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Abstract

Certain manufacturing steps in very deep submicron
VLSI involve chemical-mechanical polishing (CMP) which
has varying e�ects on device and interconnect features, de-
pending on local layout characteristics. To reduce manu-
facturing variation due to CMP and to improve yield and
performance predictability, the layout needs to be made uni-
form with respect to certain density criteria, by inserting
\�ll" geometries into the layout. This paper presents an ef-
�cient multilevel approach to density analysis that a�ords
user-tunable accuracy. We also develop exact �ll synthesis
solutions based on combining multilevel analysis with a lin-
ear programming approach. Our methods apply to both at
and hierarchical designs.

1 Introduction

VLSI technology is entering ever deeper into submi-
cron regimes, as predicted by SIA's National Technology
Roadmap for Semiconductors [8]. The manufacturing pro-
cess is thus having an increasingly constraining e�ect on
physical layout design and veri�cation, and manufacturing
costs tend to increasingly drive design [6]. To maximize
yield, devices and interconnect must be manufactured in a
predictable and uniform manner with respect to a total vari-
ability budget distributed among the design attributes. As
the interactions between design and manufacturing become
tighter, many traditional manufacturing problems can be
(partially) solved at the design level, when more e�ective
solutions may be applied.

Attaining large process windows and uniform manufac-
turing characteristics is di�cult since these properties de-
pend on \global" relationships among layout features, not
only the traditional local ones. Hence, the traditional way
of representing manufacturing constraints as design rules is
often not appropriate. In particular, this is true when we
need to address the problem of controlling manufacturing
variation due to chemical-mechanical polishing (CMP) [5]
[7] [9], the procedure by which wafers are polished using a
rotating pad and slurry to achieve the planarized surfaces
on which succeeding processing steps can build.

CMP variation can be controlled if the local feature den-
sity is controlled, where the de�nition of \local" is de-
termined by the length scale at which feature density im-
pacts oxide thickness, and corresponds to the \window size"
within which feature density must be controlled. For ox-
ide CMP, this length scale has been estimated to be on the
order of 1-3mm, depending on CMP pad material, slurry
composition, etc. [2].1
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1The length scale over which polishing depth varies is signi�cantly
higher than the scale at which microloading and iso-dense optical
lithography e�ects occur. Hence, the latter sources of manufacturing
variation tend to be addressed by proximity corrections to the mask
geometries, not by feature density control.

To minimize the impact of manufacturing process physics
on device yield, foundries typically impose density rules2

for features on active and metal layers, so that the lay-
out becomes more uniform. Many process layers, includ-
ing di�usion and even thin-ox, can have associated density
rules that are satis�ed with layout post-processing that adds
�ll geometries. Traditionally, only foundries or specialized
TCAD tools companies have performed the post-processing
of layout needed to achieve this uniformity. Today, how-
ever, ECAD tools for physical design and veri�cation can-
not remain oblivious to such post-processing. Without an
accurate estimate of the downstream �lling at the foundry,
all the RC extraction, delay calculation, timing, noise and
reliability analyses will be highly inaccurate [3], leading to
a broken design ow.

Layout Density Control consists of two phases: density
analysis and �ll synthesis. The goal of density analysis is
to determine the area available for �lling within each win-
dow. The �ll synthesis phase then actually generates the
�ll geometries that go into these available areas. We refer
to the general case (i.e., when we examine and �ll all possi-
ble windows) as the oating window regime. On the other
hand, when we are concerned with only windows from some
�xed dissection over the layout, we refer to these cases as
the �xed-dissection regime.

Previous papers on this topic gave the �rst formulations
of the �lling problem that arises in layout post-processing
and optimization for manufacturability and yield [3] [4].
These works also developed a number of algorithms for den-
sity analysis and proposed �lling synthesis algorithms in the
�xed-dissection regime for at designs [3] [4]. This paper
proposes new fast multilevel algorithms for maximum den-
sity analysis and for �lling synthesis in the oating window
regime for at designs as well as for hierarchical designs.

2 Multilevel Density Analysis

This section develops new multilevel maximum density anal-
ysis and �lling methods for at designs. These new methods
are based on overhead density estimation, hierarchical zoom-
ing, and the combination of oating and �xed-dissection -
based techniques.

The algorithms described in earlier papers have two
major drawbacks: the fast analysis in the �xed-dissection
regime can signi�cantly underestimate the maximum
oating-window density in the worst case, while the oating
window analysis is too slow when the number of rectangles
is large [3]. In order to sidestep these drawbacks, we use
four ideas that are based on the following observation.

