
ISI Reprint Series

ISIIRS-87-196

September 1987

University
of Southern

California

Gabriel Robins

The ISI Grapher: A Portable Tool
for Displaying Graphs Pictorially

Reprinted from the Proceedings of Symboliikka "87,
held in Helsinki, Finland, on August 17-18, 1987.

INFORMATION
SCIENCES 292-15

INSTITUTE 213/822-1514676 Admiralty Way/Marina del Rey/California 90292-6695

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
"la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
2b___DECLASSIFICATION_/DOWNGRADINGSCHEDULE_ This document is approved for public release,

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ISI/RS-87-196 ---------------

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

USC/Information Sciences Institute (If applicable) ---------------

6r ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

4676 Admiralty Way
Marina del Rey, CA 90292

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) M DA903-81 -C-0335
DARPA

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
DARPA PROGRAM PROJECT TASK WORK UNIT

1400 Wilson Blvd. ELEMENT NO NO. NO. ACCESSION NO.

A rlington, VA 22209 ---------------. I -........ I I
11 TITLE (Include Security Classification)

The ISI Grapher: A Portable Tool for Displaying Graphs Pictorially [Unclassified]

12, PERSONAL AUTHOR(S)
Robins, Gabriel

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) u1S. PAGE COUNT
Research Report FROM TO 1987, September 23

16 SUPPLEMENTARY NOTATION

Reprinted from the Proceedings of Symboliikka '87, held in Helsinki, Finland, on August 17-18, 1987.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP artificial intelligence tools, graphs, graph algorithms, intelligent systems,
09 02 layout algorithms, user- interfaces

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The advent of inexpensive personal workstations with high-resolution displays has helped to
drastically increase end-user productivity. However, the same technology has also served to
highlight the deficiencies inherent in current pieces of software and existing user-interfaces. A small
set of concepts (e.g., windows, menus, icons, etc.) has established itself as a good model for user-
interface design. We propose an important addition to this collection, namely the concept of a
"grapher"; that is, the ability to interactively display and manipulate arbitrary directed graphs. We
illustrate the usefulness of this idea, develop a practical linear-time algorithm for laying-out graphs,
and describe our implementation of a prototype, the ISI Grapher.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIED/UNLIMITED JO SAME AS RPT. 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL Sheila Coyazo 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Victor Brown 213-822-1511 1
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.

All other editions are obsolete.
SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

ISI Reprint Series

ISIIRS-87-196

September 1987

University
of Southern

California

Gabriel Robins

The ISI Grapher: A Portable Tool
for Displaying Graphs Pictorially

Reprinted from the Proceedings of Symboliikka '87,
held in Helsinki, Finland, on August 17-18, 1987.

INFORMATION

SCIENCES213/822-1511
INSTITUTE

4676Adiray Way/Marina del ReylCalifornia 90292-6695
This research is supported by the Defense Advanced Research Projects Agency under Contract No. MDA903-81-C-0335 Vews
and conclusions contained in this report are the authors' and should not be interpreted as representing the official opinion or
policy of DARPA, the U.S. Government, or any person or agency connected with them.

X:;:::::::::: .::::::: :.%:::: NO -1=;:::';;:::::•:;;-:-::•;;:;•:•• %

ISI Reprint Series

This report is one in a series of reprints of articles and papers written by ISI

research staff and published in professional journals and conference

proceedings. For a complete list of ISI reports, write to

Document Distribution
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695
USA

The ISI Grapher:
a Portable Tool for Displaying Graphs Pictorially

Gabriel Robins
Intelligent Systems Division

Information Sciences Institute
4676 Admiralty Way

Marina Del Rey, Ca, 90292-6695, U.S.A.
gabrielevaxa.isi.edu

Abstract

The advent of inexpensive personal workstations with high-resolution displays
has helped to drastically increase end-user productivity. However, the same technology
has also served to highlight the deficiencies inherent in current pieces of software and
existing user-interfaces. A small set of concepts (e.g. windows, menus, icons, etc.) has
established itself as a good model for user-interface design. We propose an important
addition to this collection, namely the concept of a "grapher"; that is, the ability to
interactively display and manipulate arbitrary directed graphs. We illustrate the
usefulness of this idea, develop a practical linear-time algorithm for laying out graphs,
and describe our implementation of a prototype, the ISI Grapher.

Keywords: user-interfaces, intelligent systems, graphs, graph algorithms, layout
algorithms, artificial intelligence tools.

