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Abstract

Motivated by the goal of increasing the performance of FPGA-based designs, we propose new Steiner
and arborescence FPGA routing algorithms. Our Steiner tree constructions significantly outperform
the best known ones and have provably-good performance bounds. Our arborescence heuristics produce
routing solutions with optimal source-sink pathlengths, and with wirelength on par with the best existing
Steiner tree heuristics. We have incorporated these algorithms into an actual FPGA router, which routed
a number of industrial circuits using channel width considerably smaller than is achievable by previous
routers. Our routing results for both the 3000 and 4000 -series Xilinx parts are currently the best known
in the literature.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are flexible and reusable high-density circuits that can be easily
(re)configured by the designer, enabling the VLSI design/validation/simulation cycle to be performed more
quickly and cheaply [38]. Unfortunately, the flexibility provided by FPGAs is achieved at a substantial
performance penalty due to signal delay through the programmable routing resources, and this is currently
a primary concern to both FPGA designers and users [35]. In order to increase FPGA performance,
partitioning and technology mapping have been extensively studied by e.g. [13, 20, 33], where a typical goal
is to minimize the length of critical paths. On the other hand, less attention has been focused on the actual
routing, which is surprising since it was observed that FPGA performance is frequently limited by routing

delays, rather than by combinational logic delays [10, 18].

Routing affects the performance of FPGA-based systems in two major ways. First, a typical design must
be partitioned and mapped onto several FPGAs. Since off-chip signal propagation delays are significantly
longer than on-chip delays, we seek to minimize the number of such partitions. Because the FPGA size is

fixed, the ability to pack larger partitions onto a single FPGA can reduce the total number of partitions
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(and hence FPGAs) required to implement a design. The feasibility of implementing a piece of the design on
a single FPGA is often limited by routing resource availability; this motivates Steiner routing constructions

for minimizing the usage of routing resources.

Second, since FPGA utilization typically does not exceed 80%, considerable flexibility remains onboard
the FPGA for optimizing the routing. For example, we may wish to reduce signal propagation delay through
critical paths by using the most direct interconnections (i.e., shortest paths), where a secondary criterion
is to minimize overall wirelength in order to reduce circuit capacitance and conserve routing resources.
This motivates Steiner arborescence constructions (i.e., shortest paths trees having minimum wirelength)

for critical-net routing.

Our first contribution is a new class of algorithms for non-critical-net routing, which in practice sig-
nificantly outperform the best known graph Steiner tree heuristics, i.e., those of Kou, Markowsky and
Berman [26], and of Zelikovsky [39]. Our graph Steiner construction is based on an iterative template that
utilizes an existing Steiner tree heuristic H by greedily selecting Steiner nodes that induce maximum wire-
length savings with respect to H. The performance bound of this new Steiner construction is guaranteed
to be at least as good as that of the heuristic H thus used, and in particular we achieve a performance

bound of < 16—1 times optimal when using our template in concert with the graph Steiner heuristic of [39].

Our second contribution is a pair of arborescence-based constructions for critical-net routing. Given an
arbitrary weighted routing graph, our arborescence algorithms produce a Steiner tree where all source-sink
paths are the shortest possible, and where total wirelength is optimized as a secondary objective. Our first
graph Steiner arborescence heuristic is based on an effective path-folding strategy that overlaps and merges
shortest paths in order to reduce the overall wirelength. Our second arborescence heuristic iteratively
selects Steiner nodes which improve the total wirelength with respect to an optimal spanning arborescence
algorithm. Our constructions can be easily tuned to the specific parasitics of the underlying technology

(the advantages of technology-sensitive routing were discussed and analyzed in, e.g., [11, 15]).

Finally, we incorporated our algorithms into an actual FPGA router, and successfully routed several
large industry benchmark circuits, using considerably less channel width than is achievable by other routers
(e.g., the CGE/SEGA routers of [12, 27] require channel width 22% larger than our own router). Our
routing benchmarks on both 3000- and 4000- series Xilinx parts are currently the best known among all
published results. Our experimental results also indicate that the total wirelength used by our arborescence
constructions is on par with the best known Steiner tree heuristics. This is particularly significant, since our
arborescence solutions have optimal source-sink pathlengths, while Steiner tree heuristics are designed to

only optimize total wirelength (and thus yield source-sink pathlengths that are frequently far from optimal).



The remainder of the paper is organized as follows: Section 2 describes a typical FPGA architecture,
reviews previous FPGA routing work, and formulates the FPGA routing problem. Section 3 describes our
graph Steiner routing construction for routing non-critical nets, while Section 4 presents our graph Steiner
arborescence algorithms for critical-net routing. Section 5 outlines the experimental results, and Section 6

concludes with future research directions. Parts of this work appeared in preliminary form in [6, 7, 8].

2 Problem Formulation

An FPGA architecture typically consists of a symmetrical array of user configurable logic “blocks”, and a
set of programmable interconnection resources used for routing [12, 36] (See Figure 1). Each logic block
implements a portion of the design logic, and the routing resources are used to interconnect the logic blocks.
This paper focuses on the routing phase of FPGA design; thus, we assume that partitioning, technology

mapping, and placement have already been performed.
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Figure 1: A symmetrical-array FPGA showing some of the logic blocks and pro-
grammable interconnection resources.

Previous work on FPGA routing has primarily concentrated on producing feasible solutions that use
the fewest routing resources. For example, the CGE [12], and SEGA [27] detailed routing algorithms route
nets based on demand and assign critical nets a higher routing priority. Other research has adopted a more
abstract model of FPGA routing connections [28], studied FPGA routing with switch blocks of limited
flexibility [37], or explored modified architectures [34] in order to reduce the number of programmable
switches required. More recently, [4, 7] developed a routing framework where mutually competing objectives
(such as congestion, wirelength, and jog minimization) may be simultaneously optimized. However, none of
these works directly minimizes the source-sink signal propagation delays. While these approaches implicitly

equate delay minimization with wirelength optimization [23, 31], it has recently become clear that these



two goals are not synonymous [11], especially for deep submicron VLSI technologies.

The bounded-radius bounded-cost (BRBC) method of [14] and the AHHK method of [9] both achieve
wirelength-radius tradeoffs in weighted graphs, but can not directly produce a shortest paths tree with min-
imum wirelength. Rather, with the tradeoff parameter tuned completely towards pathlength minimization,
the methods of [14] and [9] both produce the same shortest-paths tree as would Dijkstra’s algorithm [16].
The recent A-Tree algorithm of [15] for rectilinear arborescence Steiner trees depends heavily on the Man-
hattan norm, and is therefore not suitable for the graph-based domains that arise naturally in FPGA

routing.

