifty students how many have attended a departmental
distinguisthed-speaker-series seminar talk given by Edsger Dijkstra just the previous week.
Only two people raised their hands, and both were of course graduate students. When I next asked

2

Gabriel Robins

Teaching Theoretical Computer Science

how many even knew who Dijkstra was, only one additional person responded. Given that a
department goes through considerable effort and expense to invite such an influential figures to
speak on campus, why don't more students attend these talks? In fact, even among graduate
students seminar attendance is so poor, that our department finds it necessary to resort to
making such attendance mandatory via treating these talks as a required course-for-credit.
This a rather sad state of affairs.

Richard Feynman, the famous Nobel Prize-winning physicist once said: "the power of
instruction is seldom of much efficacy except in these happy dispositions where it is almost
superfluous" [Feynman]. I found this analysis to be very accurate. Of a 50-student
undergraduate class, there are usually 2 or 3 individuals who get near-perfect scores; I never
see these individuals during office hours, and they rarely solicit my help; instead they rely on
their ability to read the text books independently at their own pace, investing a lot of effort in
the learning process. On the other hand, another 4 or 5 other individuals every quarter seem to
monopolize about 90 percent of -my office hours, and for all the help I gave them they barely
manage to pass the course.

The students in this course consist mainly of computer science and engineering majors,
but other majors often take this course as well (for example, mathematics, anatomy,
architecture, and cognitive science majors). Although most of the students attending this course
should have had considerable exposure to mathematics, this is not at all apparent during
discussions with them. In fact, sometimes I got the distinct feeling that the vast majority of the
students entering this course have never seen simple summation formulae or know even the
simplest of theorems about graphs. Not that such knowledge necessarily constitutes a
prerequisite for this course, but rather it is my experience that the nebulous quality known as
"mathematical maturity" (or at least "mathematical curiosity") is seriously lacking in these
students.

With respect to whether the burden of work in a course falls on the teacher (to teach the
material) or the student (to learn the material), I found that most undergraduates feel it is
primarily the burden of the teacher to "run in circles" around the students, catering to the
students' every whim, while forcefully injecting the course material into the students' minds.
I also know some teachers who display quite the opposite sentiment, namely that it is mainly the
responsibility of the students to keep up with the teacher no matter what, do considerable
reading and thinking on their own, while energetically absorbing the course material into their
own minds.

I believe that while the first view borders on laziness (on the part of the student), the
second is rather egotistical (on the part of the instructor); therefore, as a teacher, I am willing
to meet my students halfway: if a students shows effort, patience, and a certain amount of
initiative, I will go out of my way to guide them and make their learning task as easy and
painless as possible. This philosophy stems from my belief that although learning new concepts
is one of the most difficult jobs that exist, most of the effort expended towards this end can only
come from the student's side of the teacher-learner team. That is, giving a lecture about
material that one is already familiar with is much easier than understanding a lecture
concerning new material; the former is mainly a mechanical process of slide-preparation
followed by an exercise in public speaking, while the later entails the rapid assimilation and
analysis of new ideas, a process that is cognitively very taxing.

3. Some Teaching Techniques

In tbis section we outline several teaching techniques and practices that I have found to be
valuable towards increasing student interest in the material, as well as in enhancing their
understanding of same.

3

Gabriel Robins

Teaching Theoretical Computer Science

3.1. Using Colored Chalk

I found that when writing at the board, it is extremely helpful to use colored chalk instead
of plain white chalk. Using several colors, I am able to color-code certain diagrams in order to
highlight certain relationships among the concepts discussed, thereby enhancing the students'
comprehension of the material. For example, when proving that the cardinality of the set of
points of the real number line is the same as that of the set of points of the real X-Y plane, one
must show how to map a pair of real numbers into a single real number; this is usually
accomplished via the "interlacing" the two real numbers, digit by digit, a process that can be
instantly grasped if two different colors are used to represent the respective digits of the two
original numbers.

The conventional alternatives to using colors usually consist of drawing arrows, pointing
to pairs of related objects with the fingers, or using special characters or symbols. I found that
these methods are not very satisfactory since a multitude of arrows tends to clutter up a
diagram, finger-pointing fails when discussing more than a couple of objects, and the liberal
usage of special characters often serves only to confuse the students. In addition to helping in
the highlighting of relationships, a color diagram or picture is much more pleasant to look at (if
not, then why do people prefer a color-television to a black-and-white television?), thereby
increasing the students' attention. Color-coding also works quite well in overhead-
transparency slide presentations.

One drawback to using colored chalk is that one rarely finds colored chalk available in
standard classrooms, perhaps because it is somewhat more expensive than ordinary white chalk.
I resorted to buying my own colored chalk out of my own pocket, an investment that I found
well-worth the effort. The second drawback of using colored chalk in the classroom is that
unless the students are also taking notes in colored ink, some of the information will be lost
when the students copy down colored diagrams from the board. This problem is easily solved by
advising the students during the first meeting to obtain a multi-colored pen if they do not own
one already (a standard 4-colored pen may be purchased for less than two dollars). This
scheme has proved quite successful in practice.

3.2. Giving Students a Copy of Slides

When giving a presentation involving overhead transparencies, I always photocopy my
slides ahead of time so I can distribute the copies at the beginning of my lecture. Students find
this practice extremely helpful, and they have thanked me for it on several occasions. A slide
presentation tends to proceed rather quickly since the speaker has prepared the material off-
line; if the students are expected to take notes of the presentation, it follows that they will not
be able to pay as much attention to what the speaker is saying. This problem is therefore
alleviated if they already have a complete copy of the slides, which also serves to help them
relax, since they don't have to worry about "missing" anything while taking notes.

The disadvantage of this scheme is of course the cost involved in the photocopying. I
believe that this i, a very small price to pay, however, since this scheme increases student
comprehension and therefore reduces the amount of help they will require outside of class. For
example, suppose a two-hour lecture consists of 15 overhead transparencies, and there are 40
people in the class. The photocopying costs in this situation would amount to approximately
15*40*0.04,4$24; conducting private office hours, on the other hand, costs the department
much moce, and therefore if disbursing copies of the slides to the class would save at least one
office-hour worth of confusion to the students, as it often does in fact, this scheme constitutes a
more cost-effective usage of departmental resources.

4

Gabriel Robins

Teaching Theoretical Computer Science

Note that I am not arguing that office hours do not have their place, but rather that if the
comprehension of the students is increased, then less effort would have to be spent by the
instructor in addition to the lectures themselves. The evidence in practice for these
observations is that after a confusing lecture has taken place, the number of students that come
into my office hours greatly increases, and with that, inadvertently also increase the student
requests for special tutoring/help sessions in addition to my regular office hours.

3.3. Cartoons as a Tool to Improve Morale

At the beginning of every lecture I distribute to the students a sheet containing some
cartoons. This serves to break the tension, alleviate the boredom, and encourage students to
attend section. One student has literally admitted that the only reason she attended the
discussion section is that she knew she would get to see some new cartoons each time. I found
that these cartoons also improve the morale of the class, especially when a particular cartoon is
somewhat relevant to a topic being presently discussed in class. Some students also shown these
cartoons to their friends and family, inducing some additional excitement about section
meetings.

My favorite cartoonist is Gary Larson, because his cartoons exhibit insight, present novel
points of view, and possess a certain "pseudo-intellectual" quality, much like does Woody Allen
humor. My second favorite cartoonist is Matt Groening, who has put out some very amusing
anthologies about the life of students. The photocopying cost here is negligible (say one or two
dollars per class meeting), while the psychological benefits are numerous. For example, I
included the cartoon on the left on a handout sheet containing an extra-credit problem, while the
cartoon on the right was placed in the middle of the written midterm examination:

Brain Aerobics Halfway through the exam, Allen pulls out a bigger brain.

5

Gabriel Robins

Teaching Theoretical Computer Science

3.4. Reaching the Students Through Familiar Examples

Often students find it difficult to understand very fundamental logical relationships and
propositions. In such situations I find it remarkably useful to relate the material to the
students in a manner familiar to them, couching the logic in terms they can easily grasp. For
example, once the students had some trouble understanding why exhibiting an efficient
algorithm is usually much more difficult than proving than none exist, so I carried the class
through the following discussion: "if I wanted to convince you that I am a millionaire, it would
suffice to show you that my bank account has a seven-figure balance; on the other hand, suppose
that I wanted to convince you that I am n=t a millionaire, how can I convince you of it?"

Their first instinct was to say "show us a low balance on your bank account" but they soon
though better of it when they started to recognize the problem. I next said "even if I show you a
low balance, maybe I still own very expensive real estate; and even if I can manage to prove that
I don't own aU real estate, perhaps I keep some gold bullion in a numbered Swiss bank account,
etc., etc." Now everyone in the class had realized why an non-existence proof had to be so
powerful/exhaustive kind of a proof - since all possibilities had to be individually considered
and disproved in turn, and there are usually an infinity of scenarios one must defeat.

A second example entails logical implication: some students were under the impression
that if A implies B then automatically B implies A. In order to convince them that their
reasoning was fallacious, I prompted the class to consider the statement "if it rains, then the
sidewalk is wet" and asked whether they can infer from it that "if the sidewalk is wet, then it
rains." A couple of students replied in the affirmative, until I pointed out that if the lawn
sprinkles were running (or similarly for any number of other familiar phenomena), that could
wet the sidewalk without the falling of rain, so if the sidewalk is wet, it does not necessarily
follows that rain has fallen. This has established firmly (albeit informally) in the mind of the
students the difference between logical implication and logical equivalence.