2For example, local interconnect metal layers may have rules of
form: \the total area density of metal features on the layer must be
between 0.30 and 0.70". In 0.35�m and below, one major semiconduc-
tor house requires di�usion area density between 0.25 and 0.40, and
metal area density between 0.40 and 0.70. Another major semicon-
ductor house requires metal area density to be at least 0.35. Density
rules may di�er between ASIC and high-end microprocessor houses
due to tradeo�s between device performance and predictability [1]
[10].



Observation 1 Given a �xed r-dissection3, any arbitrary
oating w�w window will contain some shrunk w(1�1=r)�
w(1�1=r) window of the �xed r-dissection, and will be con-
tained in some bloated w(1 + 1=r) � w(1 + 1=r) window of
the �xed r-dissection (Figure 1).
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Figure 1: Any oating w � w-window W always contains a
shrunk (r � 1) � (r � 1)-window of a �xed r-dissection, and
is always covered by a bloated (r+1)� (r+1)-window of the
�xed r-dissection.

1. We can estimate the possible error inherent in a �xed
dissection approximation more accurately than sug-
gested by Theorems 7 and 8 in [3]. The basic idea
for our improved approximation is the implication of
Observation 1 that the maximum oating window area
can be upper-bounded by the maximum area of the
bloated windows, and lower-bounded by the maximum
area of the shrunk windows.

2. We can use the notion of \zooming" to speed up �xed-
dissection density analysis: run the �xed-dissection
analysis with r = r0=2

k, �nd all bloated windows which
may contain over�lled oating windows, and delete all
tiles which do not belong to any such window. Next,
subdivide the remaining tiles in this dissection into
2 � 2 subtiles, and repeat the �xed-dissection analy-
sis for r = r0=2

k�1 and so on, until r becomes equal to
r0.

3. The recursive subdivision above may be continued un-
til the number of rectangles in the remaining tiles is
su�ciently small to apply the oating density analysis
algorithm from [3] without incurring signi�cant run-
time penalty.

4. Alternatively, we may terminate the recursion when we
are assured that actual optimal oating window density
is within some user-de�ned accuracy threshold, say � =
1% (by comparing it to the computational upper and
lower bounds from part 1).

The Multilevel Density Analysis algorithm in Figure 2
incorporates the above ideas. We assume that � > 0 is a
user-prede�ned accuracy threshold for this multilevel anal-
ysis, and note that the overall runtime of this multilevel
density analysis depends on �.

Since (by Observation 1) any oating w � w window W
is contained in some bloated window, the �lled area in W
ranges between Max (maximum w � w standard window
�lled area found so far) and BloatMax (maximum bloated
window �lled area found so far). The algorithm termi-
nates when the relative gap between Max and BloatMax
is at most 2� and then outputs the middle of the range

3A �xed r-dissection of the layout is de�ned as the set of w � w

windows having bottom-left corners at points (i � w
r
; j � w

r
), for i; j =

0; 1; : : : ; r( n
w
� 1), where r is an integer divisor of w. Thus, a �xed

r-dissection divides the layout into nr

w
�

nr

w
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r
�

w

r
,

and each w � w window in a �xed r-dissection consists of r2 non-
overlapping tiles.

Multilevel Density Analysis Algorithm
Input: n� n layout and accuracy � > 0
Output: maximum area density of w �w window

with accuracy �
Make a list ActiveT iles of all w=r � w=r-tiles
Accuracy =1, r = 1
While Accuracy > 1 + 2� do
Find all rectangles in w=r � w=r-tiles from ActiveT iles
Find the area of each standard window consisting of

tiles from ActiveT iles
Insert all such windows to WINDOWS list
Max = maximum area of standard window with

tiles in ActiveT iles
BloatMax = maximum area of bloated window with

tiles in ActiveT iles
For each tile T in ActiveT iles that do not belong to

any bloated window of area more than Max do
If Accuracy > 1 + �, then put T in TILES
Remove T from ActiveT iles

Replace in ActiveT iles each tile with four of its subtiles
Accuracy = BloatMax=Max, r = 2r

Move all tiles from ActiveT iles to TILES
Output max window density = (Max+BloatMax)=(2 � w2)

Figure 2: Multilevel density analysis algorithm.

(Max;BloatMax), which means that our maximum oat-
ing window density estimate is at that point within � of the
exact value.

Observation 2 The Multilevel Algorithm (Figure 2) �nds
a maximum w � w oating window density that is within a
user-prede�ned accuracy � of the exact value.