1. Introduction

The advent of inexpensive personal workstations with high-resolution displays,
fast processors, and large memories has helped to drastically increase end-user
productivity. However, the same technology has also served to highlight the
deficiencies inherent in current pieces of software and existing user-interfaces. In
particular, a good user interface is now considered to be singularly important in
determining the usefulness and success of many kinds of systems. Considerable
emphasis has been placed on the uniformity, universality, and consistency of user
interface design [Kaczmarek, Mark, and Wilczynski].

A small and integrated set of concepts -- desktops, windows, menus, icons, dialog
boxes, forms, mouse clicks, etc. -- has been established as a good model for user
interface design. We propose an important addition to this collection: namely the

This research was supported in part by the Defense Advanced Research Projects Agency under
contract number MDA903 8 1 C 0335. Views and conclusions contained in this report are the author's
and should not be interpreted as representing the official opinion or policy of DARPA, the U.S.
government, or any person or agency connected with them.

An invited talk in Symboliikka '87, August 17-18, 1987, Helsinki, Finland.

I

concept of a grapher. that is, the ability to interactively display and manipulate
arbitrary directed graphs. We illustrate the usefulness of this idea, develop a practical
linear-time algorithm for laying out graphs, and describe our implementation of a
prototype, the ISI Grapher.

2. The Usefulness of a Grapher

Consider the following model of an interactive environment: several editor
windows are active, each containing one or more objects which may reside over several
files or machines. For the sake of concreteness, let us say that the objects being edited
are procedures or semantic nets. It is very likely that due to the sheer complexity and
number of these objects, the user soon lose track of which objects he has modified or of
the relationships between these objects.

To alleviate this problem, we may introduce an additional grapher window,
containing a picture of the relations between the objects that are being
edited/inspected in other windows. In the following example, nodes represent
functions and procedures, while edges represent static lexical scoping. Now the user
has a global view of his current state of his editing session. This grapher window is
highly interactive; for example, clicking with the mouse on a graph node would cause
the definition of the corresponding object to appear in an editor window, whereupon
the user may modify that definition. Pictorially, the scenario we envision would appear
as follows:

I

I

2

r,

-9

L I

\I,-

Other interpretations of the graphs are possible and are equally useful. For
example, in an AI knowledge representation environment, nodes may represent
concepts and edges may represent logical subsumption; in a grammar system, nodes
may represent symbols (terminals or nonterminals) and edges may represent
productions; in a file system, nodes may represent files and edges may represent
directory containment; in a distributed environment, nodes may represent machines
and edges may represent communication links, and so on.

3. Pictorial Display vs. Syntactical Display

If "a picture is worth a thousand words," then it can well be argued that "a graph is
worth a hundred well-formed formulas." For example, consider the following directed
graph, given by its edge set: G = ((D,H), (E,), (C,G), (B,E), (F,J), (C,F), (K,B), (B,D), (K,C),
(GA)). Visualize the structure of the graph G from this representation is not trivial.
Suppose that we were told that G is in fact a tree; is it then obvious whether G is a binary
tree? The answer is still not apparent at first glance. Even if we are told that in fact G
is a binary tree, how easy would it be for us to determine what the root of G is? And
even if we are further told that G is a binary tree with root K, how quickly could we
determine whether G is a balanced tree?

The answers to all these queries
formally using set-theoretic notation as
diagram of G, as follows:

would be obvious if instead of specifying G
above, we had simply been given a pictorial

The pictorial representation of G.

This discussion alludes to the conclusion that because humans are good at pattern-
recognition, it is often preferable to display the pattern pictorially rather than its
equivalent formal syntactic representation. We may wonder why certain properties
are difficult for us to infer from formal descriptions, yet are trivially apparent from
appropriate diagrams; this is partially due to the fact that transitive closures are
difficult to compute mentally. Perhaps this is related to the fact that the transitive

3

closure predicate can not be specified in first order logic. A compounding problem is
that humans find it difficult to keep track of a large number of identifiers, even if they
are mnemonic. However, such questions are best left for cognitive scientists to muse
about.

The heart of any grapher would be an algorithm for laying out directed graphs.
However, finding optimal layouts for graphs is quite a difficult problem. Even in the
special case of laying out binary trees optimally on the lattice plane, the problem turns
out to be NP-hard, as is its approximation of within 4 percent! [Supowit and Reingold].
By optimal layout we mean a layout that minimizes some parameters, such as the total
width of the resulting diagram, or the number of edge crossings. Other researchers
have proposed various algorithms to layout and display graphs [Vaucher] [Reingold and
Tilford], some of which are similar to the one adopted by the ISI Grapher.

