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Abstract

Previous literature on the Traveling Salesman Problem (TSP) assumed that the sites to be
are stationary. Motivated by practical applications, we introduce a time-dependent genera
of TSP which we call Moving-Target TSP, where a pursuer must intercept in minimum time
of targets which move with constant velocities. We propose approximate and exact algorith
several natural variants of Moving-Target TSP.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

The classical Traveling Salesman Problem (TSP) has been studied extensive
many TSP heuristics have been proposed over the years (see surveys such as
Previous works on TSP have assumed that the cities/targets to be visited are sta
However, several practical scenarios give rise to TSP instances where the target
visited are themselves in motion (e.g., when a supply ship resupplies patrolling
or when an aircraft must intercept a number of mobile ground units). In this pape
introduce a generalization of the Traveling Salesman Problem where targets can
with constant velocities, formulated as follows:
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The moving-target traveling salesman problem: Given a setS = {s1, . . . , sn} of targets,
eachsi moving at constant velocity�vi from an initial positionpi , and given apursuer
starting at the origin and having maximum speedv > |�vi |, find the fastest tour startin
(and ending) at the origin, which intercepts all targets.

Related formulations considertime-dependentversions of the Vehicle Routing Problem
where one or more trucks whose speeds vary with time-of-day (due to traffic conge
serve customers at fixed locations [9]. These works give exponential-time algor
based on a mixed integer linear programming formulation and dynamic program
[9,10,12]. One major drawback of such general formulations is that they do
simultaneously yield both efficient andprovably bounded-cost heuristics (e.g., t
restricted dynamic programming heuristic of [10] is efficient, but is not provably boun
cost). These formulations generalize TSP without the triangle inequality, which a
no approximation bounds unless P= NP [2]. Applicability of dynamic programming t
related formulations was also considered in [7]. The approximation complexity of Mo
Target TSP was studied in [4], where it was shown that Moving-Target TSP cann
approximated better than by a factor of 2Ω(

√
n) times optimal within polynomial time

unless P=NP.
In this paper, we propose and address several natural variants of Moving-Targe

In Section 2, we show that unlike the classical TSP, the restriction of Moving-T
TSP to one dimension (i.e., where all points move on a line) is not trivial, and we
an exactO(n2)-time algorithm. For Moving-Target TSP instances where the numb
moving targets is sufficiently small, we develop a(1+α)-approximation algorithm, wher
α denotes the approximation ratio of the best classical TSP heuristic. It was sho
[4] that the(2− ε)-approximation is NP-hard even in the case when only two target
moving. Thus, combining our approach with the polynomial-time approximation sch1

for Euclidean TSP [1] yields almost optimal(2+ε)-approximation algorithms for Moving
Target TSP when enough of the targets are stationary.

Next, in Section 3, we shift our attention to selected variants of Moving-Target
with Resupply,2 where the pursuer must return to the origin for resupply after interce
each target, as shown in Fig. 1(c). For these variants, we assume that all targets are
on a line through the origin away from (or towards) the origin. We present a surpris
simple exact algorithm for Moving-Target TSP when the targets approaching the orig
either far away or slow. We also consider the case when all targets are moving towa
origin, but with the additional requirement that the pursuer must intercept all of the ta
before they reach the origin. We show that such a tour always exists and that no tour
satisfies the constraints is more than twice as long as the optimal tour.

1 The existence of a polynomial-time approximation scheme implies that for anyε > 0, there is a polynomial
time algorithm with an approximation ratio of at most 1+ ε.

2 Our formulation corresponds to a dynamic version of the Vehicle Routing Problem, defined as fo
Given a set ofn targets, each withdemandci moving at a constant velocity�vi from an initial positionpi for
i = 1, . . . , n, and a set ofk pursuers initially located at the origin and having maximum speedVj andsupplyCj

for j = 1, . . . , k, find a tour for each pursuer such that the demand of each target is satisfied and the total
vehicles in operation is minimized.
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Fig. 1. (a) An instance of Moving-Target TSP. (b) A shortest-time tour (dashed line) which begins at the
(flag) and intercepts all of the targets. (c) In Moving-Target TSP with Resupply, the pursuer must return
origin after intercepting each target (an optimal interception schedule is shown).

Finally, in Section 4, we generalize Moving-Target TSP with Resupply to allow mul
pursuers which all move with the same maximum speed. This problem also can be v
as a dynamic generalization of multiprocessor scheduling where the processin
depends on the starting time of processing a job. We show that the problem is NP
which is a nontrivial result because our formulation has a total time objective whi
different from the standard “makespan” and minimum latency objectives. We also de
an approximation algorithm for the case when, projecting back in time, all targets w
have left the origin simultaneously. Finally, we present an exact algorithm for the case
all targets have the same speed, and conclude in Section 5 with future research dir
A preliminary version of this research was presented in [5].

2. Special instances of Moving-Target TSP

Since unrestricted Moving-Target TSP is NP-hard,3 and because nonoptimal tours c
have unbounded error, we consider special variants where Moving-Target TSP is so
either exactly or to within a reasonable approximation ratio. In this section, we con
two variants:

(1) when targets are confined to a single line, and
(2) when the number of moving targets is small.

The following lemma is central to our analyses of Moving-Target TSP and its vari

Lemma 1 (The No-Waiting Lemma).In any optimal Moving-Target TSP tour, the pursu
must always move at maximum speed.

3 Note that classical TSP is a special case of Moving-Target TSP where all the velocities equal zero.
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Proof. Assume towards contradiction that we have an optimal tourT that involves a
pursuer moving slower than the maximum speed. This is equivalent to letting the p
wait in place for some time periods and then move at maximum speed during other p
However, a tour that involves any waiting cannot be optimal, which can be seen as fo
Let s be the first target to be intercepted after the first waiting period, and let the pu
intercept the targets at positionp and timet . If instead, the pursuer first interceptss and
then proceeds to the pointp, then it will reachp earlier thant , since the pursuer is fast
than the targets. Afterwards, the pursuer could wait atp until time t and continue along th
original tourT . Thus, the pursuer can postpone the waiting period until after interce
s. Repeatedly applying this argument, the waiting periods can all be postponed unt
the end of the tour. But waiting after the end of the tour is unnecessary, and thus w
obtain a tour which is faster than the supposedly optimal tourT , a contradiction. ✷

Lemma 1 allows us to define a tour purely by the sequence of intercepted targets
order of interception by the pursuer. Furthermore, we may consider only tours in whi
pursuer always moves with maximum speed towards intercepting the next target.