As a third example, numerous students had trouble understanding why logical negation
switches existential and universal quantifiers in a proposition, in the sense that if P(x,y) is a
logical formula over two variables, "V" denotes universal quantification, "3" denotes
existential quantification, and "--" denotes negation, then in general we may write the following:
--(V x 3 y P(x,y)) 4=0, (3 x V y - P(x,y)). The last form seemed rather cryptic to the
students until I said "please replace x by a per.so, y by a house, and Interpret P(x,y) to mean
'person x owns house y.' What does the left-hand-side mean to you now?" To this everyone
correctly replied "NOT[oy.y, person owns a house]". When I next asked for an interpretation of
the right-hand-side, now they all correctly replied "some person does not own AU house", the
equivalence of the two forms now being obvious to everyone.

As a last example, some students had difficulty grasping the meaning of the pumping lemma
for regular languages, which appears quite technical at first (and even second) glance. I wanted
the students to remember not only the lemma itself, but be able to derive it from first
principles at any time To this end I constructed the following intuitive explanation: "suppose
you have a regular language accepted by some finite automaton. Then take a long input string in
the given language, and start 'feeding' it to the automaton, one symbol at a time. The finite
automaton is of fixed size, and it changes states at every symbol it 'digests'; but the input is
longer than the number of states, so if you keep feeding it symbols, the poor finite automaton
must eventually cycle back onto itself and re-enter some previously visited state. Now look at
the sequence of symbols that caused this cycle, and Io-and-behold it can be fed to the helpless
beast over and over again, as many times as one wishes, followed by the ending sequence of our
original string, so that the entire input sequence is also a string in our original language. In

6

Gabriel Robins

Teaching Theoretical Computer Science

this manner, every sufficiently long string in a regular language induces an Infinite family of
strings, all of which must also be in the language" After hearing this intuitive explanation,
properly illustrated with color-coded diagrams, almost none of the students forgot the proof for
the pumping lemma, even many weeks later.

When explaining technical formulae and relationships in an informal manner as above, one
must make certain that the students are aware of the informality inherent in the explanation.
These examples illustrate only how an instructor may appeal to student intuition utilizing
notions from everyday life; while intuitive arguments are never a substitute to mathematical
rigor, in my experience they can greatly amplify comprehension of the latter. For an amusing
set of arguments of why intuition will never be completely substituted by rigor, the reader is
encouraged to examine the classic paper of [De Millo, Perlis, and Lipton].

3.5. Calling on the Class and on Individual Students

Students who managed to obtain extra-credit points during section were very proud of it,
especially when I would ask them to explain their answers to the rest of the class or even
present their solution on the blackboard. This would also give them a chance to practice public-
speaking, and one of the students even thanked me for being given such an opportunity. When a
student presents a solution on the board, however, it is important not to humiliate or ridicule
him/her, even if they are totally wrong; instead, I might say "nice try, but not quite..." All
such interactions should be geared towards encouraging them to speak up and be assertive.

I often pause in mid-sentence and wait for the class to complete it. This works quite well
in soliciting class participation, and also keeps me informed with respect to the general
progress of the class. I also ask the class many questions, often directing a question that came
from a student back towards the rest of the class; this gives the students a feeling that they are
helping each other, and thus serves to develop a strong sense of camaraderie between them.

On a lighter note, I sometimes take a mock-vote on a question; for example, I may ask "how
many would say that the complement of a regular language is regular?", whereupon many people
would raise their hands. Next I would ask "how may think it isn't?" and observe several hands
inadvertently go up. Finally I would declare "its settled then, complementation preserves
regularity - proof by consensus!" This gimmick never fails to get a good laugh out of the
students. Needless to say, I would later ask for a volunteer to prove that statement rigorously.

3.6. Philosophy Presented During the First Class Meeting

During the first class meeting, I would announce to the students that the purpose of the
section is to answer questions, review the lectures, work out problems, and monitoring their
progress. I would emphasize that there is no such thing as a stupid question (only stupid
answers, and I promise the students that I shall do my best to avoid giving those in reply...) I
would explain to the students that many problems in theoretical CS are of a "puzzle-nature": the
solutions are often short once a certain "AHAI" insight is noticed. These are a lot of fun to- solve
and I try to challenge the students with as many of these as I can find.

I implore the students not to postpone questions to the last-minute before an exam or
before an assignment Is due, but rather to ask for my help as soon as they get lost or have a
pressing question. I emphasize to the students that the material of this course builds on
previous material in a very strong sense; for example, if a couple of definitions are missed, the
next lecture may not make much sense at all. So therefore it is crucial that the students do not
fall behind; the consequences of doing so will in all likelihood be more severe than in other
courses that they may have had.

7

Gabriel Robins

Teaching Theoretical Computer Science

I instruct the students to pay special attention to definitions and technical terms, telling
them to memorize the important definitions thoroughly, because subsequent material will make
numerous references to terms defined previously; lack of knowledge of these will seriously
impede their understanding of subsequent material.

I caution them that "cramming" does not work very well in this class, so they shouldn't bet
their grade on it; the ideas presented in this course sometimes have to "simmer on a low flame"
in the back of their minds for a long time before an effective understanding of them can be
achieved. I encourage the students to type up their assignments. My favorite tool for document
processing is the Macintosh computer running the MS Word 3.02 word-processing editor; I
highly recommend both. This reduces reader hours expended in grading the homeworks, as well
as forces the students to better scrutinize the correctness of their solutions, which results in
better scores for them. Since some students do not have access to a computer or a laser printer,
I am careful to mention that typing the homework solutions is not absolutely mandatory, just
very advisable.

I explain to the students that certain problems sometimes require many days of wrestling
before they are solved satisfactorily; this means that the students should not give up If they had
thought about a problem for half an hour or so without solving it. In fact, they shouldn't give up
even after several hours of attacking the same problem. I suggest to them that sometimes it is
helpful to leave a problem alone and go do some other activity, later returning to the problem,
perhaps solving it much more quickly.

My experience has shown that students in a first-course in theory often do not see the
point of much of the material or the exercises. The usefulness, relevance, and richness of much
of the topics covered in this course is therefore lost on many individuals. To these skeptics
among the students, although it would be rather difficult to convince them of it at the beginning
of the course, I ask to take on faith the assertion that the concepts they will learn in this course
constitute an elaborate infra-structure upon which hinges and rests a very large and significant
subset of computer science; so even at times when it seems difficult to accept this premise, an
open mind should be kept.

In order to become better acquainted with the students, I ask the students to give me some
information about themselves in writing, including their name, E-Mail address, major, year in
school, degree objective, previous relevant courses, interests, and why they are taking this
course.

3.7. Informal Course Evaluations

Since normal TA evaluations are conducted too late in the quarter for either the TA nor the
students to benefit out of the revelations resulting from such evaluations, I conduct an early
informal evaluation of myself by my students. I care very much about my students' progress
and comments, and I use their feedback to further improve my style, presentations, and the
areas of material on which I should concentrate more. Running such an evaluation impresses
upon the student how important improvement is to me, both theirs and my own.

I make the evaluation a take-home one, since I would like the students to think carefully
about what they would like to communicate to me; I don't want to press them into filling out an
evaluation quickly for its own sake, so I urge them to take their time and give it some thought:
these evaluations may affect the content and structure of the rest of my presentations and
office-hour consultations with my students. Another purpose served by this evaluation is that

8

Gabriel Robins

Teaching Theoretical Computer Science

it gives the students an rare opportunity to vent out their frustrations and complaints, and has
been quite effective in this respect.

The evaluation is an anonymous one, in order to give the students complete freedom in
expressing their comments. When they wish to turn it in, they may either leave it on my desk
or mail it directly to my P.O. Box. The informal evaluation I have my students fill out typically
includes questions such as the following:

"* Are you enjoying my presentations?
"* How do you feel about having extra-credit problems at the beginning of each section?
"* Do you feel the problems I am giving you are too easy? Too hard?
"* Am I going over the material too slow? Too fast?
"* Am I helpful in answering questions? During office hours?
"• Am I too formal? Not formal enough? Too serious? Not serious enough?
"• Do I appear organized? Not organized? Is my style confusing?
"• How do you feel about having a chance to go to the board and present your solutions? Do

you welcome it? Does it intimidate you? Do you like it?
"• What should I do more of?
"• What should I do less of?
"* How much do I seem to care about your progress/proficiency in the material?
"• Do I seem to direct my discourse at the bulk of the class? The top half? The top forth?

Only a few people? Why does it seem that way?
"* What do you think about the homeworks? Too many? Too few? Too hard? Too easy? Too

boring? Anything else?
"• What do you think about the textbook? Too formal? Too Informal? Interesting? Easy to

read and follow?
"* What do you think about the professor? Do you enjoy the lectures?
"• How do you feel about theoretical computer science at this point?
"* Any other comments about myself? My style?
"* Any other comments about the subject? The problems? The course?
"• Any other comments about the department? UCLA? Ufe? The universe?
"* Just for fun, write some comment here that you would like me to read in front of the

class out loud; remember, this is anonymousl

3.8. Homework and Examination Solutions

Solutions to all homework assignments are worked out in detail, neatly type-set, and
distributed to the students when they receive their graded assignments back. This entails more
effort than simply reviewing the solutions on the board during section (although I do that also),
but the advantage is that the student now have a precise written record of what the correct
solutions look like. Moreover, this enables me to easily distribute homework problems-and-
solutions from previous quarters to the students, so that they may be exposed to a variety of
problems and solution techniques. Since every quarter new homework problems are assigned,
giving the students solutions to homework problems from previous quarters does not create a
conflict of interest. Students have commented on numerous occasions that they really appreciate
this service.

