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Abstract

Previous literature on the Traveling Salesman Problem (TSP) assumed that the sites to be visited
are stationary. Motivated by practical applications, we introduce a time-dependent generalization
of TSP which we call Moving-Target TSP, where a pursuer must intercept in minimum time a set
of targets which move with constant velocities. We propose approximate and exact algorithms for
several natural variants of Moving-Target TSP.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The classical Traveling Salesman Problem (TSP) has been studied extensively, and
many TSP heuristics have been proposed over the years (see surveys such as [8,11]).
Previous works on TSP have assumed that the cities/targets to be visited are stationary.
However, several practical scenarios give rise to TSP instances where the targets to be
visited are themselves in motion (e.g., when a supply ship resupplies patrolling boats,
or when an aircraft must intercept a number of mobile ground units). In this paper, we
introduce a generalization of the Traveling Salesman Problem where targets can move
with constant velocities, formulated as follows:
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The moving-target traveling salesman problggiven a setS = {s1, . .., s, } of targets
eachs; moving at constant velocity; from an initial positionp;, and given gursuer
starting at the origin and having maximum speed |v;|, find the fastest tour starting
(and ending) at the origin, which intercepts all targets.

Related formulations considéme-dependentersions of the Vehicle Routing Problem,
where one or more trucks whose speeds vary with time-of-day (due to traffic congestion)
serve customers at fixed locations [9]. These works give exponential-time algorithms
based on a mixed integer linear programming formulation and dynamic programming
[9,10,12]. One major drawback of such general formulations is that they do not
simultaneously yield both efficient androvably bounded-cost heuristics (e.g., the
restricted dynamic programming heuristic of [10] is efficient, but is not provably bounded-
cost). These formulations generalize TSP without the triangle inequality, which admits
no approximation bounds unless=PNP [2]. Applicability of dynamic programming to
related formulations was also considered in [7]. The approximation complexity of Moving-
Target TSP was studied in [4], where it was shown that Moving-Target TSP cannot be
approximated better than by a factor of@" times optimal within polynomial time
unless P= NP.

In this paper, we propose and address several natural variants of Moving-Target TSP.
In Section 2, we show that unlike the classical TSP, the restriction of Moving-Target
TSP to one dimension (i.e., where all points move on a line) is not trivial, and we give
an exactO (n?)-time algorithm. For Moving-Target TSP instances where the number of
moving targets is sufficiently small, we developlat «)-approximation algorithm, where
a denotes the approximation ratio of the best classical TSP heuristic. It was shown in
[4] that the(2 — €)-approximation is NP-hard even in the case when only two targets are
moving. Thus, combining our approach with the polynomial-time approximation scheme
for Euclidean TSP [1] yields almost optim@-+ ¢)-approximation algorithms for Moving-
Target TSP when enough of the targets are stationary.

Next, in Section 3, we shift our attention to selected variants of Moving-Target TSP
with Resupply? where the pursuer must return to the origin for resupply after intercepting
each target, as shown in Fig. 1(c). For these variants, we assume that all targets are moving
on a line through the origin away from (or towards) the origin. We present a surprisingly
simple exact algorithm for Moving-Target TSP when the targets approaching the origin are
either far away or slow. We also consider the case when all targets are moving towards the
origin, but with the additional requirement that the pursuer must intercept all of the targets
before they reach the origin. We show that such a tour always exists and that no tour which
satisfies the constraints is more than twice as long as the optimal tour.

1 The existence of a polynomial-time approximation scheme implies that far ang), there is a polynomial-
time algorithm with an approximation ratio of at most%.

2 our formulation corresponds to a dynamic version of the Vehicle Routing Problem, defined as follows.
Given a set of: targets, each witldlemandc; moving at a constant velocity; from an initial positionp; for
i=1..., n, and a set ok pursuers initially located at the origin and having maximum spgéeendsupplyC ;
forj=1,..., k, find a tour for each pursuer such that the demand of each target is satisfied and the total time of
vehicles in operation is minimized.
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Fig. 1. (@) An instance of Moving-Target TSP. (b) A shortest-time tour (dashed line) which begins at the origin
(flag) and intercepts all of the targets. (c) In Moving-Target TSP with Resupply, the pursuer must return to the
origin after intercepting each target (an optimal interception schedule is shown).

Finally, in Section 4, we generalize Moving-Target TSP with Resupply to allow multiple
pursuers which all move with the same maximum speed. This problem also can be viewed
as a dynamic generalization of multiprocessor scheduling where the processing time
depends on the starting time of processing a job. We show that the problem is NP-hard,
which is a nontrivial result because our formulation has a total time objective which is
different from the standard “makespan” and minimum latency objectives. We also develop
an approximation algorithm for the case when, projecting back in time, all targets would
have left the origin simultaneously. Finally, we present an exact algorithm for the case when
all targets have the same speed, and conclude in Section 5 with future research directions.
A preliminary version of this research was presented in [5].

2. Special instances of Moving-Target TSP

Since unrestricted Moving-Target TSP is NP-h&ahd because nonoptimal tours can
have unbounded error, we consider special variants where Moving-Target TSP is solvable
either exactly or to within a reasonable approximation ratio. In this section, we consider
two variants:

(1) when targets are confined to a single line, and
(2) when the number of moving targets is small.

The following lemma is central to our analyses of Moving-Target TSP and its variants:

Lemma 1 (The No-Waiting Lemma)ln any optimal Moving-Target TSP tour, the pursuer
must always move at maximum speed.

3 Note that classical TSP is a special case of Moving-Target TSP where all the velocities equal zero.
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Proof. Assume towards contradiction that we have an optimal ®uhat involves a
pursuer moving slower than the maximum speed. This is equivalent to letting the pursuer
wait in place for some time periods and then move at maximum speed during other periods.
However, a tour that involves any waiting cannot be optimal, which can be seen as follows.
Let s be the first target to be intercepted after the first waiting period, and let the pursuer
intercept the target at positionp and timer. If instead, the pursuer first interceptand

then proceeds to the poipt then it will reachp earlier thary, since the pursuer is faster
than the target. Afterwards, the pursuer could wait atuntil time ¢ and continue along the
original tour7. Thus, the pursuer can postpone the waiting period until after intercepting
s. Repeatedly applying this argument, the waiting periods can all be postponed until after
the end of the tour. But waiting after the end of the tour is unnecessary, and thus we can
obtain a tour which is faster than the supposedly optimal T contradiction. O

Lemma 1 allows us to define a tour purely by the sequence of intercepted targets in their
order of interception by the pursuer. Furthermore, we may consider only tours in which the
pursuer always moves with maximum speed towards intercepting the next target.