2.1. Moving-Target TSP in one dimension

In this subsection, we consider Moving-Target TSP where the pursuer and all targ
confined to a single line, and we develop anO(n2) exact algorithm for this variant base
on dynamic programming. To see that the one-dimensional constraint does not tri
the problem, consider the Moving-Target generalization of the exact algorithm for the
dimensional classic TSP. First, compute the cost of the tour which intercepts all targ
the left of the origin and then intercepts all targets to the right of the origin. Next, com
the cost of the other “natural” tour which intercepts all targets to the right of the origin
then intercepts all targets to the left of the origin. Finally, from this pair of possible t
choose the one with the least cost.

Unfortunately, this simple heuristic has unbounded error, as can be illustrated w
following example. Consider the case when there are four targets, two of them on
side of the origin, extremely close to the origin but moving away from the origin
quickly, while the other two targets are on either side of the origin, but much further fro
and are so slow as to be almost stationary. If we intercept the two fast targets immed
then we spend almost no time in chasing them. However, if we first intercept all o
targets on one side of the origin, then we will later be forced to spend an arbitrarily
time chasing the remaining fast target on the other side of the origin. Thus, the pursu
repeatedly change direction in an optimal tour. The following lemma bounds the nu
of turning points in an optimal tour.

Lemma 2. In an optimal tour for one-dimensional Moving-Target TSP, the pursuer ca
change direction until it intercepts the fastest target ahead of it.

Proof. Suppose towards contradiction that in an optimal tourT , the pursuer change
direction at timet before intercepting the fastest targets ahead of it. There exists som
sufficiently smallδ > 0 such that, in the time period betweent − δ andt + δ, the pursuer
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changes direction only at timet . Consider an alternative tour where the pursuer stop
time t−δ, waits without moving until timet+δ, and then continues along the original to

Note that in both the original and the alternative tours, the pursuer is:

(1) at the same pointP by time t + δ; and
(2) has always been between the pointP and the targets during the time period

(t − δ, t + δ).

All the targets that the pursuer would intercept in the time period betweent − δ andt + δ

are betweenP and the targets and are moving slower thans, so therefore they canno
passs. In essence, the turning of the pursuer could not have decreased the total tou
even if it proceeds to intercept targets on the other side of the starting point, because
the time that it wasnotchasing the fastest target on one side, it was only intercepting ta
that it must eventually intercept on the way to the fastest targets anyway. In fact, the time
spent not chasing the fastest target is thus equivalent to time spent waiting in pla
the No-Waiting Lemma (Lemma 1), the original tour is therefore not optimal, becaus
equivalent to a tour with a waiting period.✷

To fully define a tour, we need to know only the points when the pursuer cha
direction, and by Lemma 2, it may happen only when the pursuer intercepts the
target ahead of it. Thus, we may view a tour as a sequence of snapshots at the m
when the pursuer intercepts the fastest target which was then ahead of it. For an
snapshot, the information relevant to our algorithm can be represented as astate(sk, sf ),
wheresk is the target just intercepted, andsf is the fastest target on the other side.
tours have the same initial stateA0 and the same final stateAfinal. Note that neitherA0
norAfinal have corresponding targetssk or sf . States have a time function associated w
them, denotedt (A), representing the shortest time in which this state can be achi
Naturally, we assignt (A0)= 0 for the initial state.

Note that Lemma 2 implies that there are at most two possible transitions from
stateA = (sk, sf ) at assigned timet (A) (see Fig. 2). These two transitions represent
two possible choices of the next target to be intercepted, either the fastest to the lef
pursuer or the fastest to the right of the pursuer. The time of each transitionτ , denoted
t (τ ), is the time necessary for the pursuer to intercept the corresponding target (the
on the left or on the right) from the position of targetsk at timet (A). Note that the stat
(sk, sf ) does not have transitions into it when the corresponding targetsk or sf would be
intercepted (i.e., overtaken) by a faster target behind it before the pursuer can reachsk .

Our algorithm works as follows (see Fig. 3). In the preprocessing step of our algo
we partition the targets into two lists,Left andRight (according to whether targets are
the left or the right side of the origin, respectively). Then, we sort the lists according to
increasing order of their speeds. We traverse both sorted lists and delete any target f
list which is closer to the origin than its predecessor. The targets which remain in the
lists are the only targets for which the pursuer may change direction after intercepting

Let G= (V ,E) be the graph with the nodesV corresponding to states, and the arcsE

corresponding to transitions. Each tour in this graph corresponds to a path from the
state to the final state and vice versa. Note that the graphG is acyclic. Indeed, the pursu
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Fig. 2. An instance of one-dimensional Moving-Target TSP (the flag represents the origin). On the rig
show the two possible transitionsτleft andτright from a stateA= (sk, sf ) which is shown in (a). The transitio
τleft corresponds to intercepting the target to the left of the pursuer. It transforms the stateA into the stateAleft,
depicted in (b). Alternatively, the transitionτright transformsA into the stateAright shown in (c).

cannot return to the state in which it has already been before because it cannot in
the same target twice. Our algorithm can now be viewed as a simple generalization
algorithm for finding the shortest path in the acyclic graphG where the weight of an arcτ
(the time necessary to perform transitionτ ) depends on the weight of the shortest p
from the initial state to the beginning state ofτ . The runtime of our algorithm isO(V +E)

or O(n2).
In order to considerall possible paths, our algorithm traverses the states in a topolo

order, where no transition is allowed to go backwards with respect to this order. T
accomplished by sorting (and later traversing) the states in ascending order of the
the indices of the targetssk andsf (for each stateA= (sk, sf )) in theLeft andRight lists.
When we traverse a given stateA in the algorithm, we do one of three things:

(1) if the state has no transitions into it, we proceed to the next state in the list;
(2) if the pursuer has intercepted all of the targets on one side, we make a transitio

the final stateAfinal; or
(3) we make two transitions which correspond to sending the pursuer after eith

fastest target on the left or the fastest target on the right.