The only drawback I see in this practice is the photocopying cost involved in the
duplication of old assignments. If this cost becomes prohibitive, these solution sets may either
be placed on reserve at the various libraries so that the students can duplicate them at their own
expense, or else these sets may be reproduced as official course-notes and sold to the students.
My personal opinion is that the cost-to-benefit ratio associated with this practice is extremely
favorable.

9

Gabriel Robins

Teaching Theoretical Computer Science

Solutions to examination problems are treated in a similar manner: they are worked-out
in detail by either myself or the grader, neatly type-set, and distributed to the students. As
with homework solutions from previous quarters, I also distribute to the students several old
examinations from previous quarters. Some instructors are reluctant to do this, but it came to
my attention that several fraternity houses on campus regularly provide their members with
old examinations as a "standard service." Some students are also able to receive these materials
from their friends who have attended the same courses in previous quarters. This selected
trickle of information puts the rest of the students at a distinct disadvantage. My practice of
distributing old exams to everyone eliminates this unfair advantage by giving everyone the same
competitive edge.

3.9. Giving the Students My Home Phone Number and Address

I always give my students my home phone number, as well as a postal mailing address.
Many instructors are apprehensive about having their students know their private home phone
number, but my experience has shown that the students usually exercise excellent judgement in
such matters: they only call about urgent matters, such as regarding missing an exam, etc.
During an average quarter, I only receive about half-dozen phone calls at home from my
students, and always at very reasonable hours of the day. Meanwhile, all the rest of the students
may take comfort in the knowledge that if they have to contact me, all they need to do is simply
pick up the phone and call me. Again, I use this device to put their minds at ease and establish a
certain rapport of closeness with them.

The reason I give out a postal address to my students is so that they can mail me their
assignments in case they are out of town or otherwise not able to come into school when an
assignment is due in class. My students have actually used this option on numerous occasions. If
an instructor is reluctant to give out his residence address, a P.O. box address will suffice and
serve the same purpose equally well. On a couple of occasions students have used this address to
send me "thank-you" cards for all the help they received from me. This practice of enabling the
students to reach me anytime either by phone or mail is another example of how a nominal
effort on the part of the instructor can result in substantial benefits as far as the psychology of
the students is concerned.

3.10. Encouraging Students to Exchange Information

Just as students would like to have access to my own phone number and address, they would
like to have a way of reaching each other; this is really handy when a student misses a lecture
and needs some notes or other information on what transpired during his/her absence, or when
no progress can be made towards the solution of a particularly difficult homework problem. The
main obstacle in the way of such exchanges is that students are usually too shy to exchange
addresses with people they do not know very well, and when they urgently need to obtain
information from fellow-students (typically right before an exam, or the night before a
difficult assignment is due in class), it is often too late to try to contact anybody. The-other
problem is that some students prefer to protect their own privacy to such an extent that they do
not wish to give out their phone number or address to anyone, a sentiment with which I can
completely sympathize. How then is this problem to be resolved?

The scheme I developed is as follows: I pass a sheet of paper around the room, instructing
students that towards enhancing the information transfer potential with respect to this course,
anybody who puts their name and phone number on that sheet will be given a list of everybody
else who did the same. This scheme, and in what I perceive as a very fair manner, preserves the
rights of the very private individuals to maintain their privacy, while allowing the rest of the

10

Gabriel Robins

Teaching Theoretical Computer Science

students to corroborate throughout the course. It was observed empirically that about two-
thirds of a typical class would participate in this mechanism by submitting their phone number.
This device has proven quite successful in enhancing the camaraderie between classmates as
well as in encouraging the free exchange of information and ideas, a property that is a necessary
condition in every successful research environment.

3.11. Public Speaking

Speaking in front of a crowd is naturally a stressful task, but if a lecturer feels nervous
in front of the audience, the resulting awkwardness is not particularly conducive to learning.
Several years ago I took a course in public-speaking, in order to improve my effectiveness as a
lecturer. I was taught various techniques of establishing rapport with an audience, preparing
lectures, and delivering speeches. This knowledge has helped me a great deal, and I would highly
recommend that every lecturer should be exposed to some sort of formal training in public
speaking.

For example, eye-contact is a very important aspect of capturing the audience's attention;
in particular, talking to an audience without looking at them is not very effective, and is even
considered by many to be impolite. Another major device that I use to establish rapport with an
audience is humor, which can be extremely effective in creating a certain closeness between a
speaker and an audience. Everybody likes to laugh, and when I get the students to laugh and
enjoy themselves, classroom moral is higher all around, which in turn makes for a more
positive learning environment. As explained elsewhere in this article, I often disburse cartoons
to my students. I also like to use various anecdotes, especially ones which are (supposedly)
true and involve famous people; such anecdotes can serve to make the students remember the
material better, especially if it is somehow tangentially related to the topic under discussion.

For example, one of my favorite anecdotes from professional folklore involves the great
physicist Niels Bohr: one day Bohr explained to a class certain aspects of subatomic particle
interactions, when he happened to use the phrase "close enough for all practical purposes."
When someone from the audience asked him to elaborate on what that meant, Bohr explained:
"suppose all the men in this room lined up along one side, while all the women lined up along the
opposite side of the room, and with every passing minute, these two parallel rows of individuals
would move towards each other in such a manner as to halve the distance between them. Well, in
theory, the men and the women would never reach each other, but in practice, they would very
soon be close enough for all practical purposes " This anecdote will fit nicely into a discussion
of power series or limits.

Another classic anecdote involves Sir Arthur Eddington, who was a renowned expert on
general relativity. In the early 1920's a reporter once asked Eddington whether it was true
that at that time there were only three people in the entire world who understood general
relativity. When instead of replying, Eddington paused and frowned, the reporter was quick to
ask him what was the matter, to which Eddington replied: "nothing, I'm just trying to figure out
who the tird person is."

Invariably, many similar anecdotes involve the famous German mathematician John von
Neumann, who was supposedly faster at numerical calculations than any of the early-generation
computers. Sometimes I find it amusing to make up my own (fictional) anecdotes; for example,
after explaining the "big O" asymptotic order-of-magnitude notation which disregards
multiplicative constants, I like to present the following amusing scenario: suppose special
relativity was invented by a theoretical computer scientist instead of by a physicist. Then after
some lengthy computations, the computer scientist would derive the equation E=O(M), depicting
the linear relationship between matter and energy. But when it comes the time to calculate the

11

Gabriel Robins

Teaching Theoretical Computer Science

constant, namely c2 , the theoretical computer scientist would dismiss this task as trivial and
unimportant, leaving atomic weapons never to be invented. This amusing "alternate reality"
drives home the Importance of the numerical constants which theorists often tend to ignore.

3.12. Extra Review Sections

I make it standard practice to schedule additional review sections before the midterm and
the final examinations, in order to give the students additional opportunity to ask questions and
practice the course material. The meeting times of these additional sections is established by
vote, in order to maximize the number of students that will be able to attend; typically the
consensus establishes the meeting time for these extra sessions to be 6:00 or 7:00 in the
evening. These sessions are open-ended, in the sense that the session will go on as long as the
students remain awake. Students have often thanked me for conducting these extra sessions, and
I have found that the students that attend these review sessions tend to perform better on the
pending examination. Oftentimes interesting revelations are made during these sessions
regarding certain gaps in the students' understanding of the material, more frequently so than in
normal class or section meetings; perhaps this is because as it gets later in the day, students
become less inhibited and are therefore less embarrassed to confess ignorance regarding a
certain topic with which they are experiencing difficulty.

3. 13. Off-the-wall Questions

Sometimes students ask the strangest questions; for example, once while explaining to a
student how to accept a certain particular context-free language using a push-down automaton,
the student interrupted my explanation and asked why not also use an array in addition to the
stack. It took the student quite a while to understand that it is preferable to use a model that is
as simple as possible when characterizing the complexity of some phenomenon - a principle
more generally referred to by philosophers as Occam's razor. In our example, we need not use
an array since ANY context-free language may be recognized using a one-stack push-down
automaton; in fact, the class of context-free sets corresponds exactly to the class of languages
accepted by push-down automata.

Usually students defer their questions to the privacy of the instructor's office hours, not
wishing to appear unintelligent in front of their peers during class meetings. But in any case, it
is important for the instructor to encourage such questions, and never make the student feel
incompetent or stupid for asking the question. It is very easy, and indeed enticing, for a
professor to develop an openly condescending attitude towards the students, but I view this as a
serious flaw in a teacher. I go to great lengths to impress upon the students that there is no such
thing as a stupid question, and I try to treat each query from the class with the seriousness and
respect it deserves.