Before we can apply graph-based techniques to FPGA routing, we must first model the FPGA as a
graph, where the overall graph topology mirrors the complete FPGA architecture; paths in this graph
correspond to feasible routes on the FPGA, and conversely. Figure 2 illustrates how the routing graph is
constructed for symmetrical-array FPGAs. Let G = (V, E) denote such a graph, where each graph edge
ei; € I has a weight w;;, which typically corresponds to the wirelength of the associated FPGA routing wire
segment (weights may also reflect parasitics, congestion, jog penalties, etc.). A net N = {ng,ny,....,nx} CV
is a set of pins that are to be electrically connected, where ng is the signal source and the remaining pins
are sinks. A routing solution for a net is a tree 7' C G which spans N, and the cost of a tree T', denoted

cost(T), is the sum of the weights of its edges.
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Figure 2: Construction of a routing graph for modeling symmetrical-array FPGAs. In
(a) we see a portion of the FPGA architecture, while (b) illustrates the corresponding
induced routing graph.

Prior to routing, nets may be classified as either critical or non-critical based on timing information
from the higher-level design stages. The technology-mapping phase of FPGA design transforms a boolean
network (the output from a high-level design tool) into a circuit consisting of logic blocks [12], where the

goal is typically to minimize the maximum input-to-output circuit depth, thereby improving the overall



circuit performance. To a first approximation, nets through which long input-to-output paths pass may be
designated as critical nets, with the remaining nets designated as non-critical. Determining which nets are
critical vs. non-critical is outside the scope of this paper; rather, we focus on routing algorithms which may

be applied to nets in either category.

When routing non-critical nets, we seek not to optimize delay but rather to maximize the overall feasi-
bility of achieving a complete routing of all the nets onto a single FPGA; this resource-usage minimization

objective motivates the following graph Steiner tree formulation:

The Graph Minimal Steiner Tree (GMST) Problem: Given a weighted graph G = (V, E), and a net
N C V, find a spanning tree "= (V', E') with N C V' CV and E' C E such that cost(7T) is minimum.

Any node in V — N may be used as a potential Steiner point in order to optimize the overall wirelength.
The GMST problem is known to be NP-complete [22]. In Section 3 we address the GMST problem using

an effective greedy strategy.

The high-performance requirement of critical nets dictates a shortest source-sink paths objective, with
wirelength minimization being a secondary optimization criteria. For a weighted graph G = (V| E) and
two nodes u, v € V, let minpathg(u,v) denote the cost of a shortest path between u and v in G. We thus

formulate the graph Steiner arborescence problem as follows:

The Graph Steiner Arborescence (GSA) Problem: Given a weighted graph G = (V, E), and a net
N CV to be routed in G, construct a least-cost spanning tree 7' = (V' E') with NC V' CV and B/ C E

such that minpathr(ng,n;) = minpathg(ng, n;) for all n; € N.

Since the GSA problem is NP-complete (a reduction from Ezact 3-Cover is straightforward [19]), and the
size of FPGA routing graphs is generally large (typically [V| > 5000), solving the GSA problem optimally

is not feasible. In Section 4 we address the GSA problem with two new effective constructions.

Before the first net is routed, the routing graph resembles a grid-graph with shortest paths between nodes
reflecting rectilinear distance, as illustrated in Figure 3(a). However, as nets are routed and resources are
committed to specific nets, edges in the graph become unavailable. As a result, shortest paths in the graph
may require detours that no longer reflect the original rectilinear distance, as illustrated in Figure 3(b).
This motivates the development of algorithms that are applicable to arbitrary weighted graphs (rather than

to rectilinear graphs).

Figure 4 illustrates the routing solutions produced by the algorithms discussed below in Sections 3 and 4.
The source for the four-pin net shown is the lightly-shaded square, and the sinks are the remaining solid

squares. The two solutions on the left depict Steiner trees (sub-optimal in Figure 4(a), and optimal in
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Figure 3: Initially, (a) shortest-path distances in the routing graph reflect rectilinear
distance; (b) as nets are routed, paths may require detours, and distances no longer
reflect the rectilinear metric.

Figure 4(b)), while the two solutions on the right are Steiner arborescences (sub-optimal in Figure 4(c),
and optimal in Figure 4(d)). Figure 4(a) depicts the Steiner tree produced by the KMB heuristic of [26],
while Figure 4(b) depicts the optimal solution produced by our new IGMST construction of Section 3
below. Figure 4(c) depicts the arborescence produced by DJKA, a variant of Dijkstra’s algorithm [16],
while Figure 4(d) depicts an optimal arborescence produced by our new IDOM construction of Section 4.2.
Note that KMB uses 12.5% more wirelength than either of the solutions produced by IGMST or IDOM.
Moreover, the maximum pathlength improvements of IGMST and IDOM over KMB in this example are
25% and 50%, respectively; the latter is particularly significant, since IDOM is seen to win over KMB in
both wirelength and maximum pathlength (later we’ll observe that this trend is manifested generally in our

detailed experimental results in Section 5).

3 A New Graph Steiner Tree Heuristic

In routing non-critical nets we seek to minimize total wirelength, which motivates the graph Steiner tree
(GMST) problem formulated in Section 2. A number of heuristics were proposed over the years for the
GMST problem [22], two of which have performance bounds of a constant factor from optimal (in order to

streamline the exposition, we defer the detailed description of these two methods to the Appendix):

e KMB - the heuristic of Kou, Markowsky and Berman [26] with a performance bound of 2 - (1 — %)

where L is the maximum number of leaves in any optimal solution; and

¢ ZEL — the more recent heuristic of Zelikovsky [39] with performance bound of 16—1 times optimal.
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Figure 4: An example of four different routing solutions for the same four-pin net (the
source is the lightly-shaded square, while the dark squares are sinks): (a) the solution
produced by the KMB graph Steiner heuristic of [26]; (b) the optimal Steiner tree solu-
tion (which is also the solution produced by our IGMST algorithm described below); (¢)
depicts a sub-optimal Steiner arborescence produce by a variant of Dijkstra’s algorithm,;
(d) shows the optimal Steiner arborescence solution (which is also the solution produced
by our IDOM algorithm described in Section 4). In this example KMB uses 12.5% more
wirelength than IGMST and IDOM, while the maximum pathlength improvements of
IGMST and IDOM over KMB are 25% and 50%, respectively. Note that the IDOM
solution in (d) is optimal in terms of both total wirelength and maximum pathlength.