We define the time of a stateB ast (B)=min{t (A)+ t (τ ) | τ :A→B}, the time required
for the shortest sequence of transitions from stateA0 to stateB.

Once we have visited each of the states, we can traverse the transitions backwar
the final stateAfinal back to the initial stateA0. This gives us the list of states whic
describes the turning points for the pursuer in an optimal tour. For each pair of tu
points, we find the subset of targets which are intercepted between them. Once we
are partitioned into subsets, we sort the targets inside each subset by their inter
times. Finally, we merge the sorted subsets into a combined interception order, yield
optimal solution. This algorithm is summarized formally in Fig. 3.
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Exact Algorithm for One-Dimensional Moving-Target TSP
Input: The initial positions and velocities ofn targets, and the maximum pursuer speed
Output: A time-optimal tour intercepting all targets, and returning back to the origin

Preprocessing
Partition the list of targets into the targets on the left side and the right side of the origin
Sort the targets on the left into listLeft in order of nonincreasing speeds
Sort the targets on the right into listRight in order of nonincreasing speeds
Delete targets fromLeft which are closer to the origin than faster targets in this list
Delete targets fromRightwhich are closer to the origin than faster targets in this same list
If Left or Right is emptythen

Calculate the time required to intercept all remaining targets; and
Go to the postprocessing step

Main algorithm
Let A0 be the start state
Let Afinal be the final state
STATEis the sorted list of states in order of nondecreasing sum of the indices

of each state’s targets in listsLeft andRight
PlaceA0 first in the listSTATE
PlaceAfinal last in the listSTATE
t (A)←∞ for any stateA 
=A0
t (A0)← 0
current← 0

While current � the number of states inSTATEdo
A= STATE[current]
If there are no transitions intoA then

Incrementcurrent and jump back to the beginning of the while loop
If for stateA, all remaining targets are on one side of the originthen

t (τfinal)← time required to intercept the remaining targets (and return to the origin)
If t (A)+ t (τfinal) < t(Afinal) then

t (Afinal)← t (A)+ t (τfinal)

Else
Calculate the two transitionsτleft andτright from stateA using listsLeft andRight,
(see Fig. 2)
If t (A)+ t (τleft) < t(Aleft) then

t (Aleft)← t (A)+ t (τleft)

If t (A)+ t (τright) < t(Aright) then
t (Aright)← t (A)+ t (τright)

Incrementcurrent

OUTPUT← the reverse list of states fromAfinal back toA0

Postprocessing
For each pair of consecutive states inOUTPUT

Calculate which targets are intercepted between the state pair
Sort the intercepted targets by the interception order

Output the concatenated sorted lists of targets

Fig. 3. An exact algorithm for Moving-Target TSP in one dimension.
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Fig. 4. Rather than proceed to stateB at time t (A) along the transitionτ ′ (lower solid line), the pursuer ca
instead proceed (along the dashed line) to positionp where targetk will be at timeOPT(A), arriving there earlier
than timeOPT(A) (dotted line). Then it can wait (shaded region) and proceed along transitionτ .

Theorem 3. The above algorithm for one-dimensional Moving-Target TSP finds an op
tour.

Proof. When the algorithm given in Fig. 3 terminates, all transitions lead to states
defined times. By Lemmas 1 and 2, this will guarantee that the time will be defined f
states which may be reached by any optimal tour. Our strategy is to prove that no to
reach stateB earlier thant (B), as defined in our algorithm.

Assume towards contradiction thatB is the first state in an optimal tour which w
reached in timet (B) > OPT(B). The stateB cannot be the initial stateA0, since
t (A0)= 0. Let the stateA precede the stateB in the optimal tour, and letτ be the transition
from A to B (see Fig. 4). SinceB is the first state for whicht (B) < OPT(B), andA

precedesB, then we havet (A) � OPT(A). Our algorithm guarantees that there is a t
that reaches the stateA= (sk, sf ) in time t (A).

If t (A)=OPT(A), thent (B) � OPT(B) since our algorithm finds the fastest transiti
fromA toB. Otherwise, ift (A) < OPT(A), rather than proceed to stateB at timet (A), the
pursuer can instead proceed to the positionp of the targetsk at timeOPT(A), and arrive
there earlier than timeOPT(A); this is true because the pursuer is faster than the targsk .
The pursuer can wait at positionp until timeOPT(A), and then proceed along the optim
tour, reaching the stateB at timeOPT(B) (see Fig. 4).

Consider what would happen if, after interceptingsk at time t (A), the pursuer had
proceeded directly to stateB along an alternative transitionτ ′. If the pursuer had followed
this alternative strategy (instead of going indirectly through positionp as described above
then it would have arrived at stateB at time no later thanOPT(B). Thus,OPT(B) cannot
be less thant (A)+ t (τ ′), which in turn cannot be less thant (B), a contradiction. ✷
Theorem 4. The above algorithm for one-dimensional Moving-Target TSP runs inO(n2)

time forn targets.

Proof. In the preprocessing phase, the partitioning and sorting requiresO(n logn) time.
Deleting targets from listsLeftandRightrequires onlyO(n) time. The entire preprocessin
phase therefore runs withinO(n logn) time.

The analysis of the main algorithm is as follows. First, referring to Fig. 3, we obs
that there areO(n2) states to traverse, and that we only traverse each state only once
note that transitions can only go from earlier states in the listSTATEto later states. This i
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because any transition leads from a state whose targets have smaller indices in listsLeftand
Right, to states with larger indices. Thus, by the time we traverse a state in our algo
we have already considered all possible optimal paths to this state. Therefore, w
to traverse each of theO(n2) states only once. When traversing a state, we must trav
at most 2 transitions from that state. Lemma 5 below concludes the proof that the
algorithm can be completed inO(n2) time.