Human psychology is such that the humiliation of others may prove (albeit
unconsciously) to be a source of elation; this is unfortunate, and I believe that insulting or
intimidating the students is a poor practice which fosters resentment, is not at all conducive to
learning, and only mirrors problems with the personality of the teacher him/herself. A simple
antidote to looking- down upon students is the realization that most of them lead complex and
interesting lives, and that some of them are truly experts at certain areas about which the
professor knows literally nothing about (such as martial arts, team sports, business, arts,
music, weapons, cars, etc.) Keeping this attitude in mind, it would be easier to respect the
students, even when they do not appear particularly well-versed in the course material.

12

Gabriel Robins

Teaching Theoretical Computer Science

3.1 4. Open Book Examinations

I much prefer open-book examinations, both as a student, and as an instructor. As a
student, knowing that an exam is open-book puts my mind at ease and relaxes me, because I am
assured that I need not memorize every trivial detail of the material, but rather concentrate on
the important high-level ideas. Under this scenario, I am able to walk away from the course
having secured knowledge of more relevant concepts, and experiencing less anxiety in the
process of learning, which ideally should be a pleasurable experience anyway. I believe that the
majority of students share my opinion in this issue.

Since in an open-book exam students are able to respond to certain questions simply by
copying the appropriate paragraphs out of the book, it increases the work on the part of the
instructor to come up with questions the solutions for which will not be readily found in the
text; however, I think this is an effort well-spent. Of course, some simple definition-like
questions may still be included in the exam, just to make sure the students know the basic
concepts (or at least where they may be found in the textbook...)

A small number of students, on the other hand, dislike open-book examinations, believing
that this kind of an exam is automatically more difficult than a closed-book examination. These
students much prefer to memorize whole textbooks rather than try to be insightful. Although I
can sympathize with these individuals, I still maintain that testing students on how
resourcefully they can apply the concepts gives a much better indication of their mastery of the
material than does a simple check of their memorization potential.

Once when conducting a review session for a final examination one quarter, I started the
session by saying "I just finished composing the final exam, and there are good news and bad
news." Having captured the attention of the class I continued: "the bad news is that that you'll
have to think" This announcement started a wave of groans propagating through the room. This
made me smile as I continued: "the good news is that if your answer even remotely resembles
something that can conceivably be extended into a correct solution, you will receive most of the
credit for that answer." At this point the whole class was laughing. In other words, I believe
that any difficulty introduced via making an examination an open-book one, me be mitigated via
some degree of leniency in grading.

3.14.1. Selling Examinations Hints vs."Double Jeopardy"

Selling hints-for-points during an examination is a device that can be used to increase the
benefit of examinations and reduce student anxiety. That is, if a student becomes "stuck" on the
first part of an exam question but needs the answer to that part in order to solve a subsequent
part, the student may be willing to give up a few points from their total exam score in order to
be given the correct answer on the spot, either in full or in part. It is completely up to the
discretion of the instructor what is the point price of a given fraction of an answer.

As concrete examples of such "real-time" hints, we give the following, which refer to the
examination questions given in another section of this paper:

30% hint for #2: {wwR I w E {a,b}*) cannot be recognized in linear time on any one-tape TM.

6%Jhintfor #2: Apply Rice's theorem.

20%bint fr#: Can a write-once tape be simulated by an ordinary tape?

13

Gabriel Robins

Teaching Theoretical Computer Science

70% hint for #3: Simulate an ordinary tape using a write-once tape by copying the entire
contents of the tape used so far to a fresh new section of tape (every time a symbol need to be
overwritten).

The hints may either be constructed, "priced", and duplicated by the instructor ahead of
time and disbursed to the students upon request during the examination, or else be given either
verbally or scribbled on the student's exam paper when requested. The former method (of
preparing written hints ahead of time) is more uniform and assures that all students will be
treated equally and fairly with respect to the hints given; however, it involved more work on
the part of the instructor. Giving the hints to students in an ad hoc fashion during and
examination provides for more flexibility and saves the instructor some preparation, but is a
less uniform method.

My experience has been that if the students know that they can buy hints during an
examination, they are more relaxed since they can cease to worry about "double jeopardy"
situation where the solution to each question in a set depends upon the previous question. In this
sense the availability of hints is more of a psychological crutch than a physical aid; but since a
calmer state of mind may all by itself help improve student performance, this scheme on the
average offers considerable benefit, at only a minimal cost In effort to the instructor. For
example, my experience has shown that during 3-hour examinations on a class of fifty students,
a total of half-dozen or so hints will be requested by the class during the exam.

3.15. Extra-Credit Problems

I found that students are rather docile during section, and their minds often tend to drift
from the material being discussed; part of the reason for this is that our section usually met
Friday at 8:00 a.m., with many students being very late to class or half-asleep. To help combat
the lateness and the low energy level of the students, each time when I came into the lecture
room the first thing I would do is to put a couple of problems on the board, and then announce
that anybody who solves any of these problems within 15 minutes will receive a few extra-
credit points towards the next homework assignment. The students would then scramble to solve
these problems as fast as they can.

This scheme has had several positive effects. First, many students stopped being late to
section, knowing that otherwise they would miss out on those extra-credit problem sessions; in
addition, several students who rarely bothered to show up for section, started instead to attend
section regularly. Secondly, the energy level of the students, as well as student participation
has risen dramatically. When I would come into the room I would notice the students alert, pen-
in-hand, and ready to solve problems for extra-credit.

I found that the same small group of students would get the extra-credit points each time,
so from then on I included some easy problems as well, increased the number of problems I gave
each time (to say, about five), made the point-value of the problem proportional to its
difficulty, and announced that any one individual may solve at most two problems. This scheme
insured that the extra-credit points would not be monopolized by the same small set of students,
causing frustration to the less-abled or slower individuals; in other words, everybody had a
fair shot at gaining extra-credit points during section.

Sometimes in the middle of a lecture, after asking a rhetorical question and noting the
many blank stares from the students, I would write the question down on the board and ask "if
this question was on the next exam, could you solve it?" Usually this prodding still did not
illicit a response from the class, so I would then proceed to ask "for twenty extra-credit points,
would you solve it now?" At this point the students would spring into action and many of them

14

Gabriel Robins

Teaching Theoretical Computer Science

very quickly came up with a solution. The moral of these incidents is that if you want something
done, put a reward on it; this is classroom-capitalism at its best.

3.16. The Lack of Initiative and Curiosity In Students

Initiative and curiosity are qualities that are visibly lacking in the majority of
undergraduates. Too many students blunder through the required courses while expending just
enough effort to obtain passing grades; they typically are not interested in any topic that is not
going to be covered in the examinations, and remain disturbingly ignorant of even the existence
of entire (significant) subdisciplines of their major field. Lest my critique of undergraduates
should appear too harsh, I do not expect every undergraduate to concern themselves with
current research problems, but on the other hand I strongly believe that students of any
scientific discipline should strive to familiarize themselves with, at least in outline, the state of
the art and the general research trends in their field.

In particular, students of computer science should glance regularly at general professional
publications such as Communications of the Association for Computing Machinery (CACM). For
general reading on up-to-date advances in all of the sciences, an excellent source is the journal
Scientific American; it is very accurate and reliable while not too technical, and due to its style
and colored diagrams also makes very enjoyable reading. Other interesting periodicals include
Science, Spectrum, Science News, and the American Mathematical Monthly.

Other, more technical/specialized publications, should also be examined by students on a
regular basis, but if such an investment in time proves too prohibitive, at least the table-of-
contents of several technical journals should be inspected periodically. The advantages of such a
practice often more than repays for the time investment it requires; for example, last year a
friend of mine was working quite intensely on a particular problem in parallel complexity
theory, when I informed him that I have seen a recent technical paper in the European Journal
of Theoretical Computer Science which already solved the very same problem. Although my
friend already spent considerable time on that problem (and in fact made some good progress
towards a solution), my pointer to the published paper saved him a substantial amount of time,
as well as some potential embarrassment had he tried to publish his work independently.

The moral of this discussion is that it pays to be familiar with the literature, even if one
only has the time to only skim through tables-of-contents and abstracts. I believe that if a
department undertakes the practice to photocopy the tables of contents of various technical
journals and post them on bulletin boards or in other designated locations (or even hand them
out to the students), the students would be much better informed of their chosen field. To those
critics who would say "you can bring a horse to water, but you can't make him drink," my reply
is "yes, but maybe he will get thirsty eventually..."

3.1 7. Other Readings

My personal curiosity extends into physics, astronomy, and cosmology; I am fascinated by
current theories regarding the origin and evolution of the universe, the life-cycles of stars and
galaxies, and modern theories of matter and energy. For the benefit of those readers who would
like to pursue such reading (yet at the risk of loosing the interest of other readers), some
excellent (non-technical) recent books on these topics are [Riordan], [Pagels], [Gribbinl],
[Gribbin2j, [Glashow], [Hawking], and [Einstein].

Regarding initiative and resourcefulness, qualities also notably lacking in many students, I
believe a most appropriate quotation comes from billionaire entrepreneur Donald Trump: "Most
people think small, because most people are afraid of success, afraid of making decisions, afraid

15

Gabriel Robins

Teaching Theoretical Computer Science

of winning. And that gives people like me a great advantage." [Trump] Although Trump makes
this observation with respect to the business world, I found that it applies to the academic world
as well. I find it very gratifying to put my thoughts into writing, and and the present paper is
an example. Sometimes even the process of writing itself leads to further insights and results.