2.1. Moving-Target TSP in one dimension

In this subsection, we consider Moving-Target TSP where the pursuer and all targets are
confined to a single line, and we develop@w?) exact algorithm for this variant based
on dynamic programming. To see that the one-dimensional constraint does not trivialize
the problem, consider the Moving-Target generalization of the exact algorithm for the one-
dimensional classic TSP. First, compute the cost of the tour which intercepts all targets to
the left of the origin and then intercepts all targets to the right of the origin. Next, compute
the cost of the other “natural” tour which intercepts all targets to the right of the origin and
then intercepts all targets to the left of the origin. Finally, from this pair of possible tours,
choose the one with the least cost.

Unfortunately, this simple heuristic has unbounded error, as can be illustrated with the
following example. Consider the case when there are four targets, two of them on either
side of the origin, extremely close to the origin but moving away from the origin very
quickly, while the other two targets are on either side of the origin, but much further fromiit,
and are so slow as to be almost stationary. If we intercept the two fast targets immediately,
then we spend almost no time in chasing them. However, if we first intercept all of the
targets on one side of the origin, then we will later be forced to spend an arbitrarily long
time chasing the remaining fast target on the other side of the origin. Thus, the pursuer may
repeatedly change direction in an optimal tour. The following lemma bounds the number
of turning points in an optimal tour.

Lemma 2. In an optimal tour for one-dimensional Moving-Target TSP, the pursuer cannot
change direction until it intercepts the fastest target ahead of it.

Proof. Suppose towards contradiction that in an optimal téyrthe pursuer changes
direction at timer before intercepting the fastest targeahead of it. There exists some
sufficiently smalls > 0 such that, in the time period betweer § andr + §, the pursuer
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changes direction only at time Consider an alternative tour where the pursuer stops at
timer — §, waits without moving until time + §, and then continues along the original tour.
Note that in both the original and the alternative tours, the pursuer is:

(1) atthe same poin® by timet + §; and
(2) has always been between the poitand the targets during the time period
(t—38,t+9).

All the targets that the pursuer would intercept in the time period betweehands + §

are betweerP and the target and are moving slower thaf) so therefore they cannot
passs. In essence, the turning of the pursuer could not have decreased the total tour time,
even if it proceeds to intercept targets on the other side of the starting point, because during
the time that it wasotchasing the fastest target on one side, it was only intercepting targets
that it must eventually intercept on the way to the fastest targeyway. In fact, the time

spent not chasing the fastest target is thus equivalent to time spent waiting in place. By
the No-Waiting Lemma (Lemma 1), the original tour is therefore not optimal, because it is
equivalent to a tour with a waiting period O

To fully define a tour, we need to know only the points when the pursuer changes
direction, and by Lemma 2, it may happen only when the pursuer intercepts the fastest
target ahead of it. Thus, we may view a tour as a sequence of snapshots at the moments
when the pursuer intercepts the fastest target which was then ahead of it. For any such
snapshot, the information relevant to our algorithm can be representestats @y, s r),
wheres; is the target just intercepted, amd is the fastest target on the other side. All
tours have the same initial state) and the same final statésing. Note that neitherg
nor Asinal have corresponding targeisor s . States have a time function associated with
them, denoted(A), representing the shortest time in which this state can be achieved.
Naturally, we assign(Ag) = O for the initial state.

Note that Lemma 2 implies that there are at most two possible transitions from any
stateA = (sx, s¢) at assigned time(A) (see Fig. 2). These two transitions represent the
two possible choices of the next target to be intercepted, either the fastest to the left of the
pursuer or the fastest to the right of the pursuer. The time of each transitid@noted
t (1), is the time necessary for the pursuer to intercept the corresponding target (the fastest
on the left or on the right) from the position of targgtat timez(A). Note that the state
(sk, sy) does not have transitions into it when the corresponding taggets, would be
intercepted (i.e., overtaken) by a faster target behind it before the pursuer caggeach

Our algorithm works as follows (see Fig. 3). In the preprocessing step of our algorithm,
we partition the targets into two listeeft andRight (according to whether targets are on
the left or the right side of the origin, respectively). Then, we sort the lists according to non-
increasing order of their speeds. We traverse both sorted lists and delete any target from the
list which is closer to the origin than its predecessor. The targets which remain in these two
lists are the only targets for which the pursuer may change direction after intercepting them.

Let G = (V, E) be the graph with the nodés corresponding to states, and the afcs
corresponding to transitions. Each tour in this graph corresponds to a path from the initial
state to the final state and vice versa. Note that the géashacyclic. Indeed, the pursuer
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Fig. 2. An instance of one-dimensional Moving-Target TSP (the flag represents the origin). On the right, we
show the two possible transitiongf andzrignt from a stated = (s¢, s r) which is shown in (a). The transition

17|eft COrresponds to intercepting the target to the left of the pursuer. It transforms thd statethe stateA ey,
depicted in (b). Alternatively, the transitiafight transformsA into the stateArignt shown in (c).

cannot return to the state in which it has already been before because it cannot intercept
the same target twice. Our algorithm can now be viewed as a simple generalization of the
algorithm for finding the shortest path in the acyclic grapwhere the weight of an arc

(the time necessary to perform transitioghdepends on the weight of the shortest path
from the initial state to the beginning staterofThe runtime of our algorithm i® (V + E)

or O (n?).

In order to consideall possible paths, our algorithm traverses the states in a topological
order, where no transition is allowed to go backwards with respect to this order. This is
accomplished by sorting (and later traversing) the states in ascending order of the sum of
the indices of the targesg ands (for each stated = (s¢, s¢)) in theLeftandRightlists.