Interestingly enough, laying out binary trees on the continuous real plane
reduces to linear programming. This is a small consolation, however, as solutions to
continuous problems do not directly map (via rounding) into solutions to the
corresponding discrete versions, but the discrete and the continuous solutions can
instead be arbitrarily far apart [Papadimitriou and Steiglitz, p. 3271. This is rather
discouraging, as we would like to be able to layout large graphs (of several thousands of
nodes) interactively and in "real-time." Moreover, the notion of "optimality" with
respect to a layout is quite subjective; in the above discussion, a reasonable set of
"esthetic" heuristics with respect to binary trees had to be fixed. We then need to ask
ourselves how important optimality is to us in the resulting layout; from this point on
we use the assumption that users in most interactive applications would be willing to
sacrifice some "beauty" in exchange for a considerable increase in speed.

4. Definition of the Problem

In order to make the problem more tractable and concrete, we make several design
decisions: we assume that nodes are to be represented by rectangles, and that edges are
to be represented by straight line segments. Next, we constrain all the children of a
node to appear in the layout to the right of all of their ancestors. Furthermore, we
sidestep the problem of having to draw cycles, via a structure-preserving mapping of
directed graphs to labelled acyclic directed graphs. This approach will be discussed
later in greater detail.

Given an arbitrary graph (or relation), the problem then to map the nodes (or
identifiers) onto the lattice plane (that is, to assign integer coordinates to them), and to
display the result in such a way as to exhibit the original structure of the graph as
much as possible, while also making it convenient for a user to inspect, browse
through, and manipulate the resulting representation.

The ISI Grapher is an implementation of a solution to this problem: it is a set of
functions which converts a given arbitrary directed graph into an equivalent pictorial
representation, and then graphically displays the resulting diagram. Nodes and edges
in the abstract graph now become boxes and lines on the workstation screen, and the
user may then interact with the Grapher in various ways via the mouse and the
keyboard. The ISI Grapher is both powerful and extendible, allowing an application-

4

builder to easily and comfortably build other tools on top of it.

5. Salient Features of the ISI Grapher

Other graphers and browsers exist, so the salient features of this system are now
enumerated:

Portability - The ISI Grapher is implemented strictly in Common LISP, except for a tiny
bottom-layer having to do with low-level graphics. This makes the ISI Grapher very
portable. The ISI Grapher already runs on several versions of TI and Symbolics
workstations/environments, with only about a dozen lines of code of difference
between the two implementations! These few differences are managed through
conditional compilation, so that the same file compiles and runs as-is on all machines.

Speed - The ISI Grapher has a graphing speed of over 2,500 nodes/edges per minute (of
real time, on a Symbolics 3600 workstation with garbage-collection turned off), almost
an order-of-magnitude improvement over other systems. Moreover, the asymptotic
time behavior of the ISI Grapher increases only linearly with the size of the graph
being drawn. This was achieved through careful design of the data structures and the
layout algorithm.

Nice layout - In addition to being time efficient, the layout algorithm employed by the
ISI Grapher compares favorably with the output of layout algorithms employed by
other graphers. Figures I and 2 at the end of the paper illustrate typical ISI Grapher
displays.

Versatility - The ISI Grapher interfaces to other system tools, such as the editor and the
inspector. This allows for a more uniform environment for the user/application-
builder.

Bz ibil.W - The design of the ISI Grapher allows other applications to be built on top
of it quickly and elegantly. Several such tools will be described later. This is a very
important property, because graph structures are a recurring theme throughout
computer science (in data structures, knowledge bases, grammars, searches, etc.) Thus
the usefulness of a system greatly increases when individual researchers can easily
tailor it to their specific needs and requirements.

Innovations - The ISI Grapher incorporates several novel features. Chief among them
is the linear-time layout algorithm, as well as the "continuous- update" scheme utilized
by the global scrolling mode. The latter is designed to sharpen the user's awareness and
sense of direction and location while "navigating" through a large graph.

6. Other Graphers and Related Work

A notable effort to produce a graph browser called Grab was put forth in [Meyer]
and is further developed in [Rowe et all, where a system to visually display graphs was
implemented. Unfortunately for Al researchers, it was written in C. An additional
problem was the usage of numerous time-consuming heuristics (to optimize edge-
crossings, for example), rendering the system very slow when laying out large graphs.