We now propose a new class of iterated heuristics for the GMST problem. An instance of the GMST
problem is < G, N >, where G = (V, E) is a weighted graph, N C V is a net, and the objective is to find a
minimum-cost tree in G that spans N. For any existing graph Steiner tree heuristic H, let H(G, N) denote

the solution that H produces on input < G, N >, and let cost(H (G, N)) denote the cost of that solution.

Our basic algorithm template accepts as input an instance of the GMST problem and any existing

GMST heuristic H. It then repeatedly finds Steiner node candidates that reduce the overall cost with



respect to H, and includes them into the growing set of Steiner nodes S.

Definition 3.1 Given a set of Steiner candidate node S CV — N, we define the cost savings of S with
respect to H as follows: AH(G,N,S) = cost(H(G,N)) — cost(H(G, N U S)).

Starting with an initially empty set of Steiner candidates S = ), our heuristic finds anode t € V—{NUS}
which maximizes AH(G,N,SU{t}) > 0 and repeats this procedure with S — S U {t}. The cost for H
to span N U S will thus decrease with each added node ¢, and the construction terminates when there is
not €V —{NUS} such that AH(G,N,SU{t}) > 0, with the final solution being H(G, N U S). This
method, which we call the Iterated Graph Minimal Steiner Tree (IGMST) approach, is formally described
in Figure 5. Since any existing graph Steiner tree heuristic H may be used, the IGMST template represents

an entire class of greedy iterated constructions, one corresponding to each possible H that may be used.

Iterated Graph Minimal Steiner Tree (IGMST) Algorithm.
Input: A weighted graph G = (V, E), anet N C V, and a GMST heuristic H
Output: A low-cost tree 7/ = (V', E') spanning N, where N C V' CV and B/ C E
S=0
Do Forever

T={teV-N|AH(G,N,SU{t}) >0}

If T =0 Then Return H(G,NUS)

Find t € T with maximum AH(G, N,SU{t})

S=85SuU{t}

Figure 5: The Iterated Graph Minimal Steiner Tree algorithm (IGMST) using a generic
GMST heuristic H.

The performance bound of the IGMST method is clearly no worse than the performance bound of the
heuristic H that it uses, since if no improving Steiner nodes can be found, the output of IGMST will
be identical to the output of H (usually it is considerably better). For example, we may use the KMB
heuristic [26] as H inside the IGMST algorithm to yield the Iterated KMB (IKMB) method, which inherits
the performance bound of < 2 times optimal. The KMB heuristic operates by constructing a minimum
spanning tree on the distance graph, a new complete graph over N where edge weights correspond to shortest-
path distances in G = (V, E) (see the Appendix for further details on the KMB method). Figure 6 illustrates
how the IKMB method greedily adds Steiner points to construct the solution. Note that IGMST generalizes
the Iterated 1-Steiner heuristic of Kahng and Robins [21, 24, 25] where H is an ordinary rectilinear minimum

spanning tree construction.

Experimental results in Section 5 indicate that iterating a heuristic H in this fashion yields significantly

improved solutions as compared with the non-iterated version of H. Note that IGMST is not a “post-



processor” for the solution produced by heuristic H, but rather a technique for exploiting H in order to

effectively navigate through the very large solution space of possible Steiner tree candidates.

Figure 6: Example of the IKMB algorithm execution: (a) GMST problem instance
with nodes to be spanned N = {4, B, C, D}; (b) initial KMB solution over the distance
graph, having cost 7; (c¢) Steiner candidate Sy produces savings AKMB= 1, and S; is
thus retained as a Steiner point; (d) Steiner candidate S5 is the final Steiner point with
positive AKMB, reducing the overall tree cost to 5; (e) the final IKMB solution with
cost b, depicted with respect to the original graph (IKMB finds the optimal solution for
this example).

The time complexity of the IGMST heuristic depends on the particular GMST heuristic H that is
used. A naive implementation (which treats H as a “black box” subroutine) will have time complexity
O(|V| - t(H)) per iteration, where t(H) is the time complexity of the given GMST heuristic. In practice,
this general time complexity may be substantially reduced by factoring out of H common computations,
such as computing shortest-paths, and thereby avoiding duplication of effort among multiple calls to H.
Another way of reducing the time complexity follows from the observation that rather than adding Steiner
points one at a time, they may be added in “batches” based on a non-interference criterion similar to the
one proposed by Kahng and Robins [21, 24, 25]. In practice, the number of such rounds tends to be very

small (< 3 for typical instances).



4 Two Graph Steiner Arborescence Heuristics

This section addresses the problem of constructing arborescences, or shortest-paths trees, where wirelength

minimization is the secondary optimization objective.

4.1 The Path-Folding Arborescence (PFA) Heuristic

Constructing an arborescence can intuitively be viewed as “folding” (i.e., overlapping) paths in a shortest
paths tree, in order to yield the greatest possible wirelength savings while still maintaining the shortest
paths property. For pointsets in the Manhattan plane, a particularly effective arborescence heuristic along
these lines is the RSA construction of [32], which has a performance ratio of < 2 times optimal, as well as
good empirical performance. However, this method relies on the underlying geometry of the Manhattan
metric. In order to achieve the same effect in FPGA routing graphs, we first define the notion of dominance

in arbitrary weighted graphs as follows.

Definition 4.1 Given a weighted graph G = (V, E), and nodes {no,p,s} CV, we say that p dominates s

if minpathg(ng,p) = minpathg(ng, s) + minpathg(s, p)

In other words, a node p dominates a node s if there exists a shortest path from the source to p that also

passes through s (recall that minpathg(u, v) denotes the cost of a shortest path between u and v in G).

Before we extend the RSA heuristic to graphs, we first review how it operates in the Manhattan plane
(we assume that the source is located at the origin). A point p with coordinates (21, y;) is said to dominate
point s with coordinates (2, y2) if 1 > 22 and y1 > ya, as shown in Figure 7(a). Define MazDom(p, ¢) to be
the farthest point from the source that is dominated by both p and ¢ (Figure 7(b)). The RSA construction
iteratively replaces a pair of points {p, ¢} with the single point MazDom(p, q), where {p, ¢} are chosen as to
maximize the distance from the source to MazDom(p, q). The algorithm terminates when only the origin
remains, and the final Steiner arborescence solution is formed by connecting each produced MazDom(p, q)

to both p and gq.

Dominance in arbitrary weighted graphs is illustrated in Figure 8(a), where intuitively, p dominates s
if a shortest path from the source ng to p can pass through s. Note that the shortest path between a pair
of nodes in an FPGA graph is not necessarily unique. We define MazDom(p, ¢) as a node in V' dominated
by both p and ¢ which maximizes minpathg(ng,MazDom(p,q)), as shown in Figure 8(b). The reason we
prefer that MazDom be as far from the origin as possible, is to maximize the overlap (i.e., the wirelength

savings) among the two paths, while still maintaining the shortest-paths property of the construction.