Finally, we must show that the postprocessing can also be accomplished withinO(n2)

time. First, note that finding a single subset of targets intercepted along a transition re
O(n) time, because we must check each target to determine if it was intercepted.
there may beO(n) transitions in an optimal tour, we may need to findO(n) subsets
and thus the partitioning of the targets into subsets may requireO(n2) time. Sorting the
individual subsets and combining them into an optimal target interception order ta
mostO(n logn) time. Thus, the postprocessing step requires a total ofO(n2) time. Since
preprocessing, postprocessing, and the main algorithm can all be accomplished
O(n2) time, the runtime of our overall algorithm for the one-dimensional Moving-Ta
TSP is bounded byO(n2). ✷

Now we complete the proof of Theorem 4 by proving the following lemma.

Lemma 5. All transitions can be traversed in constant amortized time per transition.

Proof. In order to compute both of the possible transitions from a stateA= (sk, sf ), we
need to determine the fastest remaining targets to the left and to the right of the c
targetsk at timet (sk, sf ), the time of state(sk, sf ). We already know the fastest target
the opposite side of the origin. Therefore, we only need to compute the fastest targe
same side of the origin as the just-intercepted targetsk .

Without loss of generality, letsk ∈ Left. Let next(sk, sf ) be the fastest target to th
left of the pursuer at state(sk, sf ). To prove the lemma, it is sufficient to find th
set Next(sk) = {next(sk, sf ) | sf ∈ Right} in time O(n). Our algorithm is based on th
following claim.

Claim. Let sf ′ be later thansf in the list Right. Then next(sk, sf ′) occurs later than
next(sk, sf ) in the list Left.

Proof. By time t (sk, sf ′), the targetsf is intercepted, since otherwisesf would be the
fastest target on the right. Timet (sk, sf ) is the minimumtime required to reach sta
(sk, sf ), thereforet (sk, sf ′) � t (sk, sf ). This implies that the targetsk intercepts at leas
as many targets fromLeft by time t (sk, sf ′) as it intercepts by timet (sk, sf ). Finally,
next(sk, sf ′) is no faster and no closer to the origin thannext(sk, sf ). ✷

We can now finish the proof of Lemma 5. All the targets inNext(sk) occur later
than sk in the list Left. Thus, for the earliest stateA1 in Next(sk), we find next(A1) by
traversingLeft starting fromsk . The above claim implies that for the next stateA2, we can
traverseLeft starting fromnext(A1), and inductively, for stateAi we can traverseLeft from
next(Ai−1). Thus, we need to traverse the listLeft only once. Traversing a targetsl in Left
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for stateAi takes constant time: we need to check whether by timet (Ai) the targetsk has
already intercepted (i.e., overran) targetsl or not, by comparing the speeds and the orig
positions ofsk andsl .

We have implemented this algorithm using the C++ programming language. Com
putational benchmarks against an exhaustive search algorithm empirically confirm
correctness, as well as its quadratic runtime.

2.2. Heuristics for few moving targets

In this subsection, we consider Moving-Target TSP when only some of the targe
moving (while the majority are stationary). From among the many existing approxim
algorithms for classical (stationary) TSP [8], choose one such heuristic, having p
mance boundα. Using this algorithm for stationary targets, we now show how to cons
an efficient algorithm having a performance bound of 1+ α when the number of movin
targets is sufficiently small.

Theorem 6. Moving-Target TSP where at mostO(logn/(log logn)) of the targets are
moving can be approximated in polynomial time with performance bound1+ α, where
α is a performance bound of an arbitrary classical TSP heuristic.

Proof. Our approach consists of two parts. First, the pursuer intercepts all moving t
in optimal time and returns to the origin. Secondly, the pursuer intercepts the stat
targets using any chosen approximation algorithm.

Since the pursuer first intercepts all moving targets optimally, the time requir
intercept them cannot be longer than the time of an optimal tour over both the stat
and the moving targets. The chosen stationary target heuristic retains its bou
intercepting the remaining (stationary) targets. Thus, we may sum the bounds for th
tours (over the moving targets and the stationary targets, respectively) to obtain
performance bound of 1+ α for this combined algorithm.

An optimal tour which interceptsk = O(1) · logn/(log logn) moving targets can b
found efficiently using exhaustive search of all possible tours over the moving targe
order to find the optimum, we need to checkk!� kk possible tours. The logarithm of th
quantity is at most:

logkk =O(1) · logn

log logn
· log

(
O(1) · logn

log logn

)
� O(1) · logn.

Thuskk = exp(O(1) · logn)= nO(1), and an exhaustive enumeration of all thekk possible
tours over the moving targets can therefore be achieved within polynomial time.✷

Figure 5 illustrates this approach with an example.

3. Moving-Target TSP with Resupply after intercepts

In this section we consider Moving-Target TSP where a single pursuer must ret
the origin after intercepting each target. We call this problemMoving-Target TSP With
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Fig. 5. (a) In this example, we have two moving targets and the rest are stationary. (b) First, we find an optim
for the moving targets by trying all permutations. (c) Then, we use a classical TSP algorithm with perfor
boundα for intercepting the stationary targets. (d) Finally, we combine both tours into a single tour ha
performance bound of 1+ α.

Resupply. In order to simplify the analysis, we assume that the targets all move on
lines passing through the origin, i.e., either directly towards or away from the origin. W
targets are either (1) slow, (2) far from the origin, or (3) already moving along a
containing the origin, this model provides a good approximation since the projectio
target velocities onto radial lines through the origin are approximately constant.

We define avalid tour to be a tour where no target passes near (or through) the o
without first being intercepted by the pursuer, and thus the velocities of all targets
be considered to be fixed with respect to the origin. Note that the No-Waiting Le
(Lemma 1) enables us to still assume that the pursuer always moves with maximum
towards intercepting the next target. In Section 3.1, we restrict the problem by consi
the scenario when the shortest tour is valid. In other words, no target will pass the
for a “sufficiently” long time (we will later elaborate on how long that should be).
show that there is a simple way to determine an optimal target interception order fo
scenario. It is worthwhile to note that in this case, an optimal order is quite similar t
optimal schedule for minimizing a weighted completion time on a single machine.

We consider a similar scenario in Section 3.2, except that we introduce a new con
namely that the pursuer must intercept each target before it reaches the origin (i.e., t
mustbe valid). We formulate the problem in terms of “defending” the origin from
(incoming) targets, and show that there always exists a valid tour regardless of the n
of targets. Then, we prove that the longest tour can be at most only twice the length
shortest valid tour.
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3.1. The case when targets never reach the origin

Let di be the initial distance between the targetsi and the origin, i.e.,di = |pi | wherepi

is the position ofsi in the plane. If the target is moving towards the origin, then we de
vi to be negative, otherwisevi is positive (see Fig. 6).