4. A Self-Printing Program and Other Extra-Credit Problems

In order to give the students a chance to earn additional points towards improving their
grade, I usually assign some take-home extra-credit problems, which may be turned in anytime
before the end of the quarter. I try to make these problems challenging and at the same time
amusing; for example, I often assign the following:

Problem: write a program that when executed, prints out exactly itself and stops. No run-
time input whatsoever is allowed to be used by the program (i.e., no reading the keyboard, files,
pipes, etc.) Any programming language may be used, but note that the program must print
itself out exactly, right down to the last punctuation mark, tab, and carriage return.

Although at first glance this task sounds impossible, it is quite possible; moreover, there
is no "dirty trick" required, such as a special command, or an obscure construct in a particular
language, since this problem is meant to be essentially language-independent. I consider this an
elegant and a subtle problem, which despite its short solution, often eludes experienced,
professional programmers. I also offer a few extra points to the individual who finds the
shortest solution. The reader is encouraged to try to solve this problem sometime.

The shortest solution I have yet seen to this problem (only 66 characters long in C) Is
based on one actually turned in by a resourceful student. I would be very curious to see any
shorter solutions in C, or a proof that none exist. A natural extension of this problem is to
write a program that prints itself backwards. A rather amusing (yet sinister) application of
the idea of self-replicating programs .is described by Ken Thompson, one of the two original
inventors of UNIX, in his 1983 ACM I Award Lecture: using self-replication it is possible to
embed a particularly devious type of Trojan horse in operating systems [Thompson].

The informed reader may at this point wonder what does this problem have to do with
theoretical computer science. Indeed, the connection becomes obvious if the same problem
would have been stated in a different guise: "prove that there exists a one-tape Turing machine
that when running on the null input, prints out exactly its own description (with respect to any
fixed acceptable encoding scheme) and halts." The existence of such a Turing machine is easily
shown using an application of the recursion and the S-M-N theorems [HUI. The former
problem simply asks for a specific instance (implementation) of such a machine.

Other take-home extra-credit questions that I have assigned include the following:

"* Let LQ ., be an arbitrary regular language, and L' . {w I w E * and wwR E L). Is L'
necessarily regular? Prove your answer.

"* Show that if L is .. language over a one-letter alphabet, then L is regular.

"* Define Half(L)={v I for some w such that IVIIWI, vw in Q. Show that if L is
regular, then so is Half(L).

"* thow that neither of K5 or K3 , 3 is a planar graph.

16

Gabriel Robins

Teaching Theoretical Computer Science

"* Define Sqrt(L)={vl for some w such that IVI-IW12 , vw in LQ. Show that if L is
regular, then so is Sqrt(L).

"* Is {Wl$w2 I W1 ,w2 E {0,1} , wl*w 2} a context-free language?

"* Give a linear-time algorithm to sort the ratios of N pairs of integers between 1 and N.

Some of these problems come out of research papers and are given as double-starred (i.e.,
difficult) exercises in [Hopcroft, and Ullman]. The problem about graphs relies on Euler's
formula and its solution may be found in any standard text on graph theory. The last problem
regarding sorting ratios in linear time was raised by Bob Tarjan when I was a student at
Princeton. In any case, I consider none of these problems to be trivial, and so I typically give
students the entire quarter to work on them; correct solutions count up to half of one homework
assignment. The interested reader may find it amusing to solve some of these problems.

I inform students ahead of time that some of the solutions to these problems may be found
in the literature of other textbooks, and that they may actually look these up and still be eligible
to receive the credit. This is designed to motivate the students into looking up some books and
papers which they would otherwise never knew existed.

Problems which I give in class for extra-credit in "real-time" are obviously easier than
ones above. I list here some of the problems I gave out as extra-credit in class, along with the
relative point-values given for correct solutions. Typically I allow students about 20 minutes
to work on such a "quiz"; the point value associated with these questions are intended to reflect
their relative difficulty level:

"* Let Ll {Onl n I n>O}. Is the complement of L1 a regular language? [4 point]

"- Is L2 - {oi1j I l5i:j<2i) a context-free language? [8 point)

"* Is L3 - {Oilj I i*j) a context-free language? [12 point]

"* Is the complement of L1 a context-free language? [16 point]

"• Is L3 regular? [20 point]

"- Is Lp=(aP I p prime) a regular set? [3 point]

"* Is Lc-{ac I 4<c composite) a regular set? [5 pts]

"* Is LpLc a regular set? [10 pts]

"• Give an example of two non-regular languages whose concatenation is regular. [5 pts]

"* Give countably-infinite different examples of two non-regular languages whose
concatenation is regular. [10 pts]

"* Are there an uncountable number of different examples of two non-regular sets whose
concatenation is regular? Explain why or why not. [15 pts]

17

Gabriel Robins

Teaching Theoretical Computer Science

"* Show that a countable union of countable sets is countable. [5 pts]

"* Show that in any group of six people, there are either 3 mutual strangers or 3 mutual
acquaintances. [10 pts]

"* Show that the intersection of two uncountable sets can be empty, finite, countably
infinite, or uncountably infinite. [5 pts]

"• Let L - {wE (a,b}* I w contains an equal number of a's and b's). Show that L is not
context-free, or else give a CFG for L. [15 pts]

"* Show that in any group of people, there are at least two people with the same number of
acquaintances within the group. Assume that the "acquaintance" relation is symmetric
but non-reflexive. [10 pts]

"• Show that the difference of an uncountable set and a countable set is uncountable. [9 pts]

"• Prove or give a counter-example: a countably-infinite union of regular sets is a regular
set. [8 pts]

"* Is the transitive closure of a symmetric closure of a binary relation necessarily
reflexive? [5 pts]

"* Show that a countable union of countable sets is countable. [7 pts]

"• Show that if T is countable, then the set {S I SC. T, S finite) is also countable. [10 pts]

"* Give a simple bijection from the natural numbers, and the rationals crossed with the
integers. [8 points]

"* Show that n4 -4n 2 is divisible by 3 for all n>O. [7 points]

"* How many distinct Boolean functions on N variables are there? In other words, what is

the value of 1{f I f:{0,1})-4{0,1))} ? [8 points]

"* How many distinct N-ary functions are there from finite set A to finite set B? Does this
generalize the previous question? [12 points]

As the reader will notice, these problem sets include material from graph theory, Ramsey
theory, combinatorics, and trasfinite arithmetic, as well as from formal language theory. I
strongly believe undergraduates majoring in computer science should at the very least be made
aware of the existence of each one of these mathematical areas. Some of these problems come
from textbooks or are simple corollaries to well-known theorems; others I have made up
myself. The interested reader may find it amusing to solve some of these problems.

Many of the-proofs in theoretical computer science require a mathematical intuition and a
strong common sense; when the students regularly solve such problems, especially under a time
constraint, they become better able to think "on their feet."

18

Gabriel Robins

Teaching Theoretical Computer Science

5. Sample Midterm and Final Examination Questions

For the record, I now list some of the problems that appeared on examinations during the
quarters that I taught this course:

1) Language classification

Characterize each of the following languages as tightly as possible (and explain your
answer), by stating whether it is:

"• finite
"• regular biut not finite
"* deterministic context-free but not regular
"• context-free but not deterministic context-free
"* recursive =ut not context-free
"* recursively enumerable bui not recursive
"* not recursively enumerable

a) L, ={wE {a,b,c}* I 2#a's(w)=3#b's(w)=6#c's(w))
b) L2 {anbncnw I 0!n, w E {a,b,c}*}

c) L3 1 {(guess)n(my)n(type)n I n>O)
d) L4 {anbm I n is an integer that encodes a TM that halts

on the input encoded by the integer m)
e) L5 _-L4

f) L6 - {www I w E {x,y,z) Iwl< 1000)

g) L7 =X-L 6

h) L, {w E {a,b,c}° I w has equal number of a's, b's, and c's)
i) L2 {anwbnwR I n>0, w E {a,b,c)*}
j L3 {ananan I n>O}

k) L4 {ananan I n>0)

I) L5 {m m TM m halts when running on the blank tape)
m) L6 { m TM m loops forever when running on the blank tape)

n) L7 ={onln In >0} U {on 12n n >•01

o) L8 {(wRw)P I wE{x,y,z) 9 9 9 and p is a prime such that p < Iwl2}

2) Linear-time-language recognition

Is it decidable whether a given language can be recognized on a one-tape TM in linear time?

3) Write-once Turing machines

Would having.only write-once tapes reduce the power of Turing machines? (That is, if TMs
were Mo allowed to overwrite a non-blank tape symbol with a different symbol, how would
this restriction affect the class of r.e. languages?)

19

Gabriel Robins

Teaching Theoretical Computer Science

4) Which properties get "lost In the shuffle"?

We define the SHUFFLE of two strings v,w E as:

SHUFFLE(v,w) - {vlwlv 2 w 2 ...Vkwk I V"V1 V2...Vk, W-WlW 2 ... Wk,

some k Ž1, vi,wi E,1% l_<i:k}

and extend the definition of SHUFFLE to two languages L1 ,L2 (;I* as follows:

SHUFFLE(L1 ,L2) - {w E SHUFFLE(w1 ,w2) I w1E L1 ,w2 E L2}

a) is the SHUFFLE of two context free languages necessarily context free?)
a) is the SHUFFLE of two context sensitive languages necessarily context sensitive?)
c) is the SHUFFLE of two recursively enumerable sets necessarily recursively

enumerable?