10
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Figure 7: Example of rectilinear dominance: (a) p dominates s, and (b) the point
MazDom(p, q), which is the farthest point from the source that is dominated by both ¢
and p.

minpath(s,p)

m= MaxDom (p,q)
minpath G(nO ,m)

(@ (b)

Figure 8: Example of dominance: (a) p dominates s when minpathg(no,p)
=minpathg(ng, s) + minpathg(s,p); (b) shows MazDom(p,q) with respect to p and
q.

The above definitions enable the following Path-Folding Arborescence (PFA) heuristic: starting with
the set of nodes that initially contains the source and all sinks, we find a pair of nodes p and ¢ such that
m =MazDom(p, q) is farthest away from the source among all such pairs; we then replace p and ¢ by m and

iterate until only the source remains. The overall graph Steiner arborescence solution is formed by using

shortest paths in G to connect each MazDom(p, ¢) to both p and ¢ (see Figure 9).

Since there are at most O(|N|) elements in set N, the time to compute all shortest-paths trees is
bounded by O(|N|- (|E|+ VlogV)), and the total number of MazDom computations performed is at most
O(|V| - |N|?). The MazDom value for each pair {p,q} C N are maintained in a list ordered by decreasing
MazDom values, with the {p, q} pair for each MazDom being also stored in this list. This makes finding
the next MazDom relatively efficient, as it is the first element on the list with {p,¢} € N (i.e., neither p

nor ¢ for this MazDom have been removed from N). Using a heap to maintain the ordered list results in

11



an overall time complexity for PFA of O(|N|-|E| + |V|-|N|? log|V]).

Path-Folding Arborescence (PFA) algorithm
Input: Weighted graph G = (V, E) and net N C V
Output: A low-cost shortest-paths tree spanning N
M =N
While N # {ng¢} Do
Find a pair {p,¢} C N such that m =MazDom(p, q)
has maximum minpath(ng, m) over all {p,q} C N
N ={N —{p,q}}u{m}
M =MuU{m}
Output the tree formed by connecting each node p € M
(using a shortest path in ) to the nearest node in M that p dominates

Figure 9: Path-Folding Arborescence (PFA) heuristic; M initially holds all the nodes
to be spanned, and is then augmented with the MazDom Steiner points found at each
iteration.

The empirical results in Section 5 indicate that the PFA method is effective in producing shortest-paths
trees with low wirelength (i.e. PFA’s wirelength is on par with the best existing graph Steiner heuristics).
However, in considering the worst-case behavior of PFA| we find examples of graphs where PFA can perform
as badly as O(N) times optimal (see Figure 10). Even on rectilinear grid-graphs, PFA may still produce
solutions with cost approaching 2 times the optimal, so its performance ratio of 2 is tight [32] (see Figure 11).
In the next section we therefore present another heuristic for the graph arborescence problem which escapes

such worst-case examples (in fact, it optimally solves these particular worst-case examples).

4.2 The Iterated Dominance (IDOM) Heuristic

This section presents a new heuristic for the GSA problem which escapes the worst-case behavior of the
PFA heuristic presented in Section 4.1. Our second GSA heuristic greedily iterates over a given spanning
arborescence construction: it repeatedly finds Steiner candidates that reduce the overall spanning arbores-
cence cost, and includes them into the growing set of Steiner nodes. The reason that we iterate a spanning
arborescence construction in order to produce a Steiner arborescence construction is that the former is
easy to compute while the latter is NP-complete. The heuristic which we use for producing spanning

arborescences is the Dominating (DOM) heuristic, described as follows:

e DOM — This heuristic is a restricted version of the PFA heuristic of Figure 9, where MazDom(p, q)
is constrained to be from N, rather than an arbitrary node from V. An arborescence is constructed
by using a shortest path to connect each sink to the closest sink/source that it dominates, and then

computing (Dijkstra’s [16]) shortest paths tree over the graph formed by the union of these paths.

12
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Figure 10: Worst-case example for the PFA on arbitrary weighted graphs. The source
is the gray-shaded circle ng, the sinks are darkened circles, potential Steiner points are
white circles, and all edges have unit length except those marked as zero. (a) The input
weighted graph; (b) the optimal solution, and (c¢) the worst-case behavior of the PFA
heuristic. For an instance with O(N) sinks, worst-case behavior in (¢) is O(N) times
costlier than the optimal solution (b).

(b) ()

Figure 11: Worst-case example for PFA for a grid-graph (i.e., Manhattan plane geome-
try) [32]; (a) the source pin of this net / pointset is located at the origin, with horizontal
interpoint distances being one unit, and vertical interpoint distances being two units;
(b) shows the optimal solution; (c) depicts the worst-case behavior of the PFA heuristic
(white circles denote Steiner points introduced by the PFA heuristic). The worst-case
behavior in (c) is arbitrarily close to twice the optimal cost of (b).

Definition 4.2 Given a set of Steiner candidate node S C V — N, we define the cost savings of S with
respect to DOM as ADOM(G, N, S) = cost(DOM(G, N))—cost(DOM(G, N U S)).
13



Starting with an initially empty set of Steiner candidates S = (), our heuristic finds a node t € V — N which
maximizes ADOM(G, N, SU{t}) > 0 and repeats this procedure with S — S U{t}. The cost required by
DOM to span NUS will decrease with each added node ¢, and the overall construction terminates when there
isnot € V—(NUS) such that ADOM(G, N, SU{t}) > 0, with the overall solution being DOM(G, NUS).

This method, which we call the Iterated Dominance (IDOM) approach, is formally described in Figure 12.

Iterated Dominance (IDOM) Algorithm.

Input: A weighted graph G = (V,E),anet N CV

Output: A low-cost arborescence 7" = (V' E') spanning N,
where NC V' CV and F"CF

S=0

Do Forever
T={teV—N|ADOM(G,N,Su{t}) > 0}
If 7=0 Then Return DOM(G, N U S)
Find ¢ € T with maximum ADOM(G, N, S U {t})
S=Su{t}

Figure 12: The Iterated Dominance (IDOM) algorithm.