5

Another scheme for drawing graphs is proposed by [Lipton et all. To draw a graph,
this scheme entails detecting and exploiting various properties of the given graph with
respect to symmetry and the induced automorphism group. While possessing some
mathematical elegance, such a scheme can hardly be expected to yield an efficient
implementation. It is recognized that systems which run very slowly but optimize
layouts to some degree have their applications, but for our purposes, we regard speed as
having paramount importance: users are not likely to tolerate layout times measured in
hours.

An experimental graph-layout system was produced by the Symbolics Corporation
in early 1985 for internal use. However, its heavy dependence on flavors and other
specialized Symbolics features, has made it completely non-portable. Additionally, this
system used so much space, that attempting to use it on a graph with more than a couple
of hundred nodes would typically lead to hopeless disk thrashing (due to massive
swapping). In contrast, the ISI Grapher has been successfully used on graphs of up to
25,000 nodes without incident.

7. Invoking the ISl Grapher

The ISI Grapher is invoked at the top-level by calling the function graph-lattice
with a list of roots/options and a sons-function. This provides a means for the ISI
Grapher to deduce the complete description of the graph by recursively calling the
sons-function on the roots and their descendents. Next, a reasonable graphical layout is
computed for the graph, and is drawn on the display. Various mouse sensitivity and
functionality is automatically provided, creating a versatile and user-friendly browsing
environment.

7.1. An Example

For example, if our graph is ((a,b),(a,c),(b,d)), our root is (a), and our sons-
function is:

(defun sons (x)
(cond ((eq x 'a) (1Ist 'b 'c))

((eq x 'b) (list 'd))
(t nil)))

Note that the sons-function returns NIL if and only if the given node is a leaf in the
graph (that is, the given node has no children.) Now, the call (graph-lattice 'a 'sons)
would produce the picture of the graph:

b d

Ea D< C

6

Directed cycles in the graph will be "broken" for displaying purposes by the
introduction of "stub" nodes. For example, the graph {(ab),(bc),(c,a)) which looks like
this:

will be actually displayed as follows:

where "A" represents the same graph node as does "a", so in a sense the graph node
represented by "a" is displayed twice (with an obvious indication that this has occurred,
such as the usage of a bolder font; this is automatically provided by the ISI Grapher).
All directed edges are displayed with the direction implicitly going from left to right.
The first argument to graph-lattice may in fact be a command list with a special syntax,
allowing selective pruning of the graph; this facility may also be used interactively in
various ways.

The cycle-breaking may be viewed as a pre-processing pass on the graph, and
operates as follows: a topological sort is initiated, beginning at the roots (the parentless
nodes, or else an arbitrary user-specified set of nodes.) A topological sort is an ordering
of the nodes of a directed graph so that all the parents of a given node in the ordering
appear before that node in the ordering. It is well known that it is possible to
topologicaly sort the nodes of a directed graph if and only if the graph does not contain
any directed cycles. Moreover there are numerous linear-time algorithms to achieve
such an ordering when one exist (or detect that none exist if that is the case.)

When the topological sort becomes "stuck" and cannot "proceed" any further on
any given node, we have detected a cycle. We now "break" the cycle via the
introduction of a "stub" node as discussed above, and continue with the topological sort.
We repeat this process until all the nodes in the graph have been processed, thus
eliminating all cycles. If one is a little careful in the implementation of this scheme,
the total amount of computation required remains linear in the size of the graph.

Once a graph has been layed out and is displayed in a window, various commands
are available from the main command menu. This menu is activated by clicking the
mouse anywhere inside the currently active Grapher window. If the mouse cursor was
pointing to a particular graph node during the mouse click, additional commands
(tailored for and directed towards that particular node) shall become available on the
main command menu. Appropriate documentation/explanation lines are available at
the bottom of the display when the corresponding menu entry is highlighted, and a
mechanism is provided that allows the user to customize the menus.

7

8. Performance and Efficiency

The time required by the ISI Grapher to layout a graph is linearly proportional to
3the size of the graph . Moreover, the constant of proportionality in this linear relation

is relatively small, yielding both a theoretical optimum, as well as practical efficiency.
In benchmark runs, speeds of up to 2,500 nodes per real-time minute have been
achieved by the ISI Grapher when running on a Symbolics workstation.