First, we will determine an optimal intercept order for the receding targets, if a
the targets move away from the origin. Next, we will determine the order for interce
targets when all targets move towards the origin. Finally, under certain conditions, w
combine the two orderings to obtain a single optimal ordering for a mix of approa
and receding targets.

Intuitively, when all targets move away from the origin, we would like to interc
the closest receding target early, because spending time chasing a more distant ta
enable all of the other receding targets to move even further away. Also, we woul
to intercept the fastest target earlier, because the longer we postpone this, the lon
further we would have to chase it later in order to catch it. Thus, it would seem th
should strive to simultaneously minimize the distance-to-intercept while also maxim
the target’s velocity when choosing the interception order for targets which move
from the origin.

Our solution for this variant of Moving-Target TSP is to intercept targets in increa
order of their ratiosdi/vi . Note, that projecting backward in time,di/vi is the amount of
time since the target left (or passed through) the origin. Thus, the ratiodi/vi corresponds
to what we refer to as theageof a target. The following theorem proves that an optim
algorithm must intercept the targets in nondecreasing order of their ages (i.e., yo
targets should be intercepted first).

Theorem 7. In Moving-Target TSP with Resupply where all targets move directly a
from the origin, an optimal tour intercepts the targets in nondecreasing order of
respective ratiosdi/vi .

Proof. First, we show that the theorem is true when an instance of Moving-Targe
with Resupply contains only two targets. Lett1,2 be the time required to intercepts1 and
then intercepts2. Similarly, lett2,1 be the time required to intercepts2 and then intercepts1.
We assume thats1 is younger (the other case is symmetrical). We would like to show
t1,2 � t2,1. The time required for the pursuer to intercepts1 is 2 · d1/(v − v1). Afterwards,

Fig. 6. Two targets,s1 ands2, are moving directly away from the origin (i.e., on lines passing through the or
at positive velocitiesv1 andv2, starting at distancesd1 andd2. A third targets3 approaches the origin, and thu
its velocity v3 is negative. The pursuer must return to the origin after intercepting each target.
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interceptings2 will take time 2· (d2+ (2 · d1/(v− v1)) · v2)/(v− v2). Thus, the total time
to intercepts1 first and then intercepts2 is the sum:

t1,2= 2 ·
(

d1

v − v1

)
+ 2 ·

(
d2+ (2 · d1/(v − v1)) · v2

v − v2

)
.

Algebraic manipulation yields:

t1,2− t2,1= 4 · d1 · v2− 4 · d2 · v1

(v− v1) · (v − v2)
.

If s1 is younger thans2, thend1/v1 � d2/v2 and d1 · v2 � d2 · v1. This proves tha
t1,2 � t2,1.

Given that Theorem 7 is true for two targets, we now show that it is also tru
any number of targets. Assume towards contradiction that in an optimal tour, the p
intercepts two consecutive targets, firstsi and thensj , in nonincreasing order of their age
i.e., di/vi � dj/vj . First interceptingsi and then interceptingsj will require no less time
than intercepting them in the reverse order, namelysj first and thensi . Thus, if the pursue
would alternatively intercept these two targetssi and sj in the reverse order, it woul
have time to wait at the origin right after intercepting the second target, and then co
the rest of the original tour using the original interception order. But by the No-Wa
Lemma (Lemma 1), this means that the original (presumably optimal) tour is not op
since it can be improved. Thus, all pairs of consecutive targets in an optimal tour m
intercepted in nondecreasing order of theirdi/vi ratios. ✷

Next, we analyze an analogous variant where all targets are approaching the origi
variant is essentially the time reversal of the previous variant where all targets are re
away from the origin. The concept of the “age” of a target, however, is replaced wit
analogous concept of the “dangerousness” of a target. The problem of intercepting
moving towards the origin can thus be reformulated as requiring a pursuer todefendthe
origin (e.g., against incoming missiles or other threats).

The essential difference between the time reversal of the resupply variant wh
targets move away from the origin and the case when all targets move towards the
is that in the latter scenario a target may pass through the origin and then move awa
it. This possibility makes the problem quite complicated, because it causes an im
change in direction which is absent in the first variant. We therefore consider only
tours where no targets pass through the origin before the pursuer intercepts them.

Lemma 8. Let all targets move towards the origin, and letT be the tour which intercept
targets in nonincreasing order of their respective ratiosdi/(−vi). If T is a valid tour, then
it is an optimal tour for Moving-Target TSP with Resupply.

Proof. The proof is the same as for Lemma 7. Simply making the velocities of both ta
negative does not change the inequalities. An optimal order still intercepts the targ
nondecreasing order of their ratiosdi/vi , which means that we should intercept target
the order of least dangerous to most dangerous if all targets are approaching the orig✷
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Note that for a mixture of approaching and receding targets, we should interce
receding targets first. The longer we wait to intercept these targets, the further awa
will be able to travel before we eventually intercept them. Targets that move towar
origin should be allowed as much time as possible to come even closer to the
Therefore, if we assume that no targets will pass through the origin while we are pu
the targets that move away from the origin, then we should first intercept targets th
moving away from the origin, and then intercept targets that are moving towards the
Further, if we can intercept the receding targets and still intercept the approaching
in increasing order of their dangerousness before any target crosses the origin, t
optimal strategy for intercepting all of the targets is to first intercept the receding targ
order of increasing age and then to intercept the approaching targets in order of inc
dangerousness. This strategy is formalized in the following theorem.

Theorem 9. Let T be the tour which first intercepts all the targets which move away f
the origin in nondecreasing order of their ratiosdi/vi , and then intercepts the targe
which move towards the origin in nonincreasing order of their ratiosdi/(−vi). If T is a
valid tour, then it is an optimal tour for Moving-Target TSP with Resupply.