The DOM subroutine can be implemented by constructing a shortest-paths tree with minimum cost on
the distance graph (which is a new complete graph over N where edge weights correspond to shortest-path
distances in G = (V, E)). Figure 13 illustrates how the IDOM method greedily adds Steiner points to
construct a solution. The IDOM algorithm requires at most O(|N|- (|E|+ |V]|log|V])) time to compute all
shortest-paths trees and calls DOM as a subroutine O(|V] - |N|) times; each call constructs a minimum-cost
shortest-paths tree over the (complete) distance graph on N and requires time O(|N|?). Thus, the IDOM
heuristic can be easily implemented within time O(|N|- |E| + |N|-|V|-(log|V]+ |N|?)), and this time
complexity can be further reduced by combining together common computations (as was discussed for the

PFA heuristic in the previous section).

A worst-case example for IDOM is shown in Figure 14(b), which forces a performance bound on IDOM
of logarithmic factor times optimal. However, this is not discouraging for the following reason. First,
the NP-complete Set Cover problem can be reduced to the GSA problem (see Figure 14). Secondly, it is
known that the Set Cover problem can not be approximated within a factor of better than log.n unless
every problem in NP can be solved in deterministic time O(n!°8!°67) [17, 29]. This means that the GSA
problem is also not likely to be polynomial-time approximable better than O(log N) times optimal, and
thus worst-case examples such as those of Figure 14 are to be expected. We conjecture that IDOM has a

performance ratio of O(log V).
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Figure 13: Execution example of the IDOM algorithm: (a) GSA problem instance
with source node A (gray) and sink nodes {B, C, D} (solid); (b) initial DOM solution
over the distance graph, having cost 8; (c) Steiner candidate Sz produces a savings of
ADOM= 2, which reduces the overall tree cost to 6 — thus S3 is retained as a Steiner
point; (d) Steiner candidate Sy is the final Steiner point with positive ADOM, and
reduces the solution cost to 5; (e) the final IDOM solution (with cost 5) depicted with
respect to the original input graph.

5 Experimental Results

We have implemented the IGMST, PFA and IDOM algorithms using C++ in the SUN Unix environment
(our code and benchmarks are available upon request). We have also implemented the KMB and ZEL
heuristics (see the Appendix for a detailed description of these), and used each of these as H inside the
inner loop of IGMST, yielding the IKMB and IZEL constructions, respectively. For comparison, we have
implemented two additional graph Steiner arborescence algorithms, a stand-alone version of the DOM

heuristic described in Section 4.1, and also the following heuristic:
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Figure 14: Worst-case example for IDOM on arbitrary weighted graphs. (a) A set of
nodes enclosed by a box (left) represents a “macro” which expands to a set of edges
with weight 0 connecting the sink nodes (solid circles) to a single Steiner node (hollow
circle), and a single edge with weight 1 connecting the Steiner node to the source node,
ng (right). Using this macro encoding, the input to IDOM is shown in (b). The optimal
solution shown in (c¢) has cost of 2, consisting of the two long horizontal boxes, each
containing % of the nodes. On the other hand, IDOM can select a logarithmic number
of boxes shown in (d) (the boxes from left to right, in order of exponentially decreasing
size), resulting in an arborescence solution with cost Q(log N) times optimal.

e DJKA — This is an adaptation of Dijkstra’s shortest-paths tree algorithm [16] to the GSA problem
(Dijkstra’s algorithm spans all of V', while the GSA problem seeks to span only N C V). DJKA first
computes a shortest-paths tree rooted at the source using Dijkstra’s algorithm [16], and then deletes

edges from this tree which are not contained in any source-to-sink path.

We compared all of these methods (KMB, ZEL, IKMB, IZEL, DJKA, DOM, PFA, IDOM) on the same
inputs, both in terms of total wirelength as well as maximum source-sink pathlength. The inputs consisted
of random nets, uniformly distributed in 20 x 20 weighted grid graphs, where the edge weights represented
congestion induced by previously-routed nets. Congestion was modeled as follows: starting with a grid
graph having unit weights (w = 1.00) on all edges, k uniformly-distributed nets (2-5 pins each) were routed
using KMB. As each net was routed, the weights of the corresponding graph edges were incremented, thus
raising the average routing-graph edge weight to w > 1.00. Three different levels of congestion were thus

modeled: (a) none (k =0, w = 1.00), (b) low (k = 10, w = 1.28), and (¢) medium (k = 20, w = 1.55).

For each of these three congestion levels and net size (5 and 8 pins), 50 uniformly-distributed nets

were routed on a congested graph (newly-generated for each net), using all eight algorithms. For each net,
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we normalized the wirelength produced by each heuristic with respect to the wirelength used by KMB;
similarly, the maximum source-sink pathlength of each heuristic was normalized to optimal. Table 1 gives
the average percent improvement for each congestion level, where a positive value represents an increase
(i.e., disimprovement) in the total wirelength (resp. maximum pathlength) with respect to KMB (resp.

optimal), while a negative number represents a decrease (i.e., improvement).

Average Wirelength and Maximum Pathlength %
For various congestion levels, over 50 nets
5-pin nets 8-pin nets
Wire Max Wire Max
Algorithm || Length | Path Length | Path
(wrt. | (wart. || (wrt. | (w.rt.

KMB) | OPT) || KMB) | OPT)

No Congestion (no pre-routed nets)
Average routing graph edge weight @ = 1.00

KMB 0.00 23.51 0.00 40.30

ZEL -6.22 11.07 -7.85 23.42
IKMB -6.47 10.83 -8.19 24.04
1ZEL -6.79 8.85 -8.31 21.47
DJKA 29.23 0.00 30.53 0.00

DOM 17.51 0.00 18.48 0.00

PFA -5.59 0.00 -5.02 0.00
IDOM -5.59 0.00 -4.89 0.00

Low Congestion (kK = 10 pre-routed nets)
Average routing graph edge weight @ = 1.28

KMB 0.00 27.61 0.00 47.66

ZEL -4.64 19.14 -4.10 34.17
IKMB -5.68 17.12 -4.50 33.35
IZEL -5.98 14.56 -5.52 22.29
DIKA 26.64 0.00 32.48 0.00

DOM 22.27 0.00 28.09 0.00

PFA 8.95 0.00 13.91 0.00
IDOM 8.95 0.00 13.91 0.00

Medium Congestion (k = 20 pre-routed nets)
Average routing graph edge weight @ = 1.55

KMB 0.00 30.67 0.00 52.67

ZEL -4.37 21.54 -3.35 44.95
IKMB -5.09 17.77 -4.42 42.42
IZEL -5.57 15.26 -4.97 40.20
DIKA 22.94 0.00 36.79 0.00

DOM 21.78 0.00 33.89 0.00

PFA 13.93 0.00 22.65 0.00

IDOM 13.93 0.00 22.59 0.00

Table 1: The average wirelength % (normalized w.r.t. KMB) and average maximum
pathlength (normalized w.r.t. optimal) for the various algorithms, run over grid graphs
with three different levels of congestion.