It is worth noting that the computational time bottleneck of most graph-layout
systems tends to be embedded in the layout algorithm which finds the X and Y positions
for nodes on the display. It is further noteworthy that there are numerous algorithms
and heuristics to discretely lay-out graphs on the lattice-plane. However, the esthetic
criterion that dictate what is a "nice" or "pleasing" layout vary greatly across users, and
is very subjective. It can even be shown that under some simple esthetic assumptions,
"optimal" layout becomes NP-hard (which in plane language means that polynomial-
time algorithms for such layouts are not likely to exist) See, for example, [Supowit and
Reingoldi.

The author does not advocate his layout scheme as the final word on such
algorithms: rather it is his belief that the layout scheme employed here yields very
high returns in terms of esthetic appeal per unit computation time, and is also quite
simple to describe. For other layout schemes see [Wetherell and Shannon].

9. The Layout Algorithm

The layout algorithm employed by the ISI Grapher has several novel aspects. First,
as previously mentioned, the asymptotic time and space performance of the layout
algorithm is linear in the size of the graph being processed; this situation is clearly
optimal. Secondly, the layout algorithm employed by the ISI Grapher exhibits an
interesting symmetry: layout is performed independently in the X and Y directions.
That is, first all the X coordinates (of the nodes in the layout) are computed, and then all
the Y coordinates are computed without referring to the value of any of the X
coordinates. This property implies a certain logical "orthogonality" in the treatment of
the two planar dimensions, and is the source of the simplicity of the layout algorithm
(the heart of the layout algorithm is only about two pages of code).

The Y coordinates of a node N is computed as follows: if N is a leaf node (that is, if N
has no children in the graph) its Y coordinate is selected so that is it as close as possible
to, but not overlapping any node previously layed out. If N has any children, their Y
coordinates are computed first, and then N's Y coordinate is set to be the arithmetic
average of the Y coordinates of N's children. Note that the second rule implies depth-
first recursion, which is indeed how the algorithm is implemented. The Y-direction

More formally, the asymptotic time (and space) complexity of the ISI Grapher for a graph G-(VE) is
O(IVI + IEI), where IVI is the size of the node set, and IEN is the size of the edge set.

8

layout is sensitive to the heights of the objects being displayed. On the other hand, the
Y-direction layout is completely oblivious to the X-coordinate values.

Similarly, the X coordinates of a node N is computed as follows: if N is a root node
(that is, if N has no parents in the graph), its X coordinate is set to zero. If N has any
parents, their X coordinates are computed first, and then N's X coordinate is set to be
some fixed amount larger than the maximum of the X coordinates of N's parents. Again,
note that this implies depth-first recursion. The X-direction layout is sensitive to the
lengths of the objects being displayed, and is completely oblivious to the Y-coordinate
values.

For the sake of completeness, we specify the X and Y layout algorithms more
formally. The layout algorithm for the Y coordinates is specified as follows:

For N in Nodes do Y[N] := 0;
Last-y := 0;
For N in Roots(G) do LmyOut-Y(N);

Procedure Ll-yout-Y(N);
begin
if Y[N] = 0 then /* N was not yet layed-out *f

If N has any unlayed-out children then
begin /* layout the children first. */
for C in Children(N) do Lmyo =l-Y(C);
Y[N] := average-Y(Children(N));
end

else begin /* layout a leaf. 5/

Y[N] :- Last-y + Height(N);
Last-Y :- Y[N];
end;

end; /* of procedure Layout-Y */

The layout algorithm for the X coordinates is specified as follows:

For N in Nodes do X[N] := 0;
For N in Leaves(G) do Lmyout-=(N);

Procedure LMyout=Z(N);
begin
if X[N] = 0 then /* N was not yet layed-out. Sf

If N has parents then
begin /* layout the parents first. */
for C in Parents(N) do Lmyout=-(C);
X[N] := Max(X[iJ + Width(i) I i in Parents(N)) + constant;
end

end; /* of procedure Layout-X 5/

9

From the recursive layout scheme specified above, it should be clear that each
node gets processed only once during the two independent passes (one for each of the
two planar axes.) What is not so obvious from this discussion, however, is whether such
layouts actually appear pleasant given real graphs. This question is best answered via
inspection of some examples, such as the ones included at the end of this paper.

10. Portability and Code Organization

In trying to keep the ISI Grapher as portable as possible, the code is divided into
two main modules. The first and largest module consists of pure Common LISP code; this
code is responsible for all the layout, control, and data-structure manipulation
algorithms. The second module is substantially smaller, and consists of numerous low-
level primitive calls which are quite likely to be implementation-dependent. The intent
here is that when the Grapher is to be ported to another (Common LISP) environment,
only the second module should require modification. In order to further minimize
porting efforts, the calls from code in the first module to functions in the second
module were designed to be as generic as possible.