3.2. “Defending” the origin against incoming targets

In this subsection, we consider Moving-Target TSP when all the targets approa
origin. We first show that if we intercept targets in order of most dangerous to
dangerous, we will intercept all of the targets before any of them reach the origin. Ne
observe that from among all tours which intercept all targets before they reach the
the tour that intercepts targets in order of most dangerous to least dangerous is the
Finally, we will show that even this longest tour is never longer than twice an optima
which intercepts (in the best possible order) all the targets before they reach the orig

Although we can prove that the strategy of intercepting targets in order of
dangerous to most dangerous is optimal when no targets intercept the origin, it is sti
whether there is an efficient algorithm for determining an optimal intercept order
some targets may pass through the origin before being intercepted. However, we ca
that there always exists a tour that intercepts all the targets before they reach the or

Theorem 10. A tour which intercepts the targets in nondecreasing order ofdi/(−vi) is the
slowest(i.e., worst) valid tour.

Proof. First, we will show that the slowest tour for this problem variant occurs when
intercept the targets in order of most dangerous to least dangerous. The proof is sim
that of Lemma 7. We have shown that the optimal order to intercept two targets is t
intercept the least dangerous target and then intercept the most dangerous target.
at any point in the tour we intercept a less dangerous target before intercepting a
dangerous one, then we can swap the intercept order of these two targets and in
longer tour. When all targets are intercepted in order of most dangerous to least dan
no more such swaps to increase the time of the tour are then possible; therefore, suc
is the slowest possible tour.
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We now prove that this tour is valid. In such a tour, the pursuer intercepts the targ
order of most dangerous to least dangerous. After the pursuer intercepts the most da
target (i.e., the incoming target that will next reach the origin), the pursuer returns to o
Since the pursuer is faster than any target, it will return to the origin before the next
dangerous target can arrive. Then, the pursuer intercepts the next target before it
the origin, and so on. Given that the origin is a 0-size point, no target will reach it (th
targets may come arbitrarily close).✷

Lemma 8 and Theorem 10 lead to the obvious question: what is the shortes
tour? A natural strategy would be to always intercept the least dangerous target
intercepting that target would allow the most dangerous target to actually reach the
In this case, we should intercept the least dangerous target that we can intercept a
obtain a valid tour. Unfortunately, this simple strategy does not always yield an op
tour, as illustrated in the following example.

Consider the case when three targets,s1, s2, and s3 are moving towards the origin
Without loss of generality, let the targets be numbered in increasing order of
dangerousness (i.e., the least dangerous iss1 and the most dangerous iss3). Suppose tha
after interceptings1, the tour that proceeds to intercepts2 and thens3 is invalid. On the
other hand, interceptings2 and thens3 yields a valid tour, if the pursuer does not start w
interceptings1. According to the strategy above, the pursuer should intercept the ta
in the orders1, s3, s2. If s1 is a stationary target which is very close to the origin, th
the optimal tour instead starts withs2 ands3, and finishes withs1 because tour(s2, s3) is
faster than(s3, s2). Assume thats2 is very slow, and thats3 almost reaches the origin b
the time the pursuer returns to the origin after interceptings2. Then the pursuer will wast
considerable time chasings3 first. If s3 is almost as fast as the pursuer, then the tour(s3, s2)

will be about twice as long as the tour(s2, s3).
From the Moving-Target TSP instance described above, we see that there are in

of Moving-Target TSP for which the slowest tour may be up to twice as long as an op
tour. Interestingly, we can also prove that this bound is tight, i.e., no valid tour req
more than twice the time of an optimal valid tour, as follows.

Theorem 11. For Moving-Target TSP with Resupply, when all targets move toward
origin, no valid tour is more than twice as long as an optimal valid tour.

Proof. Enumerate the targets in order of least dangerous to most dangerous, and lT be
an optimal valid tour. The slowest valid tour intercepts targets in order of most to
dangerous (i.e.,sn, . . . , s1). We will show that the slowest tour can be no more than tw
the length of an optimal valid tourT , by iteratively transformingT into the slowest tour
Note that this transformation is equivalent to sorting, since an optimal tour can inte
targets in any order, and in the slowest order, the targets are sorted in decreasing
their indices.

We denote the tourT as a list of targets where the left-most target will be intercep
first and the right-most target will be intercepted last. Our transformation starts
the right-most target in the original optimal tourT and gradually moves to the lef
sorting all targets in decreasing order of their indices. In other words, at each s
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our transformation, the current targetsi and all targets to the left ofsi occupy the same
positions as in the tourT , while all of the targets to the right ofsi are already sorted i
decreasing order of their indices. The step itself consists of removing targetsi from the
current tour and inserting it into its proper position in the sorted list to the right.

Let ti be the time required to intercept the targetsi in the original optimal tourT .
We now show that each step of the transformation increases the total time of the t
at mostti . Note first that removing targetsi from the current tour cannot increase t
total time of the tour. Indeed, the pursuer may wait for timeti instead of intercepting th
targetsi . Inserting the targetsi into its proper place in the sorted list decreases the time
intercepting targets to the right of its new location, because they will be intercepted
i.e., when they will be closer to the origin. Similarly, the time to intercept the targetsi in its
new position is at mostti . Thus, the insertion operation can increase the total time o
tour by at mostti . Since each step of the transformation increases the cost of the touti
for all si , the final tour may be at most twice the original cost. Note that this transform
results in a valid tour, since

(i) the segment of the tour to the left of the new position of the targetsi is valid because
this segment has been valid originally, and

(ii) the segment of the tour to the right ofsi (includingsi ) is valid by Theorem 10. ✷
Note that the Theorem above enables a broad class of 2·OPT approximation heuristics

which operate by simply producing valid tours, and/or modifying such tours while kee
them valid. Any such approach is guaranteed by Theorem 11 to yield solutions that
worse than twice the optimal.

4. Multi-pursuer Moving-Target TSP with Resupply

In this section, we address a generalization of Moving-Target TSP with Resupply
there are multiple pursuers. This generalization can also be considered as a d
version of the Vehicle Routing and Multiprocessor Scheduling problems. We focu
the case when targets move directly away from the origin on lines passing throu
origin, and allk pursuers have the same top speed (normalized to 1). In the followin
subsections we will consider two special cases:

(1) where all the targets have the same age, and
(2) where all the targets have the same speed.