5) Variations on a TM

A Turing machine is said to visit the Aib. tape square during a computation, if its read-
write head enters the Aif tape square, and sometime later leaves this square. A tape square
is said to be listed during a computation if it is visited more than once. A revisitless
IM is a TM such that during no computation is any tape square revisited. A revisit-once
TM is a TM such that during no computation is any tape square revisited more than once. A
revisit-twice TM is a TM such that during no computation is any tape square revisited
more than two times.

Determine whether each of the following restricted classes of Turing machines has less
"power" than ordinary (unrestricted) TM's. Try to characterize precisely as you can the
reduction in power in terms of the class of sets recognized by such TM's:

a) revisitless TM's
b) revisit-once TM's
c) revisit-twice TM's

6) Sorting It out

Given an arbitrary alphabet I -{a1 ,a21 ...,an}, we can impose a total ordering on it in the
sense that we can define < so that aca2.c...-can. We can now proceed to define the SORT of a

string w -wIw 2 ...wk E ., (where wi E Y-) as:

SORT(w) - wa(1)wO(2)...wo(k) so that wo(i) <4wG(i+l) for 1 5 i < k-1
and a is a permutation (i.e., a 1-to-1 onto
mapping a:[1..kj-* [1..k])

and extend the definition of SORT to languages L !;' 1* so that SORT(L) = {SORT(w) I wE LQ.
For each one of the following statements, state whether it is true or false and explain:

a)" SORT(.,) is not regular.
b) SORT(L); L

20

Gabriel Robins

Teaching Theoretical Computer Science

c) SORT(SORT(L))=SORT(L)
d) SORT preserves regularity
e) SORT preserves context-freeness
f) SORT preserves recursive enumerability
g) SORT(SHUFFLE(L1 ,L2)) - SORT(L1 L2)
h) There exists no language L and an alphabet 7_ such that SORT(L)=SHUFFLE(L,L)=L.

7) Undecidability

For each one of the following questions, determine whether it is decidable or not:

a) Given a TM, does it halt when running on the input "computo ergo sum"?
b) Given a TM, does it accept a recursively enumerable set of inputs?
c) Does the decimal expansion of x contains 99 consecutive 9's?

8) Subsequences and Supersequences

Define the SUBSEQ of a language as:

SUBSEQ(L) = {wi(l)wi(2)...wio) I weL, WwlW2 ...wk, some k . 1, wh E_* for 1:h0k,
i(m)< i(m+1) for 1l5msj-1, 1<j)

and similarly the SUPERSEQ of a language as:

SUPERSEQ(L) - {vlwlv 2 w2...Vkwkvk+l I weL, w-wlw 2 ...wk, some k > 1,

wi•E for 15i5k, vjE I* for 15j_<k+l}

Examples: SUBSEQ({abc))={e,a,b,c,ab,ac,bc,abc), SUPERSEQ({abc})-_*al*b7'c_,*.
For each one of the following statements, state whether it is true or false and explain:

a) SUBSEQ preserves regularity
b) SUBSEQ preserves context-freeness
c) SUPERSEQ preserves regularity
d) SUPERSEQ preserves context-freeness
e) SUBSEQ(L) J SUPERSEQ(L)
f) SUPERSEQ(L).SHUFFLE(L,.*)
g) L;SUPERSEQ(L)
g) L<•SUBSEQ(L)
i) There exists no language L and an alphabet I such that SUBSEQ(L)=SUPERSEQ(L)=L.

9) NP completeness

a) explain briefly what it means for a language to be NP-complete.
b) Suppose you heard a rumor that someone showed that sorting is NP-complete; would you

believe this rumor? Why or why not?

10) Horrible Sets Over One-Letter Alphabets

Givean example of a non-R.E. language over a one-letter alphabet, or prove that non exist.

21

Gabriel Robins

Teaching Theoretical Computer Science

6. The Textbook Used in this Course

The textbook used in this course is typically Introduction to Automata Theory. Languages.
and Computation, by Hopcroft and UlIman. This is altogether a good textbook, being both concise
(less than 400 pages), up-to-date (1979), and well-written (Aho, Hopcroft, and Ullman are
one of the most prolific team of authors in all of computer science). The main problem with
this book is that not enough of it can be covered in one quarter: out of fourteen chapters, only the
first six are usually covered, and very rarely chapters seven and eight are also introduced.
This is rather discouraging because it means that in a typical quarter there is hardly any time
to discuss Turing machines or undecidability. A second problem is that students complain that
this textbook is too formal; this is a less serious problem, as this complaint is likely to exist no
matter how the material was presented, and besides, I have heard certain other students
complain that this text is not formal enough

Other recent comparable texts exist, notably [Papadimitriou, and Lewis], [Harrison],
[Cohen], [Savitch], [Salomma], [Davis, and Weyuker], and [Harel]. Many of these texts follow
the same general format as does [Hopcroft, and UlIman] modulo some peculiarities:
[Papadimitriou, and Lewis] is more formal and its notation is a little more difficult to read,
although it does devote special chapters to the propositional and predicate calculi, respectively,
something that is lacking in other texts. [Harrison] gives a most comprehensive treatment of
context-free languages and grammars, and hence is more appropriate for a graduate-level
course. [Cohen] gives a very coherent presentation, with diagrams on almost every page.
Although it should be very accessible to undergraduates, this text is rather verbose - in over
800 pages Cohen manages to cover only about half the material contains in [Hopcroft, and
Ullman]'s 400 pages. [Savitch] is a rather concise (200 pages) treatment, but does not address
complexity at all, nor does it even mention NP-completeness. In addition to covering the
standard topics, [Salomma] gives a balanced intermediate-depth coverage of some novel
material, including cryptography and Petri nets, topics that are conspicuously missing in other
texts. [Davis, and Weyuker] has a novel order of presentation, treating computability first and
only later the Chomsky hierarchy; on the other hand, it covers logic, the undecidability
hierarchy, and advanced set theory.

[Harel] is by far the most unconventional text in this lot. It is very informal, which
would make it quite accessible to freshmen, and even non-majors, yet it manages to cover
advanced topics such as algorithms, complexity, lower bounds, NP-completeness, Turing
machines, universality, undecidability, recursive function theory, transformations,
parallelism, concurrency, and probabilistic algorithms. It is full of clever diagrams and
amusing (but relevantl) quotations from the Old Testament; in addition, it contains a detailed
annotated bibliography for more In-depth reading. [Harel] is a pleasure to read, and I believe
would also be a pleasure to teach from. Naturally, this text would have to be supplemented by
some additional material on regular and context-free sets, but with this caveat, I would highly
recommend that [Harel] be used as a basic text in this course, supplemented perhaps by selected
sections from [Hopcroft, and UlIman].

6.1. Further Reading

Students often ask me to refer them to books covering various other topics in more depth.
For the record, my recommendations follow: for recursive function theory, the authoritative
text is [Rogers], with a less rigorous (nor thorough) treatment in [Cutland]. A good
introductory logic text is [Boolos, and Jeffrey] or [Andrews]. A reasonable graph-algorithms
tex! is [Even]. An encyclopedic coverage of NP-completeness is given in [Garey, and Johnson].
A good introduction to combinatorics is presented in [Polya, Tarjan, and Woods]. The state-of-
the-art in data structures is covered in [Tarjan].

22

Gabriel Robins

Teaching Theoretical Computer Science

An excellent text on sequential algorithms is [Sedgewick]. The mathematical analysis of
sequential algorithms is explained in great depth in [Purdom, and Brown]. Two very good texts
on computational geometry are [preparata, and Shamos] and [Edelsbrunner]. An understandable
account of concurrency may be found in [Ben-Ari]. A representative sample of research in
distributed algorithms is collected in [Gafni, and Santoro]. A classic exposition on problem-
solving in general is given in [Polya]. The functional programming paradigm was pioneered by
[Backus]; a good introduction is given in [Eisenbach], while various examples and discussions
appear in (Robins2].

The first twenty Annual Turing Award lectures may be found in [Ashenhurst]. [Gamow]
gives an amusing introduction to transfinite arithmetic. Numerous clever programming
problems may be found in [Bentleyl] and [Bentley2]. A fascinating and artistic perspective of
recursion and incompleteness appears in (Hofstadterl]. Many interesting recreational
mathematical problems appear in [Hofstadter2], [Gardnerl], [Gardner2], [Gardner3] and
[Gardner4]. A detailed analysis of numerous mathematical games and strategies appears in the
two volumes of [Berlekamp, Conway, and Guy]; the second volume also contains a fascinating
proof that the game of "life" can simulate a universal Turing machine. A delightful anthology of
cartoons is printed in each of [Larsonl], [Larson2j, [Larson3], [Larson4], [LarsonS],
[Larson6], [Larson7], [Larson8], [Unger], [Davis], and [Groening].

7. Some Proposals to Improve the Status Quo

7.1. Keeping the Students Informed

I often found that undergraduates are sometimes extremely uninformed as to what goes on
in the department. For instance, on one occasion I discovered that several computer science
seniors had never heard of the Computer Science Department Quarterly publication, a bound
booklet that is published four times a year (in over one-thousand copies) by our department.
This publication details the official policy, course, degree requirements, and program
information of the computer science department, as well as faculty biographies and research
interests. To hear that some students have not been aware of even the existence of this
publication is disturbing. Other times I found that world-class speakers had given talks in our
department, while many of our students remained informed of these events.