In summary, if a new environment has a window-system which supports a
reasonable set of window and graphics primitives (such as open-window, draw-line,
print-string, etc.), then porting the ISI Grapher to this new environment or machine
should require a minimal coding effort, probably all of which would be confined to the
second section of the ISI Grapher code.

11. Existing Applications

To demonstrate how easily other applications may be built on top of the ISI
Grapher, several such applications have already been built and are provided alongside
the ISI Grapher. We now describe some of these applications:

The List Graoher - This application displays the natural correspondence between lists
and trees. For example, the call

(graph-list '(alpha (beta (epsilon theta))
(gamma epsilon)
(delta zeta)))

would produce the following picture:

10

The List Grapher provides an easy means of quickly obtaining large or complex graphs.

The Flavor Grapher - This application displays the interdependencies between LISP
"flavors," where nodes are flavor names, and edges mean "depends on." This type of a
diagram could be quite useful in system development. For example, the call (graph-
flavor 'tv:window) would graph all the flavors that depend on the tv:window flavor.

The Packafe Grapher - This application produces a picture of the package
interdependencies between a Common LISP package and all packages which use it. An
example of a call is (graph-package "global").

The Divisors Grapher - This application displays the divisibility graph of a given
integer; that is, all the divisors of an integer are represented as nodes, where an edge
between two nodes means "is divisible by." This is also a quick method to produce large
graphs. An example of such a call would be (graph-divisors 360).

Coding and testing the above 3 tools (the Flavor Grapher, the Package Grapher, and
the Divisibility Grapher) took only half an hour of work!

The NIKL Browser - This application is a browsing tool for NIKL networks and graphs a
concept taxonomy below a given concept list. Concepts are fundamental objects in
NIKL, and are partially ordered by subsumption (i.e. set inclusion). NIKL is a
knowledge representation environment developed at ISI and is a popular tool in
artificial intelligence research [Robins, 19861 [Kaczmarek, Bates, and Robins].

Other applications include the Function Grapher (which draws function-call
hierarchies based on lexical scoping,) and the Loom Grapher (Loom is the successor to
NIKL.)

12. Extendibility and Overriding Default Operations

Several basic Grapher operations may be controlled via the specification of
alternate functions for performing these tasks. These operations include the drawing
of nodes and edges, the selection of fonts, the determination of print-names, pretty-
printing, and highlighting operations. Standard definitions are already provided for
these operations and are used by default if an application-builder does not override
them by specifying his own functions for performing these tasks.

For example, the default method of highlighting a graph node when the cursor
points to it on the screen, is to invert a solid rectangle of bits over the node. Suppose
that the user is not satisfied with this mode of highlighting and would like to have thin
boxes drawn around highlighted nodes instead. He may then write a highlighting
function that does exactly that, and tell the Grapher to use that function whenever a
node needs to be highlighted. The details and semantics of this process are fully
described in [Robins, 1987].

As another example, suppose the user is not satisfied with the way nodes are
displayed on the screen; ordinarily nodes are displayed on the screen by printing their
ASCII print-names at their corresponding screen location, but the user would prefer

II

that some specialized icon be displayed instead. The user may then specify his icon-
displaying function as the normal node-painting function and from then on, whenever
a node needs to be displayed on the screen, that function will be called upon (along with
arguments corresponding to the node, its screen location, and the relevant window) to
achieve the desired effect.

In particular, the following basic Grapher operations may be overridden by the
user:

"* Deciding which font should be used to display an object's print-name. Different
fonts may thus be used to distinguish various types of objects.

" Determining the dimensions (width and height) of an object. This information is
used by the other Grapher functions, such as the layout algorithm (as placement
of objects is sensitive to their sizes) and highlighting operations (as the size of
the highlight-box depends on the size of the object being highlighted.)

"* Determining the ASCII print-name of an object.

"• Highlighting and unhighlighting an object. This operation is most often
performed when the mouse points to a given object.

"* Describing or explaining an object. This is the function that gets executed when
the corresponding explain (or pp) command is selected from the main menu.

For each one of the categories above, the Grapher keeps a function precedence list,
consisting of a primary function, a secondary function, a tertiary function, and so on,
for as many functions as are currently available to perform the task associated with
that particular category. Whenever a new function is introduced to perform a certain
task, each function is "demoted" one "notch" in precedence. Each category also is
associated with a default function, which is initially the only function associated with
that category. The default function for a particular category has the least precedence.