When we traverse a given statein the algorithm, we do one of three things:

(1) if the state has no transitions into it, we proceed to the next state in the list;

(2) if the pursuer has intercepted all of the targets on one side, we make a transition into
the final stateAsina; Or

(3) we make two transitions which correspond to sending the pursuer after either the
fastest target on the left or the fastest target on the right.

We define the time of a stat® ast(B) = min{¢t(A) +t(z) | t: A — B}, the time required
for the shortest sequence of transitions from staj¢o stateB.

Once we have visited each of the states, we can traverse the transitions backwards from
the final stateAsing back to the initial statedg. This gives us the list of states which
describes the turning points for the pursuer in an optimal tour. For each pair of turning
points, we find the subset of targets which are intercepted between them. Once we target
are partitioned into subsets, we sort the targets inside each subset by their interception
times. Finally, we merge the sorted subsets into a combined interception order, yielding an
optimal solution. This algorithm is summarized formally in Fig. 3.
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Exact Algorithm for One-Dimensional Moving-Target TSP
Input: The initial positions and velocities aftargets, and the maximum pursuer speed
Output: A time-optimal tour intercepting all targets, and returning back to the origin

Preprocessing
Partition the list of targets into the targets on the left side and the right side of the origin
Sort the targets on the left into liseftin order of nonincreasing speeds
Sort the targets on the right into liRightin order of nonincreasing speeds
Delete targets fromeft which are closer to the origin than faster targets in this list
Delete targets frorRightwhich are closer to the origin than faster targets in this same list
If Left or Rightis emptythen
Calculate the time required to intercept all remaining targets; and
Go to the postprocessing step

Main algorithm

Let Ag be the start state

Let Afing be the final state

STATHSs the sorted list of states in order of nondecreasing sum of the indices
of each state’s targets in listeft andRight

PlaceAq first in the listSTATE

PlaceAfing last in the lisStSTATE

t(A) < oo for any stated # Ag

t(Ag) <0

current<«< 0

While current < the number of states BTATEdo
A = STATHcurrent]
If there are no transitions inté then
Incrementcurrent and jump back to the beginning of the while loop
If for stateA, all remaining targets are on one side of the oridjien
t(tiinal) < time required to intercept the remaining targets (and return to the origin)
If #(A) + #(zfinal) < t(Afinal) then
t(Afinal) < t(A) + t(Tfinal)
Else
Calculate the two transitiongef; andright from stateA using listsLeft andRight
(see Fig. 2)
If£(A) +t(meft) < t(Ajeft) then
t(Ajef) < 1(A) + 1 (Teft)
If 1(A) + 1 (zright) < t(Aright) then
t(Aright) < 1(A) + 1 (Tright)
Incrementcurrent

OUTPUT <« the reverse list of states frodxin, back toAg

Postprocessing

For each pair of consecutive states @UTPUT
Calculate which targets are intercepted between the state pair
Sort the intercepted targets by the interception order

Output the concatenated sorted lists of targets

Fig. 3. An exact algorithm for Moving-Target TSP in one dimension.

159
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Fig. 4. Rather than proceed to stateat timet(A) along the transitiorr’ (lower solid line), the pursuer can
instead proceed (along the dashed line) to positievhere targek will be at timeOPT(A), arriving there earlier
than timeOPT(A) (dotted line). Then it can wait (shaded region) and proceed along transition

Theorem 3. The above algorithm for one-dimensional Moving-Target TSP finds an optimal
tour.

Proof. When the algorithm given in Fig. 3 terminates, all transitions lead to states with
defined times. By Lemmas 1 and 2, this will guarantee that the time will be defined for all
states which may be reached by any optimal tour. Our strategy is to prove that no tour can
reach stateB earlier tharr (B), as defined in our algorithm.

Assume towards contradiction tha&t is the first state in an optimal tour which was
reached in timer(B) > OPT(B). The stateB cannot be the initial statelg, since
t(Ap) = 0. Let the statet precede the stat® in the optimal tour, and let be the transition
from A to B (see Fig. 4). SinceB is the first state for which(B) < OPT(B), and A
precedesB, then we have(A) < OPT(A). Our algorithm guarantees that there is a tour
that reaches the state= (s¢, s¢) intimez(A).

If 1(A) = OPT(A), thent (B) < OPT(B) since our algorithm finds the fastest transition
from A to B. Otherwise, iff (A) < OPT(A), rather than proceed to stakeat timez (A), the
pursuer can instead proceed to the posipoof the targets; at timeOPT(A), and arrive
there earlier than tim®PT(A); this is true because the pursuer is faster than the tgrget
The pursuer can wait at positignuntil time OPT(A), and then proceed along the optimal
tour, reaching the state at timeOPT(B) (see Fig. 4).

Consider what would happen if, after interceptingat time¢(A), the pursuer had
proceeded directly to stafg along an alternative transitiari. If the pursuer had followed
this alternative strategy (instead of going indirectly through positias described above),
then it would have arrived at stazat time no later tha®PT(B). Thus,OPT(B) cannot
be less tham(A) + ¢ (z’), which in turn cannot be less tha(B), a contradiction. O

Theorem 4. The above algorithm for one-dimensional Moving-Target TSP run®(if)
time forn targets.

Proof. In the preprocessing phase, the partitioning and sorting req@iteogn) time.
Deleting targets from listseftandRightrequires onlyO (n) time. The entire preprocessing
phase therefore runs withifi (n logn) time.

The analysis of the main algorithm is as follows. First, referring to Fig. 3, we observe
that there ar@ (n2) states to traverse, and that we only traverse each state only once. Also,
note that transitions can only go from earlier states in th&SIMATELo later states. This is
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because any transition leads from a state whose targets have smaller indicet éitléstd
Right, to states with larger indices. Thus, by the time we traverse a state in our algorithm,
we have already considered all possible optimal paths to this state. Therefore, we need
to traverse each of th@ (n?) states only once. When traversing a state, we must traverse
at most 2 transitions from that state. Lemma 5 below concludes the proof that the main
algorithm can be completed ifi (n2) time.