Among the four Steiner heuristics (KMB, ZEL, IKMB, IZEL), IZEL has superior performance. The
ranking IZEL<IKMB<ZEL<KMB is very consistent across all net sizes in terms of both wirelength and
maximum pathlength, indicating that our iterated constructions outperform the stand-alone, non-iterated
versions. Among the four arborescence constructions (DJKA, DOM, PFA, IDOM), PFA and IDOM con-
sistently use the least wirelength (these all yield optimal maximum pathlength). Here too, the ranking is
quite consistent in terms of wirelength across all net sizes, namely IDOM<PFA<DOM<DJKA. Thus in

practice, both PFA and IDOM perform quite well, despite the worst-case examples of Figures 10, 11 and 14.
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On uncongested graphs, both PFA and IDOM outperform KMB in term of wirelength by up to 5.6%.
This is interesting since KMB minimizes wirelength only, yet it uses more wirelength than either PFA and
IDOM, which yield optimal pathlengths and only optimize wirelength as a secondary criterion. For uncon-
gested graphs, both PFA and IDOM yield optimal maximum pathlength at almost no wirelength penalty
over IZEL; thus, these seem to afford favorable tradeoffs between wirelength and maximum pathlength.
Note that IKMB and the Tterated 1-Steiner heuristic of Kahng and Robins [21, 24, 25] yield identical so-
lutions for geometric instances (i.e., when using the Hanan grid as the underlying graph). CPU times for
IKMB, PFA and IDOM on random graphs with |V| = 50|, |E| = 1000 and |N| = 5 are in the range of

several dozen milliseconds on a Sun/4 workstation.

To further validate the effectiveness of our algorithms for FPGA routing, we built an actual FPGA
router based on these constructions, and used it to route fourteen industrial FPGA benchmark circuits,
containing up to 608 nets each (see Tables 2 and 3 for details regarding these benchmarks). Our graph-
based constructions easily adapt to a variety of PFGA architectures. In particular, we have modeled two
distinct FPGA architectures, the first corresponding to Xilinx 3000-series parts [38] (Table 2), and the
second corresponding to 4000-series parts [38] (Table 3); these architectures are identical to those used by
the CGE router [12], and the SEGA [27] and GBP [37] routers, respectively.

The switch block flexibility (denoted by Fy) reflects the pre-specified fanout of a channel edge inside a
switch block, i.e., the number of different channel edges to which it may be connected [12]. Similarly, the
connection flexibility (denoted by F;) refers to the number of adjacent channel edges to which a logic-block
pin may connect; finally, W denotes the channel width. The 3000-series FPGAs which are used to route
the circuits in Table 2 have Fy = 6 and F, = [0.60 - W], while the 4000-series FPGAs in Table 3 have Fj
=4and F.=W.

As discussed in Section 2, our FPGA router uses a graph-based framework, where the topology of the
routing graph reflects the underlying FPGA architecture (See Figure 2). Edge weights in this graph reflect
wirelength, as well as the congestion induced by previously-routed nets. Our router operates directly on
this graph and routes the nets one at a time. After the routing of each net, the edge weights are updated
to reflect the new congestion values; edges used to route the net are removed from the graph, so that
subsequent nets remain electrically disjoint from previously routed ones. We employ a net ordering scheme
with a move-to-front heuristic: when infeasibility is encountered in routing a particular net, that net will
be routed earlier in subsequent routing phases, thereby increasing the probability of a successful routing of
all the nets. We found that typically only a few (i.e., less than five) such passes are required to completely

route each of the benchmark circuits.
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A common criteria used to evaluate the quality of FPGA routers is the maximum channel width required
to successfully route all nets of a design [12]. This is important for designs which span multiple FPGAs
since a router which requires smaller maximum channel width has the ability to pack larger portions of the
overall circuit design onto a single FPGA, which tends to reduce the total number of FPGAs required. In
our router, maximum channel width serves as an upper-bound input parameter when routing a circuit. The
router attempts to route the circuit using this specified channel width, and if a complete routing solution
cannot be found in a user-specified maximum number of passes (we arbitrarily set this feasibility threshold
to 20 passes), the router decides that the circuit is unroutable at that given channel width. Thus, for each
circuit we find the smallest maximum channel width necessary to completely route the circuit. CPU times
to completely route the industry benchmark circuits on a Sun/4 workstation varied from several minutes
for the smallest circuit to several hours for the largest; these times are quite competitive with commercial

routers, which sometimes require several days to route large circuits [35].

For each of the circuits, we compared the maximum channel width required by our router using the
IKMB algorithm to the best reported results from CGE [12] using the 3000-series architecture (See Table 2),
as well as to the best reported values for SEGA [27] and GBP [37] using the 4000-series architecture (See
Table 3). Note that for both the 3000-series and 4000-series architectures we are able to route all of the
benchmark circuits using significantly smaller channel width than CGE, SEGA and GBP (with these other

routers requiring an average of 22%, 26%, and 17% more channel width, respectively, than our own router).

Maximum channel width
3000-series Circuits || Breakdown of nets by number of pins || required for a complete
routing of each circuit
Name | FPGA size || #nets [ #2-3 [ #4-10 Fover 10 CGE Our Router
busc 12 x 13 151 115 28 8 10 7
dma 16 x 18 213 139 52 22 10 9
bnre 21 x 22 352 255 70 27 12 9
dfsm 22 x 23 420 361 26 33 10 9
z03 26 x 27 608 398 176 34 13 11
otals: 1744 1268 352 124 55 45
Ratios: 1.00 0.73 0.20 0.07 1.22 1.00

Table 2: Results for a set of industry FPGA benchmark circuits, all routed on a Xilinx
3000-type part, with switch-block flexibility Fs = 6 and connection flexibility F, =
[0.6 - W], where W is the channel width. On the left are the total number of nets
in each circuit, the FPGA size, and the number of nets with 2-3 pins, 4-10 pins, and
over 10 pins in each circuit. On the right are the maximum channel widths required to
route all nets using the CGE router of [12], as well as our own router using the IKMB
algorithm. For each of the benchmark circuits our router requires a significantly smaller
channel width than CGE; on average, CGE requires 22% more channel width than our
router.

The data in Tables 2 and 3 indicates that our IKMB algorithm effectively minimizes channel width.