When a certain task needs to be performed during the normal operation of the

Grapher, the corresponding primary function is called with a graph node object and a
window. It is then up to the called function to perform the given task and return an
answer of non-NIL if it indeed performed the said task, or return an answer of NIL if it
did not (or could not or chose not to) perform the said task. In the former case the
Grapher merrily goes about its business, while in the latter case, the secondary
function is similarly called, with this process repeating until some function has
successfully performed the given task (this event being signaled by the return of non-
nil by that function.), or until all the available functions have been exhausted and the
task has not yet been performed. In the latter case the default function is called, the
default function being guaranteed to perform the associated task successfully.

This mechanism gives the user great flexibility in displaying and highlighting

This is a complex structure from which a lot of other information may be extracted.

12

graph objects. These operations may depend heavily on the type and size of the object
being displayed or highlighted, and so different functions may be used to handle each
type of object. It should be noted that this discussion implies the ability to mix various
types of objects in the same graph (each having unique size, appearance, and
highlighting characteristics) with relative ease and uniformity. This scheme is
reminiscent of a primitive flavor mechanism, where "inheritance" has a non-standard
semantics.

In summary, many of the basic Grapher operations are parametrized by a set of
default methods. This set may be extended by the application-builder in order to make
the ISI Grapher behave in ways not provided for by the author. Any operations left
unspecified by the application-builder will default to some reasonable pre-defined
method. This scheme results in a portable, flexible, and extendible system.

13. Icon Displays

There are numerous ways to make ISI Grapher displays even more visually
striking. For example, the user could utilize icons to display nodes, whereupon the BBN
Naval Model (a NIKL network depicting a naval scenario) could take on the style of the
following diagram:

Naval
Vessel

Missile Submarine

Destroyer

An example of an icon-based ISI Grapher display

This may be accomplished by using a font-editor to create a specialized font which
would include the above icons as special characters. As the ISI Grapher is capable of
working with arbitrary fonts, the above display would readily be achieved by adding
the proper (trivial) node-paint function.

13

Ai rcraft Carrier

13. Hardcopying

Hardcopying is system- and device-dependent, but the ISI Grapher does provide a
mechanism which automatically scrolls the current window incrementally in the X and
Y directions and calls the proper system function (that is responsible for the actual
hardcopying of that portion of the graph which is currently visible in the current
window.) The idea here is that since most hardcopying devices are capable of
producing an image of only a small (page-sized) bitmap, it is necessary to hardcopy
small sections of it one at a time, and then cut-and-paste the resulting "jigsaw-puzzle"
together to create the final wall-sized diagram (which may be several square meters in
area). The automatic scrolling also provides a small overlap margin between adjacent
panes which has proved to be quite handy during the final cutting-and-pasting
process.

In summary, the ISI Grapher provides an automatic means of scrolling in order to
hardcopy a graph in small sections, but the environment is responsible for providing a
hardcopying function which can properly hardcopy each section.

14. Conclusion and Further Research

In summary, the fundamental motivation which inspired the ISI Grapher is the
belief that being able to quickly display, manipulate, and browse through graphs may
greatly enhance the productivity of a researcher, both quantitatively and qualitatively.

We have shown that various applications can benefit greatly from an interactive
grapher-like facility, and then we described an implementation of a prototype, the ISI
Grapher. Some of the novel features of the ISI Grapher include its linear-time layout
algorithm, its portability, and its extensibility. Although our implementation is in a
high-level programming language (Common LISP), in future user interface designs for
personal-workstations, it would be preferable to have a Grapher facility available at the
window-system level alongside the other primitives of the environment. We believe
that the usefulness and applicability of such a graphing facility merits this
commitment.

Further research may concentrate on using some heuristics in order to further
optimize various properties of the layout, although it is certainly not clear how much of
an improvement in the layout can really be achieved while preserving the linear-time
complexity of the layout algorithm. It would also be interesting to port the ISI Grapher
to other machines and environments. Several such ports are currently in progress;
the ISI Grapher already runs on several versions of Texas Instruments Explorers and
Symbolics workstations. Finally, numerous extensions to the ISI Grapher are possible,
and it is encouraged that applications begin to use the ISI Grapher, or other grapher-
like tools, as a building-block in their user interface.