In the presence of multiple pursuers, Moving-Target TSP may have different
objectives. In the Vehicle Routing Problem, the typical objective has been to minimiz
total tour time, i.e., to minimize the sum over all pursuers for all time periods in which
pursuer is in operation.4 Following the multiprocessor scheduling regime where a com

4 We assume that each pursuer is in operation starting from timet = 0, until its final return to the origin.
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objective has been to minimize the overall jobmakespan, we analogously seek to minimiz
the time when the last pursuer finally returns to the origin.

Note that achieving the makespan objective may be computationally more difficul
the total time objective, since for stationary targets, minimizing the makespan is equ
to the NP-hard Multiprocessor Scheduling Problem, whereas the total time objec
invariant over all schedules. We will show that in the presence of moving target
problem of minimizing the total time also becomes NP-hard even in the case o
pursuers and where all targets are of the same age. On the other hand, we show th
all targets have the same speed, the total time can be minimized efficiently for any n
of pursuers. If all targets have the same age, we also estimate the list scheduling e
multiple pursuers.

Before considering multiple pursuer problem variants, we prove the following u
lemma.

Lemma 12. The total tour time for a single pursuer to interceptn targetssi having speeds
vi is Tn = Tn−1 · un + tn whereui = (1+ vi)/(1− vi) and ti = 2 · di/(1− vi) for any
i = 1, . . . , n and T0 = 0 (ti is the time for a pursuer to intercept targetsi if it chases it
first).

Proof. Let Ti be the total time of a tour which intercepts targetss1, . . . , si . The total time
of the tour which intercepts targetss1, . . . , si+1 is:

Ti+1= Ti + 2 · Ti · vi+1+ di+1

1− vi+1
= Ti ·

(
1+ 2 · vi+1

1− vi+1

)
+ ti+1.

Since 1+ 2 · vi+1/(1− vi+1)= ui+1, this yields:

Ti+1= Ti · ui+1+ ti+1. ✷
4.1. Targets with the same age

We start by applying Lemma 12 to the case of all targets having the same age.

Lemma 13. Let di/vi = t be the same for all targetss1, . . . , sn. For each targetsi , let
ui = (1+ vi)/(1− vi). The time required to intercept targetss1, . . . , sp with one pursuer
is t · (∏p

i=1ui − 1).

Proof. Let ti denote the time to intercept the targetsi if the pursuer chasessi first, and
expressti in terms of the aget = di/vi andui .

ti = 2
di

1− vi

= t
2vi

1− vi

= t (ui − 1).

By Lemma 12,Tn = Tn−1 · un + t (un − 1), and therefore:

Tn + t = (Tn−1+ t) · un.

Now repeatedly use the last equality to finish the proof:

Tn + t = (T0+ t)

n∏
ui = t

n∏
ui. ✷
i=1 i=1
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Lemma 13 implies that the problem of distributingn targets between two pursue
includes as a special case the well-known NP-hard problem of partitioning a s
numbers into two subsets, each having the same sum. Note that NP-hardness he
not directly follow from TSP (either classical or Moving-Target), because of the o
resupply requirement after each intercept.

Theorem 14. Moving-Target TSP with Two Pursuers and Resupply is NP-hard whe
objective is to minimize either the total time or the makespan, even when all target
the same age.

Proof. By Lemma 13, in order to minimize the total time, we need to partition the s
targets into two subsets,A andB, where the product of theui ’s of the targets in subse
A plus the product of theui ’s of the targets in subsetB is minimized. When we seek t
minimize the makespan, we need to minimize the maximum of these two products.
possible to partition the targets into subsetsA andB with the same product of theui ’s, then
this yields an optimal partition of the targets among the two pursuers for either obje
We refer to this problem as the Product Bipartition (PB) problem.

We will show that the PB problem is strongly NP-hard by a reduction from the Su
Product (SP) problem (see [3, p. 224]). The SP problem seeks a subsetY of numbers from
a given setX where the product of the numbers inY equals a given numberz (both the
multisetsX andY may contain duplicate numbers). We will construct an instanceX′ of
the PB problem such thatX′ has a solution if and only if the given instance of the
problem(X, z) has a solution. Letx denote the product of all the numbers inX, and let
the corresponding instance of the PB problem consist of the setX′ =X ∪ {x} ∪ {z2}. Note
that the product of all numbers inX′ is x2z2. If the SP instance(X, z) has a solutionY ,
thenY ′ = Y ∪ {x} is the solution for the PB instance for the set of numbersX′. Let Y ′
be a solution for the PB instance forX′; then the product of all the numbers inY ′ is xz.
Since the product ofall elements inX equalsx, Y ′ must contain either{x} or {z2}. The
SP instance(X, z) will have a solutionY in both cases, since ifx ∈ Y ′, thenY = Y ′ − {x},
and, on the other hand, ifz2 ∈ Y ′, thenY =X \ Y ′. ✷

Lemma 13 yields a reduction of Moving-Target TSP withk pursuers (in the cas
when all targets have the same age) to the Multiprocessor Scheduling Problem
a set ofn jobs with processing timesti , and k equivalent processors, find a sched
having the minimum makespan. There exist many heuristics for the Multiproc
Scheduling Problem, including list scheduling, longest processing, and polynomia
approximation schemes [6]. Unfortunately, the error estimates for these heuristics
be transformed into bounds for Moving-Target TSP with Resupply and multiple purs
because a multiplicative factor corresponds to the exponent in such transformations
in which the next available pursuer is assigned to the next target from the list (to wh
pursuer has yet been assigned) is called alist tour.

Theorem 15. Let di/vi = t be the same for all targetssi , . . . , sn. Then the makespan an
the total time of the list tour are at mostmaxi=1,...,n(1+ vi)/(1− vi) times the optima
makespan and total time, respectively.
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Proof. The list tour is obviously optimal if the number of pursuersk is at least as larg
as the number of targetsn. We therefore assume thatk < n, and normalize time so tha
t = di/vi = 1.

Let P =∏n
i=1 ui . By Lemma 13, the total time and makespan of an optimal tour

k pursuers is at leastopt_total� k(P 1/k − 1) andopt_make� P 1/k − 1, respectively. Le
Pj =∏i∈Ij ui , j = 1, . . . , k, whereIj are the indices of targets intercepted byj th pursuer

in the list tour. LetPl = maxkj=1 Pj and lettlast be the time when thelth pursuer starts
chasing its last targetslast. We then havePl/ulast− 1= tlast.