Finally, we must show that the postprocessing can also be accomplished @it
time. First, note that finding a single subset of targets intercepted along a transition requires
O (n) time, because we must check each target to determine if it was intercepted. Since
there may beO (n) transitions in an optimal tour, we may need to fidldn) subsets,
and thus the partitioning of the targets into subsets may requir®) time. Sorting the
individual subsets and combining them into an optimal target interception order takes at
most O (nlogn) time. Thus, the postprocessing step requires a totél @f) time. Since
preprocessing, postprocessing, and the main algorithm can all be accomplished within
0 (n?) time, the runtime of our overall algorithm for the one-dimensional Moving-Target
TSP is bounded bp (n?). O

Now we complete the proof of Theorem 4 by proving the following lemma.
Lemma 5. All transitions can be traversed in constant amortized time per transition.

Proof. In order to compute both of the possible transitions from a state(si, s ), we
need to determine the fastest remaining targets to the left and to the right of the current
targets, at timer(sx, s¢), the time of statés,, s r). We already know the fastest target on
the opposite side of the origin. Therefore, we only need to compute the fastest target on the
same side of the origin as the just-intercepted tayget

Without loss of generality, let; € Left. Let nexi(sx, sy) be the fastest target to the
left of the pursuer at statésy,sy). To prove the lemma, it is sufficient to find the
setNex{(sx) = {nexi(sx, sy) | sy € Right in time O(n). Our algorithm is based on the
following claim.

Claim. Let sy be later thans, in the list Right. Then negl,ss) occurs later than
nexi(sg, s r) in the list Left.

Proof. By time (s, ss/), the targets; is intercepted, since otherwise would be the
fastest target on the right. Timegs,, s¢) is the minimumtime required to reach state
(sk.syr), thereforer (s, s 1) > t(sx, sr). This implies that the targej intercepts at least
as many targets frorheft by time z(sx,sy) as it intercepts by time(sy, sy). Finally,
nex(sy, s s) is no faster and no closer to the origin thaexi(sx,ss). O

We can now finish the proof of Lemma 5. All the targetsNexts;) occur later
thansy in the listLeft. Thus, for the earliest staté; in Nexi(s;), we find nex{ A1) by
traversingLeft starting froms,. The above claim implies that for the next statg we can
traverse_eft starting fromnexi(A1), and inductively, for statd; we can traverskeft from
nexiA;_1). Thus, we need to traverse the listft only once. Traversing a targetin Left
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for stateA; takes constant time: we need to check whether by tifde) the target; has
already intercepted (i.e., overran) targedr not, by comparing the speeds and the original
positions ofs; ands;.

We have implemented this algorithm using the--€ programming language. Com-
putational benchmarks against an exhaustive search algorithm empirically confirmed its
correctness, as well as its quadratic runtime.

2.2. Heuristics for few moving targets

In this subsection, we consider Moving-Target TSP when only some of the targets are
moving (while the majority are stationary). From among the many existing approximation
algorithms for classical (stationary) TSP [8], choose one such heuristic, having perfor-
mance bound. Using this algorithm for stationary targets, we now show how to construct
an efficient algorithm having a performance bound &f & when the number of moving
targets is sufficiently small.

Theorem 6. Moving-Target TSP where at moét(logn/(loglogn)) of the targets are
moving can be approximated in polynomial time with performance bdundr, where
« is a performance bound of an arbitrary classical TSP heuristic.

Proof. Our approach consists of two parts. First, the pursuer intercepts all moving targets
in optimal time and returns to the origin. Secondly, the pursuer intercepts the stationary
targets using any chosen approximation algorithm.

Since the pursuer first intercepts all moving targets optimally, the time required to
intercept them cannot be longer than the time of an optimal tour over both the stationary
and the moving targets. The chosen stationary target heuristic retains its bound for
intercepting the remaining (stationary) targets. Thus, we may sum the bounds for the two
tours (over the moving targets and the stationary targets, respectively) to obtain a total
performance bound of % « for this combined algorithm.

An optimal tour which intercepts = O(1) - logn/(loglogr) moving targets can be
found efficiently using exhaustive search of all possible tours over the moving targets. In
order to find the optimum, we need to cheédk< k* possible tours. The logarithm of this
guantity is at most:

logn
loglogn

logn
loglogn

logk* =0(1) - 'Iog(O(l) . ) <01 -logn.

Thusk* = exp(O(1) - logn) =n°® and an exhaustive enumeration of all #fepossible
tours over the moving targets can therefore be achieved within polynomial time.

Figure 5 illustrates this approach with an example.

3. Moving-Target TSP with Resupply after intercepts

In this section we consider Moving-Target TSP where a single pursuer must return to
the origin after intercepting each target. We call this probMoving-Target TSP With
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Fig. 5. (a) In this example, we have two moving targets and the rest are stationary. (b) First, we find an optimal tour
for the moving targets by trying all permutations. (c) Then, we use a classical TSP algorithm with performance
bounde« for intercepting the stationary targets. (d) Finally, we combine both tours into a single tour having a
performance bound of % «.

ResupplyIn order to simplify the analysis, we assume that the targets all move on radial
lines passing through the origin, i.e., either directly towards or away from the origin. When
targets are either (1) slow, (2) far from the origin, or (3) already moving along a line
containing the origin, this model provides a good approximation since the projections of
target velocities onto radial lines through the origin are approximately constant.

We define avalid tour to be a tour where no target passes near (or through) the origin
without first being intercepted by the pursuer, and thus the velocities of all targets may
be considered to be fixed with respect to the origin. Note that the No-Waiting Lemma
(Lemma 1) enables us to still assume that the pursuer always moves with maximum speed
towards intercepting the next target. In Section 3.1, we restrict the problem by considering
the scenario when the shortest tour is valid. In other words, no target will pass the origin
for a “sufficiently” long time (we will later elaborate on how long that should be). We
show that there is a simple way to determine an optimal target interception order for this
scenario. It is worthwhile to note that in this case, an optimal order is quite similar to the
optimal schedule for minimizing a weighted completion time on a single machine.