Reduced channel widths are a result of routing multi-pin nets as complete units, rather than breaking

19



Maximum channel width
4000-series Circuits Breakdown of nets by number of pins required for a complete
routing of each circuit
Name FPGA size || #nets | #2-3 | #4-10 #over 10 SEGA | GBP | Our Router
alud 19 x 17 255 165 69 21 15 14 11
apex7 12 x 10 115 83 30 2 13 11 10
term1 10 x 9 88 65 21 2 10 10 8
example2 14 x 12 205 171 25 9 17 13 11
too_large 14 x 14 186 128 46 12 12 12 10
k2 22 x 20 404 241 146 17 17 17 15
vda 17 x 16 225 132 80 13 13 13 12
9symml 11 x 10 79 60 11 8 10 9 8
alu?2 15 x 13 153 109 26 18 11 11 9
Totals: 1710 1154 454 102 118 110 94
Ratios: 1.00 0.67 0.27 0.06 1.26 1.17 1.00

Table 3: Results for a set of industry FPGA benchmark circuits, all routed on a Xilinx
4000-type part, with switch-block flexibility ¥y = 3 and connection flexibility F, = W,
where W is the channel width. On the left are the total number of nets in each circuit,
the FPGA size, and the number of nets of each pin count. On the right are the maximum
channel width required to route all nets for the SEGA router of [27], the GBP router
of [37], and our own router using the IKMB algorithm. For each of the benchmarks
our router requires a significantly smaller channel width than either SEGA or GBP; on
average, SEGA and GBP require 26% and 17% more channel width than our router,
respectively.

them into multiple two-pin nets (as is done by other routers). First, our constructions use Steiner points
to effectively reduce overall wirelength. Routing resources which are saved by such reductions are used
to route subsequent nets, which tends to improve resource utilization and reduce channel width. Second,
our routing-graph construction is designed so that wirelength minimization directly reduces channel width:
Steiner points which are placed adjacent to logic-block pins simultaneously reduce both channel width and
wirelength (See Figure 15). Recall that the IKMB algorithm minimizes only wirelength, while the PFA
and IDOM algorithms minimize both maximum pathlength and wirelength. To illustrate how minimizing
maximum pathlength affects wirelength (and thus improve the maximum channel width), Table 4 shows the
maximum channel width required for a successful routing using the IKMB, PFA and IDOM algorithms for
each of the circuits (for comparison, the channel widths required by the SEGA [27] and GBP [37] routers
are shown also). As expected, both PFA and IDOM require larger channel width than IKMB. However,
neither PFA nor IDOM require larger channel width than SEGA or GBP, routers which do not directly
minimize maximum source-to-sink pathlength. This illustrates the ability of the PFA and IDOM algorithms

to simultaneously minimize wirelength and maximum pathlength in an effectively manner.

Table 5 shows the increase in wirelength vs. the decrease in maximum pathlength for the IKMB, PFA
and IDOM algorithms on the benchmark circuits. Here the algorithms operate on FPGAs with the same
channel width (i.e., the smallest channel width that results in a successful routing for all algorithms). By

comparing the various algorithms using the same channel width, the wirelength usage is not unduly biased
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(a) (b)

Figure 15: An example that illustrates how routing multi-pin nets as a single unit during
wirelength minimization can also enhance channel width minimization. (a) a solution
requiring channel width of two; (b) Steiner-based wirelength minimization reduces the
required channel width to one.

Xilinx Maximum required channel width
4000-Series for a complete routing
Circuits Other Routers Our Router
Name SEGA [ GPB || IKMB [ PFA T IDOM
alud 15 14 11 14 13
apex7 13 11 10 11 11
term1 10 10 8 9 9
example2 17 13 11 13 13
too_large 12 12 10 12 12
k2 17 17 15 17 17
vda 13 13 12 14 13
9symml 10 9 8 9 8
alu2 11 11 9 11 10
Totals: 118 110 94 110 106
Ratios: 1.26 1.17 1.00 1.17 1.13

Table 4: Maximum channel width required for a successful routing of each entire bench-
mark circuit using our IKMB, PFA and IDOM algorithms. Note that both PFA and
IDOM minimize wirelength and maximum pathlength, while IKMB, SEGA [27] and
GBP [37] minimize only wirelength.

by the more circuitous routes which may be required with small channel widths. We observe that the
increase in wirelength for PFA and IDOM (18.21% and 12.79%, respectively) corresponds quite closely to
the increase in channel width observed for PFA and IDOM in Table 4. Table 5 indicates that both the
PFA and IDOM algorithms effectively reduce the maximum pathlength (by 9.51% and 10.19% on average,
respectively, as compared to IKMB). Figure 16 illustrates the solution produced by our router for the

bus-controller benchmark circuit (busc).
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Xilinx 4000 || Channel Wirelength Max Path
Circuits Width PFA T IDOM PFA T IDOM
alud 14 20.9 15.8 -15.2 -16.9
apex7 11 15.3 9.2 -4.2 -6.8
terml 9 11.4 12.0 -6.2 -2.0
example2 13 13.1 8. -4.6 -5.6
too_large 12 17.9 15.2 -9.7 -9.4
k2 17 24.5 17.6 -7.1 -7.2
vda 14 18.7 11.9 -9.9 -11.5
9symml 9 18.3 11.4 -14.0 -14.4
alu2 11 23.9 14.1 -14.7 -18.0
Averages: 18.2 12.8 -9.5 | -10.2

Table 5: Percent increase in wirelength and decrease in maximum pathlength for PFA
and IDOM (with respect to IKMB) on the benchmark circuits. We observe that both the
PFA and IDOM algorithms significantly reduce the maximum source-sink pathlength
(by 9.5% and 10.2% on average, respectively).

6 Conclusion

We have developed new performance-driven FPGA routing algorithms. For routing non-critical nets, we
minimize wirelength using an effective new class of iterative graph Steiner tree constructions. For critical-
net routing, we presented two new arborescence heuristics that produce shortest-paths trees with low overall
wirelength. Our methods afford routing trees with optimal source-sink pathlengths, using total wirelength
on par with the best existing graph Steiner tree heuristics (which is rather surprising). Our FPGA router
based on these algorithms effectively routes industrial benchmarks using reduced maximum channel width,
and our experimental results are currently the best known in the literature. OQur routing algorithms easily
integrate into existing layout frameworks to yield combined place-and route tools [3, 5]. Moreover, all
of our methods generalize to three-dimensional FPGAs [1, 2]. Future research directions include proving
a non-trivial performance bound on the IDOM heuristic, further improving the time complexities of the

various constructions, and finding a graph Steiner heuristic with performance ratio < 16—1.

7 Acknowledgments

We would like to thank the anonymous referees for their diligence and thoughtful feedback. Andrew Kahng,
Chuck Alpert, and Darren Chi provided valuable advice on this work. We thank Jonathan Rose and Stephen
Brown for the use of their benchmark circuits. We are indebted to Dr. Bob Grafton of the National Science
Foundation, as well as to the Packard Foundation for their generous support. Our benchmarks and other

related works may be found at WWW URL http://www.cs.virginia.edu/~robins/.