To whom may the responsibility here be attributed? While some students will never find
large amounts of initiative, they should nevertheless be kept Informed of the department's
professional activities. I would recommend that all computer science students be given a copy of
the Quarterly upon its publication, and be mailed a monthly schedule of computer science talks,
seminars, and other special events. I believe that the postage/overhead costs involved with this
practice could be easily overshadowed by the corresponding increase in student interest and
participation. Of course much of the initiative in such matters must come from the students
themselves, but the department would do well to endeavor to meet the students half-way.

7.2. Permanent Student Computer Accounts

In order to keep students informed and in contact, both with the department as well as with
each other, I suggest that they be given permanent computer accounts when they are first
enrolled, to be cancelled only when they graduate or drop out. This will enable anybody to reach
everybody via electronic mail, and will help establish a greater sense of cohesiveness among the
students. So far in our department, only graduate students and professors hold permanent
computer accounts; why not afford undergraduates the same luxury? For example, I use

23

Gabriel Robins

Teaching Theoretical Computer Science

electronic mail almost exclusively for most interactions with co-researchers, faculty, and
students, and this works out extremely well, especially when the person I wish to contact is in a
different state or country.

Sometimes even graduate students are required to "renew" their computer accounts; why?
Does a department really believe that an enrolled graduate student will cease to use his/her
computer account? Not likelyl Enrollment-long accounts will eliminate the superfluous
administrative overhead entailed in account renewal procedures. The usual argument in favor of
account deactivation is that old accounts hog too much disk space; this could be mitigated by a
proper tape-archive migration policy for aging/unused files. Even without such a facility,
suppose that each student requires about 5 megabytes of storage on average (a generous
estimate). Then the combined files of approximately 100 students could be accommodated on a
single half-gigabyte drive; the price of disk drives has sufficiently dropped so that the money
involved is no longer a major hurdle. For example, I have 70 megabytes of storage connected to
my Macintosh Plus, and this storage had cost me about $2,500 in 1986; presently in 1988,
one can buy a 100 megabyte disk for just a little over $1,000.

7.3. A Proposal for Breaking CS181 Into Two Courses

I believe that the main reason that CS181 (University of California's 10-week course in
theoretical computer science) is difficult to teach (and learn), Is that too much material is
packed into one course, or equivalently, that the course duration is too short. Only with a
tremendous effort can an instructor manage to squeeze into a 10-week quarter the first 8 (out
of 14) chapters of [Hopcroft, and Ullman], and even then, many of the topics will be left
inadequately covered (or completely neglected altogether). The serious computer science
majors (and graduate students) who enroll in CS181 are often held back by less initiated non-
computer science majors, since the latter tend to greatly slow down the pace of the course due to
their lack of mathematical sophistication. The result is that all too often graduate students
finish CS181 while never having heard of NP-completeness, or other equally important ideas.

My proposed solution to this problem is to break CS1 81 into two separate courses,
CS181A and CS181B. CS181A will introduce to the students the various basic definitions,
mathematical abstractions, and proof methods involved in theoretical computer science. Next,
the Chomsky hierarchy will be discussed, as well as simple examples of languages of the various
common types, along with discussions of the various machine models. The course will conclude
with a brief introduction to undecidability, NP completeness, and a shallow discussion of
complexity theory.

CS181B will go over the above topics in much greater depths; in particular, CS181B will
challenge the students with more difficult examples of languages having (or not having) certain
properties, present a more refined partition of the hierarchy of formal languages, discuss in
detail various restrictions and generalizations of computation models, present numerous NP-
completeness proofs, and elaborate on some results of complexity and lower-bound theory.

I would recommend that all engineering-related students would be required to' pass
CS181 A, but only the pure computer science majors should be made to complete CS1 81 B. This
would ensure that non-computer science majors will receive a solid exposure to all of the
important concepts of computer science theory yet without drowning in rigor and notation,
while computer science majors would have an opportunity to acquire a greater in-depth
understanding of selected relevant topics. In any case, the problem with the status quo is that
few topics are discussed in very great detail, while other topics are left completely
unmentiohed, and I believe that it is this lack of balance that is primarily responsible for many
of the problems entailed in teaching theoretical computer science at the undergraduate level.

24

Gabriel Robins

Teaching Theoretical Computer Science

7.4. Is Infinity an Integer?

Once during a special final-review section, I posed the following question: "is a countable
union of regular languages necessarily regular?" The answer to this simple question is of
course nm, since for example, the non-regular language {0nln I n>0} can be represented as the
countable union {o1}U{oo11)U{ooo111I}U... In fact, any language (even a horribly non-r.e.
one) may be similarly represented a countable union of its elements taken as singleton sets.

Nevertheless, as a result of a raise-of-hand poll, it appeared that many of the students
believed that the answer to the above question Is "yes". In fact, even when presented with the
above counter-example, some of the students still insisted that the class of regular sets is closed
under countably-infinite union; the counter-example served only to confuse them, to the point
that they could not even see where the fallacy of their belief lay. One particularly assertive
student adamantly insisted that in the text [Lewis, and Papadimitriou] it was stated that the
union of any- number of regular sets is regular, and that since infinite unions were not
explicitly excluded, then it follows that the assertion also applies to them as well.

At this point I realized that the problem the students were having was not with the "union"
operator on regular sets, but rather with operators in general, and their extension from a finite
number of applications to an infinite number of applications. I therefore asked them whether it
was true that the addition of two integers necessarily yields an integer; they all nodded in
agreement. Next I asked whether the addition of a million, or any other fixed number, of
integers necessarily yields an integer; again everyone agreed. Finally, I inquired whether it
follows that a countable infinity of integers, when added together, results in an integer; to my
astonishment, many of the students insisted that this Is still truel

While trying to hide my shock, I wrote on the board the following form:

Xi
i-1

and asked again whether the value of this form is equal to some integer; three or four
students still firmly maintained that it wasl Moreover, none of my further arguments seemed
to convince them otherwise. At some points I raised my hands in frustration, and gave up on this
point, not wishing to waste any more valuable class time on it. It is amazing that college
seniors, after having completed a four-year curriculum of courses in mathematics and
computer science, do not know exactly what an integer isl I believe that this incident reflects on
a fundamental flaw In the education system, in that it allows students to pass through many
years of course-work while retaining fundamental gaps in the understanding of basic concepts.

7.5. A Proposal for a Brand New Undergraduate Course

To combat mathematical apathy at the undergraduate level, I would recommend adding to
the standard curriculum a course named Mathematical Maturity and Problem Solving. This
course would expose students to a collection of problems selected from basic mathematics,
introductory logic, riddle/puzzle books, and the "Mathematical Themas" and "computer
recreations" sections of Scientific American. Any problem which requires a certain "Ahal"
insight toi solve (or is otherwise fun to solve) would be a good candidate for inclusion in this
course.

25

Gabriel Robins

Teaching Theoretical Computer Science

This course would induce students to exercise their common-sense and logic while
improving their problem-solving skills and enhancing their mathematical sophistication. A
secondary goal of this course would be to illustrate to the students that computer science and
mathematics could be a fascinating field of inquiry, one in which problem-solving is a most
gratifying activity. Supplementary texts for this course may include [Polya], [Gardnerl],
[Gardner2], [Gardner3], [Gardner4], [Harel], [Bentleyl], [Bemtley2], plus a selected few
others from a large number of recreational mathematics books.

Problems showcased in this course may include ones that impinge upon the areas of graph
theory, Ramsey theory, combinatorics, trasfinite arithmetic, formal language theory,
distributed computing, lower-bound theory, recursive function theory, undecidability, and
basic logic. I strongly believe that undergraduates majoring in computer science should at the
very least be made aware of the existence of each one of these areas of study.

8. Summary

Theoretical computer science is a difficult subject to teach at the undergraduate level, and
has gained a universal reputation of being a *tough course." Many students who enter the course
have very little theoretical or mathematical background, and if the material Is not motivated
enough in its presentation to the students, the students quickly drown in the terminology and the
abundant technical notation, loosing their interest and patience in the process. Since theoretical
models constitute an extensive infra-structure upon which rests much of computer science, it
is crucial that undergraduates acquire an appreciation of these concepts before they leave
school. Based on observations that I have made while being involved in teaching this course at
UCLA for several quarters, I have developed and discussed some teaching techniques which have
proven successful both in increasing student interest, as well as in enhancing their
understanding of the material.

One of the problems with the status quo in teaching theoretical computer science to
undergraduates is the disbalance that is created when few topics are discussed in very great
detail, while other topics are left completely unmentioned. I made a recommendation that
CS181 be split into two separate courses, namely CS181A and CS181B, and while all
engineering-related students would be required to pass CS181A, only the pure computer science
majors should be made to complete CS181B. This would ensure that non-computer science
majors will receive a solid exposure to all of the important concepts of computer science theory
yet without risking being drowned In numerous technical details, while computer science
majors would have an opportunity to acquire a greater in-depth understanding of selected
relevant topics.

Finally, to help combat declining academic standards, I proposed and described a new
course to be added to existing computer science curricula, namely mathematical maturity and
pr. s . This course would expose students to a diverse collection of problems, riddles,
puzzles, and proof methods selected from basic mathematics and introductory logic, and will be
designed to cultivate within students the nebulous quality of "mathematical maturity". I believe
that instituting this course into the current computer science curriculum will significantly
increase the professional competence of our graduates, and thus may help to Improve and
maintain the national ranking of our department.