We consider a similar scenario in Section 3.2, except that we introduce a new constraint,
namely that the pursuer must intercept each target before it reaches the origin (i.e., the tour
mustbe valid). We formulate the problem in terms of “defending” the origin from the
(incoming) targets, and show that there always exists a valid tour regardless of the number
of targets. Then, we prove that the longest tour can be at most only twice the length of the
shortest valid tour.
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3.1. The case when targets never reach the origin

Letd; be the initial distance between the targednd the origin, i.ed; = | p;| wherep;
is the position of; in the plane. If the target is moving towards the origin, then we define
v; to be negative, otherwisg is positive (see Fig. 6).

First, we will determine an optimal intercept order for the receding targets, if all of
the targets move away from the origin. Next, we will determine the order for intercepting
targets when all targets move towards the origin. Finally, under certain conditions, we can
combine the two orderings to obtain a single optimal ordering for a mix of approaching
and receding targets.

Intuitively, when all targets move away from the origin, we would like to intercept
the closest receding target early, because spending time chasing a more distant target will
enable all of the other receding targets to move even further away. Also, we would like
to intercept the fastest target earlier, because the longer we postpone this, the longer and
further we would have to chase it later in order to catch it. Thus, it would seem that we
should strive to simultaneously minimize the distance-to-intercept while also maximizing
the target’s velocity when choosing the interception order for targets which move away
from the origin.

Our solution for this variant of Moving-Target TSP is to intercept targets in increasing
order of their ratios/; /v;. Note, that projecting backward in time,/v; is the amount of
time since the target left (or passed through) the origin. Thus, thedatip corresponds
to what we refer to as thage of a target. The following theorem proves that an optimal
algorithm must intercept the targets in nondecreasing order of their ages (i.e., younger
targets should be intercepted first).

Theorem 7. In Moving-Target TSP with Resupply where all targets move directly away
from the origin, an optimal tour intercepts the targets in nondecreasing order of their
respective ratiog; /v;.

Proof. First, we show that the theorem is true when an instance of Moving-Target TSP
with Resupply contains only two targets. Ligb be the time required to intercept and

then intercept,. Similarly, letzs 1 be the time required to interceptand then intercept.

We assume thay is younger (the other case is symmetrical). We would like to show that
11,2 < 12,1. The time required for the pursuer to intercepts 2- dq/(v — v1). Afterwards,

Fig. 6. Two targetss; andsy, are moving directly away from the origin (i.e., on lines passing through the origin)
at positive velocities); andvy, starting at distance$; andds. A third targets3 approaches the origin, and thus
its velocity v3 is negative. The pursuer must return to the origin after intercepting each target.
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interceptings, will take time 2- (d2 + (2-d1/(v — v1)) - v2) /(v — v2). Thus, the total time
to intercepts; first and then intercept is the sum:

t1,2=2.< & )+2. <d2+(2‘dl/(v—vl))'v2>'

v—u1 v — V2

Algebraic manipulation yields:
4-dy-vo—4-do-11
(w—v)-(v—12)

If 51 is younger tharsy, thendi/v1 < d2/v2 anddy - v2 < dz - v1. This proves that
n2<121.

Given that Theorem 7 is true for two targets, we now show that it is also true for
any number of targets. Assume towards contradiction that in an optimal tour, the pursuer
intercepts two consecutive targets, firsand thers;, in nonincreasing order of their ages,
i.e.,di/v; >d;/v;. Firstintercepting; and then intercepting; will require no less time
than intercepting them in the reverse order, namglirst and ther;. Thus, if the pursuer
would alternatively intercept these two targetsands; in the reverse order, it would
have time to wait at the origin right after intercepting the second target, and then continue
the rest of the original tour using the original interception order. But by the No-Waiting
Lemma (Lemma 1), this means that the original (presumably optimal) tour is not optimal,
since it can be improved. Thus, all pairs of consecutive targets in an optimal tour must be
intercepted in nondecreasing order of th&ijfv; ratios. O

I12—121=

Next, we analyze an analogous variant where all targets are approaching the origin. This
variant is essentially the time reversal of the previous variant where all targets are receding
away from the origin. The concept of the “age” of a target, however, is replaced with the
analogous concept of the “dangerousness” of a target. The problem of intercepting targets
moving towards the origin can thus be reformulated as requiring a pursdefeéadthe
origin (e.g., against incoming missiles or other threats).

The essential difference between the time reversal of the resupply variant where all
targets move away from the origin and the case when all targets move towards the origin,
is that in the latter scenario a target may pass through the origin and then move away from
it. This possibility makes the problem quite complicated, because it causes an implicit
change in direction which is absent in the first variant. We therefore consider only valid
tours where no targets pass through the origin before the pursuer intercepts them.

Lemma 8. Let all targets move towards the origin, and Btbe the tour which intercepts
targets in nonincreasing order of their respective ratibs(—v;). If T is a valid tour, then
it is an optimal tour for Moving-Target TSP with Resupply.

Proof. The proofis the same as for Lemma 7. Simply making the velocities of both targets
negative does not change the inequalities. An optimal order still intercepts the targets in
nondecreasing order of their ratids/v;, which means that we should intercept targets in
the order of least dangerous to most dangerous if all targets are approaching the anigin.
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Note that for a mixture of approaching and receding targets, we should intercept the
receding targets first. The longer we wait to intercept these targets, the further away they
will be able to travel before we eventually intercept them. Targets that move towards the
origin should be allowed as much time as possible to come even closer to the origin.
Therefore, if we assume that no targets will pass through the origin while we are pursuing
the targets that move away from the origin, then we should first intercept targets that are
moving away from the origin, and then intercept targets that are moving towards the origin.
Further, if we can intercept the receding targets and still intercept the approaching targets
in increasing order of their dangerousness before any target crosses the origin, then the
optimal strategy for intercepting all of the targets is to first intercept the receding targets in
order of increasing age and then to intercept the approaching targets in order of increasing
dangerousness. This strategy is formalized in the following theorem.

Theorem 9. Let T be the tour which first intercepts all the targets which move away from
the origin in nondecreasing order of their ratias/v;, and then intercepts the targets
which move towards the origin in nonincreasing order of their ratip&—v;). If T is a
valid tour, then it is an optimal tour for Moving-Target TSP with Resupply.