Since in the list tourall pursuers are chasing targets beforetlast, we havePj − 1 � tlast
andPj � Pl/ulast for j 
= l. This yields:

tlast� min

{
min
j 
=l

Pj ,
Pl

ulast

}
− 1 � P 1/k − 1.

Thus, the list tour makespanlist_makeis at mostlist_make= Pl −1� P 1/k ·ulast−1, and
the makespan approximation ratio is at most:

list_make

opt_make
� P 1/k · ulast− 1

P 1/k − 1
= ulast ·

P 1/k − 1
ulast

P 1/k − 1
� ulast.

Similarly, the list tour total timelist_total is at mostlist_total � k(maxkj=1Pj − 1) =
k · Pl − k and the total time approximation ratio is at most:

list_total

opt_total
� k · (P 1/k · ulast− 1)

k(P 1/k − 1)
� ulast. ✷

This theorem implies, for example, that if the speed of any target is at most ha
speed of pursuer, then the list tour interception order has an approximation ratio of 3

4.2. Targets moving with equal speed

In the multiple pursuer case where all targets have the same speedv, we can efficiently
compute an optimal solution. Similarly to the method outlined above, we order the t
by increasing value of theirdi/vi , but sincevi = v is the same for all targets, this reduc
to ordering the targets by their initial distance from the origin. Thus, the following na
strategy suffices: at the time when a pursuer resupplies at the origin, send that pur
intercept the next closest target to the origin. We call the resulting tour “CLOSEST,
we prove several lemmas which help establish the optimality of this tour.

While Lemma 12 is a general result which is applicable when targets may have dif
speeds, it has an important corollary when the speeds of all targets are the sam
thusui becomes constant for alli. Using this observation and reformulating the res
of Lemma 12 using summation notation, we obtain the following corollary.

Lemma 16. The tour cost for a single pursuer to interceptn targetssi all having the same
speedv, is Tn =∑n

i=1 ti · un−i whereu= (1+ v)/(1− v) andti = 2 · di/(1− v) (ti is the
time for a pursuer to reach targetsi if it intercepted that target first).
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Proof. SinceT0= 0 andTi = Ti−1 · u+ ti , we obtainT1 = t1. We will prove the lemma
inductively. Using Lemma 12, we obtain:

Tn = Tn−1 · u+ tn =
(

n−1∑
i=1

ti · un−i

)
· u+ tn =

n∑
i=1

ti · un−i . ✷

In the rest of this section we derive properties of solutions yielded by this algorithm
then use Lemma 16 to show that swapping some of the targets between pursuers wi
in tours of equal total time. Finally, we show that any optimal tour can be transfo
by such swaps into the tour produced by our algorithm, which implies that our algo
always produces optimal solutions. We begin by proving the following lemma.

Lemma 17. Given a pair of targets which are intercepted by different pursuers(all having
the same speed) such that each pursuer has an equal number of targets left to pu
after intercepting them, these targets may be swapped between the two pursuers(i.e., each
pursuer may chase its counterpart’s target instead of its own), while keeping the tota
required time the same.

Proof. For simplicity, we reorder the targets of each pursuer in their reverse interce
order and denote thems1, s2, . . . , sn. As in the proof of Lemma 12, letti be the time
required to intercept targetsi and return to base, if a pursuer were to intercept that ta
first.

The cost of the tour for each pursuer to interceptn targets was proven in Lemma 12
be t1+ t2 · u+ · · · + tn · un−1, where the constantu only depends on the velocity of th
pursuer relative to the targets. Thus, we may swap the targetssi of any two pursuers, an
the total time for all pursuers will still remain the same.✷

Finally, we prove the following theorem.

Theorem 18. The tour CLOSEST is an optimal tour for Moving-Target TSP with Resu
and multiple pursuers(all having the same speed), where all targets have equal speeds

Proof. Let each ofG1, . . . ,Gm (where m = �n/k�) be a group ofk targets, each
intercepted by one of thek pursuers, such that after its interception there are exactlyi − 1
targets remaining to be pursued for that pursuer. In particular, the first groupG1 consists
of targets which were intercepted first, and the last groupGm may be “underfilled” if the
number of targets is not a multiple ofk. By Lemma 17, swapping targets within ea
groupGi results in tours of the same total time. We need to show that one such tour
CLOSEST tour.

Without loss of generality, we may assume that all targets begin with a different i
distance from the origin. It is sufficient to show that for any two targetssj ∈ Gi and
sj ′ ∈Gi+1, we havedj < dj ′ . By Theorem 7, we know that in an optimal tour for a sin
pursuer, we should intercept all targets in nondecreasing order of their ratiosdi/vi , but in
this case, all of thevi ’s are identical. Therefore, in any optimal tour, each pursuer m
intercept the targets in nondecreasing order of their original distancedi from the origin.
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In any optimal tour, wheresj andsj ′ are intercepted by the same pursuer, the targetsj is
intercepted before the targetsj ′ , and thereforedj < dj ′ . ✷

5. Conclusion and future research

We formulated a Moving-Target version of the classical Traveling Salesman Pro
and provided the first heuristics and performance bounds for this problem and for
time-dependent variants. Topics for future research include providing approxim
algorithms for more general variants of Moving-Target TSP (e.g., where target
moving with nonzero accelerations, and/or along nonlinear paths). Also, it wou
interesting to generalize our results for Moving-Target TSP with Resupply to cases
each pursuer may intercept multiple targets before requiring resupply. Alternativel
nonapproximability results for such cases would be of interest as well.

Finally, while our formulations in this paper focused on minimizing the totaltime of
a tour, it would also be of interest to explore the analogous problem variants whe
goal is to instead minimize the totaldistancetraveled by the pursuer(s). While for classic
(stationary target) TSP these two goals of minimizing travel time vs. distance travel
equivalent, for Moving-Target TSP these two objectives are very different, each le
to distinct properties, strategies, and results (e.g., when minimizing the total dis
objective, the No-Waiting Lemma does not apply, as there are counter-example ins
where waiting is actually beneficial).
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