9. Acknowledgements

Mary thanks go to Professor Shelia Grelbach for encouraging me to become involved in
the teaching of theoretical computer science at UCLA, and for some insightful comments and

26

Gabriel Robins

Teaching Theoretical Computer Science

suggestions regarding this paper. I thank Professor Ell Gafni for enabling me to gain valuable
additional experience by allowing me to prepare and deliver numerous lectures in his classes.
Finally, to the hundreds of students whose learning I had the pleasure of assisting: I thank you
for improving me as a teacher.

1 0. Bibliography

Andrews, P., An Introduction to Mathematical Logic and Type Thaeoy: to Truth Through Proof,
Academic Press, Orlando, 1988.

Ashenhurst, R., ACM Turing Award Lectures: the First Twenty Years. ACM Press Anthology
Series, Association for Computing Machinery, New York, 1987.

Backus, J., Can Proaramming Be Liberated from the Von Neumann Style? A Functional Style and
its Algebra of Programs. Communications of the ACM, Vol 21, No. 8, August, 1978, pp. 613-
641.

Ben-Ad, M., Principles of Concurrent Programmino, Crawley, England, 1982.

Bentley, J., Programming Pearls Addison-Wesley, Reading, MA, 1986.

Bentley, J., More Proamming Pearls Addison-Wesley, Reading, MA, 1988.

Berlekamp, E., Conway, J., Guy, R., Winnina Ways for Your Mathematical Plays. Volume 1:
Games in General Academic Press, Orlando, Florida, 1985.

Berlekamp, E., Conway, J., Guy, R., Winning Ways for Your Mathematical Plays. Volume 2:
Games in Particular, Academic Press, Orlando, Florida, 1985.

Boolos, G., and Jeffrey, R., Cormutability and Lonic. Cambrikge University Press, Cambridge,
1980.

Cohen, D.r Intoduction to nmommmae Theory' John WbW. •-•bis-o Ic., I9M8.

•:" ": -Cutland, N., Compuahiht. arn latdle•t o. lcmfia" ion Theory, Cambridge
University Press, London, Eand, 9 - - -

B a. anrtne .ook, New* Yd. 198W.

Davis, M., jv • .CarnuutablIltv. Complexity..and Languages: Fundamentals of
CbmouteArdec Press, New York, 1983.

De MIIio,: R., LptonkR, and Perils, A., Social Processes and Proofs of T ams and Programs,
Communications of the- Association for Computing Machinery.- 22, pp. 271-280, 1979.

Edelsbrunner, H., Algorithms In Combinatorial Geomety Sprlnger-Vetag, Germany, 1987.

Einstein, A., Relatlvity: the Speclal and General Theory Crown Pubifahers Inc., New York,
Fifteenth" Edition, 1952.

27

Gabriel Robins

Teaching Theoretical Computer Science

Eisenbach, S., Functional Programming: Languages. Tools. and Architectures. Ellis Horwood
Limited, England, 1987.

Even, S., Graph Algorithms Computer Science Press, Potomac, Maryland, 1979.

Feynman, R., Leighton, R., Sands, M., The Feynman Lectures on Physics, Addison-Wesley,
Volume II, p. 5., 1963.

Gafni, E., and Santoro, N., Distributed Aloorithms on Graphs Carleton University Press,

Ottawa, Canada, 1986.

Gamow, G., One. Two Three. Infinityl,?.

Gardner, M., New Mathematical Diversions, The University of Chicago Press, Chicago, 1966.

Gardner, M., Ahal Gotcha: Paradoxes to Puzzle and Delioht W. H. Freeman and Company, New
York, 1982.

Gardner, M., Wheels. Life. and Other Mathematical Amusements, W. H. Freeman and Company,
New York, 1983.

Gardner, M., Knotted Doughnuts and Other Mathematical Entertainments, W. H. Freeman and
Company, New York, 1986.

Garey, M., and Johnson, D., Computers and Intractability: a Guide to the Theory of NP
Completns, W. H. Freeman and Company, San Francisco, California, 1979. -

Glashow, S., and Bova, B., Interactions: A Journey Throuch the Mind of a Particle Phvsicist and
the Matter of This World. Warner Books, New York, 1988. -

Gribbin, J., In Search of Schrodinger's Cat: Quantum Phvsicr and Reality Bantam Books, New
York, 1984.

G•ibbin, J., In Sear ha Bagh: An teiruml P-yiden BrW CiMdI Bantam Books, .N17.-
York. 1-986. : -19

HoronngJ., andeo UaJ tr Autat Th I t nouao. Bantamoutal.N

HAwkdding,, D., A scher- Time An te Golan Bla BantamM. Books..Newuset,19

Hofstadter, D., Mathepmagical Tharnas: Questig for the F~ssence of Mind and Pattrn Bantam
Books, New York, 1985.

Hopcroff,*J., and Ullman, J., Introduction to Automata Theory. Languages, and Computation.
Addison-Wesley, Reading, Massachusetts, 1979.

28

Gabriel Robins

Teaching Theoretical Computer Science

Larson, G., TheFar Side, Andrews, McMeel, and Parker, Kansas City, 1982.

Larson, G., Beyond the Far Side, Andrews, McMeel, and Parker, Kansas City, 1983.

Larson, G., Bride of the Far Side, Andrews, McMeel, and Parker, Kansas City, 1984.

Larson, G., In Search of the Far Side, Andrews, McMeel, and Parker, Kansas City, 1984.

Larson, G., The Far Side Observer. Andrews, McMeel, and Parker, Kansas City, 1984.

Larson, G., Valley of the Far Side Andrews, McMeel, and Parker, Kansas City, 1985.

Larson, G., It Came From the Far Side. Andrews, McMeel, and Parker, Kansas City, 1986.

Larson, G., Hound of the Far Side, Andrews, McMeel, and Parker, Kansas City, 1987.

Lewis, H., and Papadimitriou, 0., Elements of the Theory of Comwtation •r tintlce-Halli,
Englewood Cliffs, New Jersey, 1981.

Pagels, H., Perfect Symmetry: The Search for the Begirning of Time Bantam _ooks, -New York-
1985. -"".. • :

Polya, G., Ho to - .•&a

Polya, G., Tarjan,-R., and Woods, D., Notes on Introductory Combinatofri. BIddauser, Boston,
1983.

Preparata, F., and Shamnos, M., Computational GormatrvX an IntmducMon Spdnger-Verlag, New
York, 1985.

Purdum, P., aid Brown, C., The Analysis of Alaorithms. Halt, Rinehart, and Wkstoo.• New York
1985M -.- . -

-~=.7z

-IAR -A T-4- ft

--W-u' -pp. i'40s-.v1 1988.-

.s o ma, A.t m,,..,. fL 4M -•u a C•bridge.u•.i , .1 -.985

SavItch, W., Absuakta Mahuim and Grammamr Little, Brown andl-C-opany, 1982-

Sedgewick, R., Algorithms Addison-Wesley, New York, 198&.-

29

Gabriel Robins

Teaching Theoretical Computer Science Gabriel Robins

Tarjan, R., Data Structures and Network Algorithms Society for Industrial and Applied
Mathematics, Philadelphia, 1983.

Trump, D., and Schwartz, T., The Art of the Deal Random House, New York, 1987.

Thompson, K., and Ritchie, D., 1983 ACM A.M. Tuning Award Lecture, Communications of the
ACM, Volume 27 Number 8, August, 1984, pp. 757-763

Unger, J., Herman, You Can Get in the Bathroom Now, Andrews, McMeel, and Parker, Kansas
City, 1987.

it-. ,'- -. ~ .. - -- -~-~- ~ --.- ~ -~ . &~* ~~~\~aw

- ~ &--
-

30

Teaching Theoretical Computer Science Gabriel Robins

11. Table of Contents

1 Introduction .. 1.....
2 The Course Reputation and Typical Student Background 2
3 Some Teaching Techniques .. 3

3.1 Using Colored Chalk 3
3.2 Giving Students a Copy of Slides ... 4
3.3 Cartoons as a Tool to Improve Morale ... 5
3.4 Reaching the Students Through Familiar Examples 5
3.5 Calling on the Class and on Individual-Students 7
3.6 Philosophy Presented During the First Class Meeting 7
3.7 Informal Course Evaluations...,. 8..........
3.8 Homework and Examination Solutions .. 9
3.9Giving the Students My Home Phone Number and Address. ,.1 0
3.10 Encouraging Students to Exchange Information.; 10
3.11 Public Speaking 1 0 .
3.12 Extra Review Sections 1 1T
3.13 Off-the-wal, Questions......... _ 1 -
3.14 Open Book Examinations 2

3.14.1. Selling Examinations Hints vs.*Double Jeopardy".........A13 i.
3.15 Extra-Credit Problems ,.....
3.16 The Lack of Initiative and Curiosity In Students -

3.17. Other Readings-A5 . .-
4 ;..A Self-Printing Program and Other Extra-Credit Problems............... 15
5.. Sample Midterm and Final Examination Questions 1 8
6 The Textbook Used In this Course 21

6.1 Further Reading 22
7.......Some Proposals to Improve the Status Quo 22

7.1..........Keeping the Students Informed 22
7.2 Permanent Student Computer Accounts 23
7.3 A Proposa for Breaking CS181 Into Two Courses 23
7.4.. Is Infinity an Integer?-...................

7.. AProp Brand ~ew Undrgraduate C . ~ .2

7 !7

31