3.2. “Defending” the origin against incoming targets

In this subsection, we consider Moving-Target TSP when all the targets approach the
origin. We first show that if we intercept targets in order of most dangerous to least
dangerous, we will intercept all of the targets before any of them reach the origin. Next, we
observe that from among all tours which intercept all targets before they reach the origin,
the tour that intercepts targets in order of most dangerous to least dangerous is the longest.
Finally, we will show that even this longest tour is never longer than twice an optimal tour
which intercepts (in the best possible order) all the targets before they reach the origin.

Although we can prove that the strategy of intercepting targets in order of least
dangerous to most dangerous is optimal when no targets intercept the origin, it is still open
whether there is an efficient algorithm for determining an optimal intercept order when
some targets may pass through the origin before being intercepted. However, we can prove
that there always exists a tour that intercepts all the targets before they reach the origin.

Theorem 10. A tour which intercepts the targets in nondecreasing ordef; of—v; ) is the
slowest(i.e., wors} valid tour.

Proof. First, we will show that the slowest tour for this problem variant occurs when we
intercept the targets in order of most dangerous to least dangerous. The proof is similar to
that of Lemma 7. We have shown that the optimal order to intercept two targets is to first
intercept the least dangerous target and then intercept the most dangerous target. Thus, if
at any point in the tour we intercept a less dangerous target before intercepting a more
dangerous one, then we can swap the intercept order of these two targets and induce a
longer tour. When all targets are intercepted in order of most dangerous to least dangerous,
no more such swaps to increase the time of the tour are then possible; therefore, such a tour
is the slowest possible tour.
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We now prove that this tour is valid. In such a tour, the pursuer intercepts the targets in
order of most dangerous to least dangerous. After the pursuer intercepts the most dangerous
target (i.e., the incoming target that will next reach the origin), the pursuer returns to origin.
Since the pursuer is faster than any target, it will return to the origin before the next most
dangerous target can arrive. Then, the pursuer intercepts the next target before it reaches
the origin, and so on. Given that the origin is a 0-size point, no target will reach it (though
targets may come arbitrarily close)O

Lemma 8 and Theorem 10 lead to the obvious question: what is the shortest valid
tour? A natural strategy would be to always intercept the least dangerous target unless
intercepting that target would allow the most dangerous target to actually reach the origin.
In this case, we should intercept the least dangerous target that we can intercept and still
obtain a valid tour. Unfortunately, this simple strategy does not always yield an optimal
tour, as illustrated in the following example.

Consider the case when three targets,s2, andsz are moving towards the origin.
Without loss of generality, let the targets be numbered in increasing order of their
dangerousness (i.e., the least dangerouis @&1d the most dangeroussig). Suppose that
after intercepting, the tour that proceeds to interceptand thenss is invalid. On the
other hand, intercepting and therss yields a valid tour, if the pursuer does not start with
interceptings;. According to the strategy above, the pursuer should intercept the targets
in the ordersy, s3, s2. If 51 is a stationary target which is very close to the origin, then
the optimal tour instead starts with andss, and finishes withy1 because tougsz, s3) is
faster than(ss, s2). Assume that; is very slow, and thatz almost reaches the origin by
the time the pursuer returns to the origin after intercepting hen the pursuer will waste
considerable time chasing first. If s3 is almost as fast as the pursuer, then the {eyrs,)
will be about twice as long as the toup, s3).

From the Moving-Target TSP instance described above, we see that there are instances
of Moving-Target TSP for which the slowest tour may be up to twice as long as an optimal
tour. Interestingly, we can also prove that this bound is tight, i.e., no valid tour requires
more than twice the time of an optimal valid tour, as follows.

Theorem 11. For Moving-Target TSP with Resupply, when all targets move towards the
origin, no valid tour is more than twice as long as an optimal valid tour.

Proof. Enumerate the targets in order of least dangerous to most dangerous, Artgblet

an optimal valid tour. The slowest valid tour intercepts targets in order of most to least
dangerous (i.esy, ..., s1). We will show that the slowest tour can be no more than twice

the length of an optimal valid touf, by iteratively transforming” into the slowest tour.

Note that this transformation is equivalent to sorting, since an optimal tour can intercept
targets in any order, and in the slowest order, the targets are sorted in decreasing order of
their indices.

We denote the tour as a list of targets where the left-most target will be intercepted
first and the right-most target will be intercepted last. Our transformation starts with
the right-most target in the original optimal todr and gradually moves to the left,
sorting all targets in decreasing order of their indices. In other words, at each step of
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our transformation, the current targetand all targets to the left of occupy the same
positions as in the tour, while all of the targets to the right of are already sorted in
decreasing order of their indices. The step itself consists of removing tarffem the
current tour and inserting it into its proper position in the sorted list to the right.

Let #; be the time required to intercept the targetn the original optimal tourT .
We now show that each step of the transformation increases the total time of the tour by
at mostz;. Note first that removing target from the current tour cannot increase the
total time of the tour. Indeed, the pursuer may wait for tisnmstead of intercepting the
targets;. Inserting the targe; into its proper place in the sorted list decreases the time for
intercepting targets to the right of its new location, because they will be intercepted later,
i.e., when they will be closer to the origin. Similarly, the time to intercept the taygefts
new position is at most. Thus, the insertion operation can increase the total time of the
tour by at most;. Since each step of the transformation increases the cost of the tqur by
for all s;, the final tour may be at most twice the original cost. Note that this transformation
results in a valid tour, since

(i) the segment of the tour to the left of the new position of the targist valid because
this segment has been valid originally, and
(ii) the segment of the tour to the right gf (includings;) is valid by Theorem 10. O

Note that the Theorem above enables a broad class@PZ approximation heuristics,
which operate by simply producing valid tours, and/or modifying such tours while keeping
them valid. Any such approach is guaranteed by Theorem 11 to yield solutions that are no
worse than twice the optimal.

4. Multi-pursuer Moving-Target TSP with Resupply

In this section, we address a generalization of Moving-Target TSP with Resupply when
there are multiple pursuers. This generalization can also be considered as a dynamic
version of the Vehicle Routing and Multiprocessor Scheduling problems. We focus on
the case when targets move directly away from the origin on lines passing through the
origin, and allk pursuers have the same top speed (normalized to 1). In the following two
subsections we will consider two special cases:

(1) where all the targets have the same age, and
(2) where all the targets have the same speed.