15. Obtaining the sources

Further documentation [Robins, 1987], as well as the source code for the ISI
Grapher may be obtained by contacting the author: Gabriel Robins, Information
Sciences Institute, 4676 Admiralty Way, Marina del Rey, Ca, 90292-6695, U.S.A.; ARPAnet
address: "gabriel@vaxa.isi.edu". The author has already received and responded to a

14

large number of requests for the source code and for the full documentation/manual.

16. Acknowledge ments

The author is grateful to the Intelligent Systems Division Director Ron Ohlander,
for providing excellent leadership, as well as interproject support funds for further
development effort. The supervision and advice of Larry Miller is greatly appreciated.
In addition, the following individuals deserve credit for various suggestions and
comments: Bob MacGregor, Bob Kasper, Ray Bates, Norm Sondheimer, Robert Albano,
Tom Galloway, Steve Smoliar, Neil Goldman, and Eli Messinger. The patient help of
Leslie Ladd and Larry Friedman with tedious photocopying, binding, and pasting is
gratefully acknowledged. Ching Tsun Chou carefully proofread this paper, and made
numerous valuable suggestions; further thanks for proofreading go to Victor Brown,
Tom Galloway, and Ann Bettencourt. Finally, the author is especially indebted to Tom
Kaczmarek, under who's leadership the ISI Grapher was initially born.

17. Bibliography

Kaczmarek, T., Mark, W., Wilczynski, D., The CUE Project, Proceedings of SoftFair, July
1983.

Kaczmarek, T., Bates, R., and Robins, G., Recents Development in NIKL, AAAI,
Proceedings of the Fifth National Conference on Artificial Intelligence, August 1986.

Lipton, R., North, S., and Sandberg, J., A method for Drawing Graohs, ACM Computational
Geometry Conference Proceedings, June 1985, pp. 153-160.

Meyer, C., A Browser for Directed Graghs. Technical Report, Department of Electrical
Engineering and Computer Science, University of California, Berkeley.

Papadimitriou, C., and Steiglitz, K., Combinatorial Optimization. Algorithms and

Complexity. Prentice-H all, New Jersey, 1 982.

Reingold, E., and Tilford, J., Tidier Drawing of Trees, IEEE Transactions on Software
Engineering, SE-7, no. 2, March 1981, pp. 223-28.

Robins, G., The NIKL Manual, Intelligent Systems Division Report, USC/Information
Sciences Institute, April 1986.

Robins, G., The ISI Graoher User Manual, ISI/TM-87-197, USC/Information Sciences
Institute, September, 1987.

Rowe, L., Davis, M., Messinger, E., Meyer, C., Spirakis, C., and Tuam, A., A Browser for
Directed Graohs, Softwa2re - Practice and Experience, 17(1), January 1987, pp. 61-76.

Supowit, K., and Reingold, E., The Complexity of Drawing Trees Nicely, Acta Informatica,

18, 1983, pp. 377-392.

Vaucher, J., Prettv-Printing of Trees, Software - Practice and Experience, 10, 1980, pp.

15

553-561.

Wetherell, C., and Shannon, A., Tidy Drawing of Trees, IEEE Transaction on Software
Engineering, 5, September 1979, pp. 514-520.

16

L)C D U)

' ý3
La LL

w
L)
a:-j0-

CLOf

U
LLJ

. .'..........
...,,.-X..:....'..'..:.'..-'. :r*'-: -: -'n.. m.. L-.- 4 • _ C _ c •, ___

1

(n

U,J(n
w

x
111
I

x C-o

(r CL- W 0
0oMzi -

w 3W

m C- lad
IWkr

m. a- I Z

:L- - C•,. -i w
Zj U* CI CXD U

-w 0 1...2...O= C: I- . -.z

~ 0*.~494 ~ fl**.j CL C)r A;...:• :..... .: •..•.: .
I .• . ,--. "-';';-'-:•'- ".'..".- .'-'-:

CA.

C3C C3,L COO 4=:-. .. 0~C1 C~ C

4 QG:::::.• .•:.:.: .:•: .:.0: ::...:C*•:;•.C.••:O:; Z(.9:::: .: •: : Z4J•.• • .•: CI•:;• L:•:

.

....................... - -- - - - - - -- -- - - ---------- -----

ma
.

.

.
.. 7ct.

~0

o c

:3 C

10 0

t-o

U) u- c

C)00

T-Z

NOC)

-IC

~42
0

Lo co

4,

Sbfl

.z-

0

CL

C-

cl)

CM)

clo~

CD4

INFORMATION
SCIENCES

INSTITUTE 7LQ L 4676 Admiralty Way/Marina del Rey/California 90292-6695