22



a)
-
]
i
'
1
1

[
N
|
|
j
JZ
AV
|

[

[
|

J
al
i
1
J

#

!
==K i
nALJIN,)
] |
-
| |
twie)
mliwim
)diw [ fi{ 1
aplnpiLy
1‘ 1 . 1”!{
ﬁw =B
U T
. i Mr;n
,%‘
|
PR e

"_. "
-
IE )
fn
(=
J L
har!
LB
IIF
J [

S
e

+" 1&
f []/l_l_n
N AT 1
L T | .|

1

1 | T

X1

1 1 1
[

1

[

l
1Ll r
1

1 *!
L
1

[

17T

|
|
j

]
1
|
T
]
]

]

H
!
I
|
:

\
[
L
: A N L LN
[ H
1 [
|
{
=
H
il
L
>? j
| [M
D
1 [
1

1 [
| NAT
1 1*
] [ 1 [
= W
%:
: ,___él 11!
| Vi {
I
J
(el [
T /1 N L
..
[
p .| [

:f
I
2
T
I
I
of
T

Figure 16: Solution produced by our router for the busc circuit.
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8 Appendix: Two Existing Graph Steiner Heuristics

This appendix describes the existing graph Steiner heuristics of (1) Kou, Markowsky, and Berman (KMB) [26],
and (2) Zelikovsky (ZEL) [39]; the later is currently the best known Graph Steiner heuristics, with respect
to theoretical performance bounds and run time. KMB has a theoretical performance ratio® of 2 - (1 — %),
where L is the maximum number of leaves in any optimal (Steiner tree) solution to the input instance. The
ZEL heuristic has performance ratio of %, and thus on worst-case instances ZEL will outperform KMB.2
Any graph Steiner heuristic H may be used inside the IGMST template of Section 3 to yield an improved
approximation algorithm for the IGMST problem. The theoretical performance bound of the composite
construction is guaranteed to be no worse than that of the heuristic H that was used in the iterated

construction. Thus, the performance bound of the IKMB algorithm is 2 - (1 — %), where L is the maximum

number of leaves in any optimal solution, while the performance bound of IZEL is 16—1.

All Steiner tree heuristics aim to approximately solve the following NP-complete problem (see Section 2

for motivation and details):

The Graph Minimal Steiner Tree (GMST) Problem: Given a weighted graph G = (V, E), and a net
N C V, find a spanning tree 7' = (V', E') with N C V' CV and E' C E such that cost(T) is minimum.

8.1 The KMB Heuristic [26]

The graph Steiner tree heuristic of Kou, Markowsky and Berman (KMB) [26] is described as follows (see
Figure 17):

e Construct the distance graph G’ over N as follows: form the complete graph G’ over N with the
weight of each edge €;; equal to diste(ni, n;), i.e., the cost of the corresponding shortest path in G

between n; and n;.

e Compute MST(G"), the minimum spanning tree of G’, and expand each edge e;; of MST(G’) into the

corresponding shortest path, denoted path(n;, n;), yielding a subgraph G that spans N.

e Finally, compute the minimum spanning tree MST(G"), and delete pendant edges from MST(G")

until all leaves are members of N.

The time complexity of the KMB heuristic in Figure 17 is O(|N| - |V|?), and this can be reduced to

O(|E| 4+ Vlog|V|) using an alternative implementation [30].

1The performance ratio of a heuristic is the worst-case ratio of the cost of its solutions with respect to optimal.

?Note that in a practical setting, although KMB can produce solutions with cost arbitrarily close to twice the optimal, it
typically produces solutions that are much better than twice optimal (e.g., on inputs where L is small). Thus it is not clear a
priori from these general theoretical bounds that ZEL will always win over KMB on typical nets (although the empirical data
in Section 5 indicates that this is indeed the case on average).
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The Kou, Markowsky and Berman (KMB) Algorithm [26]

Input: A graph G = (V, E) with edge weights w;; and anet N CV

Output: A low-cost tree 7/ = (V', E’) spanning N (i.e. N C V' CV and E' C E)
G' = (N,N x N), with edge weights w;j; = distG(n;, n;)

Compute T'= (N, E") = MST(G")

G“ = Ue,jEE” pathg(ni, n]')

Compute 7 = MST(G")

Delete pendant edges from 7”7 until all leaf nodes that are not in N

Output 7"

Figure 17: The KMB heuristic for the GMST problem [26].

8.2 The ZEL Heuristic [39]

The graph Steiner tree heuristic of Zelikovsky (ZEL) [39] is described as follows (see Figure 18). Define a
triple to be a set of three nodes in N; we can contract a graph around a triple z by setting to zero the edge
weights of two of the three edges connecting nodes of the triple (the contracted graph is denoted by G'[2]).

Now perform the following steps:

e Construct the distance graph G’ over N as follows: form the complete graph G’ over N with the
weight of each edge e;; equal to distq(ni, nj), i.e., the cost of the corresponding shortest path in G

between n; and n;.

e For every triple z € N, find v, € V which minimizes dist, =5 _, distg(s,v); (i.e., the Steiner point

SEz

which will produce the greatest savings for each triple).

e Find z € N which maximizes 0 < win = MST(G') — MST(G'[z]) — dist,, and contract G’ around
z to get a new G’ «— G'[z]. The Steiner point associated with the contracting triple, v,, becomes a

Steiner point in the solution. Repeat this greedy contraction step while win > 0.

e Construct a solution using the KMB algorithm where the nodes to be spanned are the original nodes

N plus the v,’s associated with the G'[z] contractions above.

The time complexity of the ZEL heuristic is O(|N| - (|E| + |V|- |N|+ |V] - log |V])) [40].
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The Zelikovsky (ZEL) Algorithm [39]

Input: A graph G = (V, E) with edge weights w;; and anet N CV
Output: A low-cost tree 7" = (V' E’) spanning N (i.e. N CV'CV and E' C E)

G' = (N,N x N), with edge weights w;; = distg(ni, n;),
W =0, Triples={z C N : |z| = 3}
For every z € Triples Do
Find v which maximizes
v, = v and dist, =)
Repeat Forever
Find z € Triples which maximizes win = MST(G')— MST(G'[2]) — dist,
If win < 0 Then Return KMBg(N UW)
G' = G'[7]
W=WuUuv,

se: distg(s,v).

ses distg(s, v)

Figure 18: The ZEL heuristic for the GMST problem [39].
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