In the presence of multiple pursuers, Moving-Target TSP may have different time
objectives. In the Vehicle Routing Problem, the typical objective has been to minimize the
total tour time i.e., to minimize the sum over all pursuers for all time periods in which any
pursuer is in operatiofiFollowing the multiprocessor scheduling regime where a common

4 We assume that each pursuer is in operation starting fromstim@, until its final return to the origin.
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objective has been to minimize the overall jplakespanwe analogously seek to minimize
the time when the last pursuer finally returns to the origin.

Note that achieving the makespan objective may be computationally more difficult than
the total time objective, since for stationary targets, minimizing the makespan is equivalent
to the NP-hard Multiprocessor Scheduling Problem, whereas the total time objective is
invariant over all schedules. We will show that in the presence of moving targets, the
problem of minimizing the total time also becomes NP-hard even in the case of two
pursuers and where all targets are of the same age. On the other hand, we show that when
all targets have the same speed, the total time can be minimized efficiently for any number
of pursuers. If all targets have the same age, we also estimate the list scheduling error for
multiple pursuers.

Before considering multiple pursuer problem variants, we prove the following useful
lemma.

Lemma 12. The total tour time for a single pursuer to interceptargetss; having speeds
v isT, =T,—1-u, +1t, whereu; = (1+ v;)/(L —v;) andt; =2-d; /(1 — v;) for any
i=1...,nand Ty =0 (s is the time for a pursuer to intercept targetif it chases it
first).

Proof. Let 7; be the total time of a tour which intercepts targgts .., s;. The total time
of the tour which intercepts targets .. ., sj11 is:

T. - V; + d v;
Ti+1=Ti+2'M=Ti'<1+2'L1)+ti+1.
1-— Vi4+1 1- Vi+1
Since 14+ 2 v;j41/(1 — vi+1) = u;+1, this yields:

Tiv1=T; -uiy1+ti+1. O
4.1. Targets with the same age
We start by applying Lemma 12 to the case of all targets having the same age.

Lemma 13. Let d;/v; =t be the same for all targets, ..., s,. For each targets;, let
u; = (1+v;)/(1—v;). The time required to intercept targets . .., s, with one pursuer
ist- ([T ui — ).

Proof. Let#; denote the time to intercept the targetf the pursuer chases first, and
express; in terms of the age=d; /v; andu;.

d,’ —¢ 21),'
1- Vi 1- Vi
By Lemma 1271, = T,—1 - u, + t(u, — 1), and therefore:

Th+t=Tw-1+1) u,.
Now repeatedly use the last equality to finish the proof:

=2

=t(u; —1).

n n
T,,—l—t:(To—i—t)l_[u,- =tl_[u,-. O
i=1 i=1
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Lemma 13 implies that the problem of distributingtargets between two pursuers
includes as a special case the well-known NP-hard problem of partitioning a set of
numbers into two subsets, each having the same sum. Note that NP-hardness here does
not directly follow from TSP (either classical or Moving-Target), because of the origin
resupply requirement after each intercept.

Theorem 14. Moving-Target TSP with Two Pursuers and Resupply is NP-hard when the
objective is to minimize either the total time or the makespan, even when all targets have
the same age.

Proof. By Lemma 13, in order to minimize the total time, we need to partition the set of
targets into two subsetg, and B, where the product of the;’s of the targets in subset
A plus the product of tha;’s of the targets in subsd? is minimized. When we seek to
minimize the makespan, we need to minimize the maximum of these two products. If it is
possible to partition the targets into subsétand B with the same product of thg’s, then
this yields an optimal partition of the targets among the two pursuers for either objective.
We refer to this problem as the Product Bipartition (PB) problem.

We will show that the PB problem is strongly NP-hard by a reduction from the Subset
Product (SP) problem (see [3, p. 224]). The SP problem seeks a subsatumbers from
a given setX where the product of the numbers¥nequals a given number (both the
multisetsX andY may contain duplicate numbers). We will construct an instaxicef
the PB problem such that’ has a solution if and only if the given instance of the SP
problem(X, z) has a solution. Let denote the product of all the numbersin and let
the corresponding instance of the PB problem consist of th&’setX U {x} U {z?}. Note
that the product of all numbers iK' is x?z2. If the SP instancéX, z) has a solutiorY,
thenY’ =Y U {x} is the solution for the PB instance for the set of numbefsLet Y’
be a solution for the PB instance f&f; then the product of all the numbers ¥t is xz.
Since the product oéll elements inX equalsx, Y’ must contain eithefx} or {z2}. The
SP instancéX, z) will have a solutiont in both cases, sinceife Y’, thenY =Y’ — {x},
and, on the other hand,if € Y/, thenY = X\ Y'. O

Lemma 13 yields a reduction of Moving-Target TSP withpursuers (in the case
when all targets have the same age) to the Multiprocessor Scheduling Problem: given
a set ofn jobs with processing times, and k equivalent processors, find a schedule
having the minimum makespan. There exist many heuristics for the Multiprocessor
Scheduling Problem, including list scheduling, longest processing, and polynomial-time
approximation schemes [6]. Unfortunately, the error estimates for these heuristics cannot
be transformed into bounds for Moving-Target TSP with Resupply and multiple pursuers,
because a multiplicative factor corresponds to the exponent in such transformations. A tour
in which the next available pursuer is assigned to the next target from the list (to which no
pursuer has yet been assigned) is calléstaour.

Theorem 15. Letd; /v; =t be the same for all targets, ..., s,. Then the makespan and
the total time of the list tour are at mostax—1,..,(1+ v;)/(1 — v;) times the optimal
makespan and total time, respectively.
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Proof. The list tour is obviously optimal if the number of pursuérg at least as large
as the number of targets We therefore assume thlat< n, and normalize time so that
t=di/vi =1.

Let P =[]/_,u;. By Lemma 13, the total time and makespan of an optimal tour with
k pursuers is at leasipt_total > k(P¥/* — 1) andopt make> PY/* — 1, respectively. Let
P; = ]_[ie,/_ u;, j =1,...,k, wherel; are the indices of targets interceptedfily pursuer
in the list tour. LetP, = ma>(j‘.:l P; and letast be the time when théth pursuer starts
chasing its last targefast. We then haveP; /ujast— 1 = fast:

Since in the list tourll pursuers are chasing targets befpg we haveP; — 1> fiast
andP; > P /ujastfor j #1. This yields:

. - P 1k
last<MiNTmMiNP;, — ¢ — 1< P75 =1
J#l Ulast

Thus, the list tour makespéist_makeis at mosiist_ make= P, — 1< PY* . yjat— 1, and
the makespan approximation ratio is at most:

i 1
list_make PYK ypagi— 1 Pk — Uast -

= Ulast* Ulast
opt make = PLk_1 last < Ulast

a:
Pk —1

Similarly, the list tour total timdist_total is at mostlist_total < k(ma%;:l P, -1 =
k - P, — k and the total time approximation ratio is at most:

list_total _ k- (PY/K - ujast— 1)
opt total = k(PVk—1)

SlUlast O

This theorem implies, for example, that if the speed of any target is at most half the
speed of pursuer, then the list tour interception order has an approximation ratio of 3.

4.2. Targets moving with equal speed

In the multiple pursuer case where all targets have the same spaedcan efficiently
compute an optimal solution. Similarly to the method outlined above, we order the targets
by increasing value of theif; /v;, but sincev; = v is the same for all targets, this reduces
to ordering the targets by their initial distance from the origin. Thus, the following natural
strategy suffices: at the time when a pursuer resupplies at the origin, send that pursuer to
intercept the next closest target to the origin. We call the resulting tour “CLOSEST,” and
we prove several lemmas which help establish the optimality of this tour.

While Lemma 12 is a general result which is applicable when targets may have different
speeds, it has an important corollary when the speeds of all targets are the same, and
thusu; becomes constant for all Using this observation and reformulating the result
of Lemma 12 using summation notation, we obtain the following corollary.

Lemma 16. The tour cost for a single pursuer to interceptargetss; all having the same
speet, is T, =Y ! 4t -u" " whereu = (1+v)/(1—v) andy; =2-d; /(1 —v) (1 is the
time for a pursuer to reach target if it intercepted that target fir3t
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Proof. SinceTp =0 and7; = T;_1 - u + t;, we obtainTy = r1. We will prove the lemma
inductively. Using Lemma 12, we obtain:

n—1 n
T, = nl‘u+tn:<zti‘unl)‘u+tn:Zti'unl' o
i=1 i=1

In the rest of this section we derive properties of solutions yielded by this algorithm. We
then use Lemma 16 to show that swapping some of the targets between pursuers will result
in tours of equal total time. Finally, we show that any optimal tour can be transformed
by such swaps into the tour produced by our algorithm, which implies that our algorithm
always produces optimal solutions. We begin by proving the following lemma.

Lemma 17. Given a pair of targets which are intercepted by different pursyaitfhaving

the same speddsuch that each pursuer has an equal number of targets left to pursue
after intercepting them, these targets may be swapped between the two p(irsuerach
pursuer may chase its counterpart’s target instead of its Jowuhile keeping the total
required time the same.

Proof. For simplicity, we reorder the targets of each pursuer in their reverse interception
order and denote them, s, ..., s,. As in the proof of Lemma 12, let be the time
required to intercept target and return to base, if a pursuer were to intercept that target
first.

The cost of the tour for each pursuer to intercepargets was proven in Lemma 12 to
bety +12-u+---+1, - u"1, where the constant only depends on the velocity of the
pursuer relative to the targets. Thus, we may swap the targefsany two pursuers, and
the total time for all pursuers will still remain the samex

Finally, we prove the following theorem.

Theorem 18. The tour CLOSEST is an optimal tour for Moving-Target TSP with Resupply
and multiple pursuergall having the same spegdwhere all targets have equal speeds.

Proof. Let each ofGy,...,G, (wherem = [n/k]) be a group ofk targets, each
intercepted by one of thie pursuers, such that after its interception there are exaetly
targets remaining to be pursued for that pursuer. In particular, the first gigw@onsists
of targets which were intercepted first, and the last gréypmay be “underfilled” if the
number of targets is not a multiple &f By Lemma 17, swapping targets within each
groupgG; results in tours of the same total time. We need to show that one such tour is the
CLOSEST tour.

Without loss of generality, we may assume that all targets begin with a different initial
distance from the origin. It is sufficient to show that for any two targete G; and
sj» € Giy1, we haved; < dj. By Theorem 7, we know that in an optimal tour for a single
pursuer, we should intercept all targets in nondecreasing order of their datigsbut in
this case, all of the;’s are identical. Therefore, in any optimal tour, each pursuer must
intercept the targets in nondecreasing order of their original disténfrem the origin.
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In any optimal tour, where; ands; are intercepted by the same pursuer, the target
intercepted before the targst, and thereford; <d;. O

5. Conclusion and futureresearch

We formulated a Moving-Target version of the classical Traveling Salesman Problem,
and provided the first heuristics and performance bounds for this problem and for other
time-dependent variants. Topics for future research include providing approximation
algorithms for more general variants of Moving-Target TSP (e.g., where targets are
moving with nonzero accelerations, and/or along nonlinear paths). Also, it would be
interesting to generalize our results for Moving-Target TSP with Resupply to cases when
each pursuer may intercept multiple targets before requiring resupply. Alternatively, any
nonapproximability results for such cases would be of interest as well.

Finally, while our formulations in this paper focused on minimizing the tttaé of
a tour, it would also be of interest to explore the analogous problem variants where the
goal is to instead minimize the totdistancetraveled by the pursuer(s). While for classical
(stationary target) TSP these two goals of minimizing travel time vs. distance traveled are
equivalent, for Moving-Target TSP these two objectives are very different, each leading
to distinct properties, strategies, and results (e.g., when minimizing the total distance
objective, the No-Waiting Lemma does not apply, as there are counter-example instances
where waiting is actually beneficial).
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