The runtime of multilevel density analysis depends on
�. At each iteration of the main loop the di�erence in area
between the bloated and standard window is reduced by half.
The main loop terminates when the original area di�erence
3w2 decreases to 2� or below, i.e., when

3w2

2t
� 2�

Thus, the maximum number of iterations is estimated by

log2(
3

2
� w2

� ��1) = O(log(w=�))

This implies a worst-case runtime of O(( n
w
log w

�
)2). In prac-

tice, the layout is typically unevenly �lled and the majority
of tiles are eliminated during the early iterations of the main
loop. This explains the excellent performance of multilevel
density analysis for actual VLSI layouts (Section 6).

The multilevel analysis can also be applied in �nding the
minimum window density. By Observation 1, the minimum
layout area in shrunk windows (i.e., �xed r-dissection win-
dows consisting of (r � 1) � (r � 1) tiles) is a lower bound
for the layout area in an arbitrary w � w window. There-
fore, the multilevel algorithm can be easily modi�ed to �nd
the minimum window density with respect to a user-de�ned
accuracy.

3 Multilevel Filling Area Computation

We now show how to exploit information obtained during
the multilevel density analysis phase in order to compute
the required �ll amounts. Recall that during the multilevel
density analysis, we kept track of active tiles (i.e. tiles which
may possibly belong to some maximum density window) and



we checked the area of some windows in order to update the
maximum window density if necessary. The main goal of the
multilevel �lling area computation is to decrease the number
of variables and constraints in the resulting linear program
(LP) described below.

Let rmax = 2lmax be the highest r reached in the mul-
tilevel density analysis algorithm; this corresponds to the
user-de�ned accuracy tolerance parameter �. Instead of con-
sidering all w

rmax
� w

rmax
-tiles and all w�w-windows consist-

ing of such tiles, we propose to consider only w

2l
�

w

2l
-tiles,

where l � lmax, and windows consisting of tiles that were
tried during the multilevel density analysis phase.

The multilevel �lling area computation is implemented
as follows. During multilevel density analysis (Figure 2), we
save tiles into the set TILES whenever they become \de-
activated" (i.e., determined to not belong to any maximum
density window), or else when their size becomes w

r0
� w

r0
.

We also record the area and slack of each such deactivated
tile. On the other hand, each time when we �nd the area of
a w�w-window W , we insert W into the list WINDOWS.

In the LP formulation for multilevel �lling area compu-
tation, each window W in WINDOWS induces two con-
straints: (i) the �rst constraint upper-bounds the �lled area
of W (i.e., the area remaining empty after �ll geometries are
added to the original layout), and (ii) the second constraint
forces an auxiliary variable M to be no greater than the
�lled area in W , which will enforce the min-variation objec-
tive. Each �lled window area is expressed as a sum of areas
of tiles. In addition, tile �ll amount constraints ensure that
each tile �ll amount is nonnegative as well as not greater
than the corresponding tile slack�pattern.

4 Floating Deviation LP Formulation

We now propose another LP formulation that may better
reect the quality of the �ll amount computation, since the
linear program for the �xed-dissection regime is susceptible
to density deviations in oating windows. Consider two dif-
ferent LP solutions in a �xed-dissection regime with di�erent
numbers of �xed dissections: the �rst has r2 dissections and
the second has (2r)2 dissections. Clearly, the more dissec-
tions we consider, the more accurate the result will be. On
the other hand, more dissections induce more LP constraints
and therefore worse (i.e., bigger) deviation is achieved (i.e.,
smaller value of the auxilary variable M).

A fair comparison of results with di�erent number of
�xed dissections entails �nding the oating deviation, i.e.,
the di�erence between the minimum and maximum oat-
ing window density. However, since the number of oating
windows is too large, we propose comparing worst-case es-
timates of the oating deviation. This can be derived from
Observation 1, which implies that the oating deviation can-
not be greater than the di�erence between the maximum
area in any w(1 + 1=r) � w(1 + 1=r)-window and the mini-
mum area in any w(1�1=r)�w(1�1=r)-window. Therefore,
this di�erence is a reasonable estimate for the oating devi-
ation.

Moreover, instead of comparing LP solutions according
to the above estimate of oating deviation, we use this esti-
mate as an objective in a new LP formulation. Speci�cally,
we constrain the area of each bloated w(1+1=r)�w(1+1=r)-
window by the user-de�ned density upper bound U , and
then seek to maximize the auxiliary variable M which is the
lower bound for the area of any w(1 � 1=r) � w(1 � 1=r)-
window. We refer to this formulation as the min-variation
oating window LP formulation, as it optimally decreases
the estimate of the density range between the maximum-
and minimum-density oating windows.

5 Hierarchical Layout Density Control

Most modern designs are hierarchical because this makes
them substantially smaller, easier and faster to process than
at designs. However, adapting known (at) layout meth-
ods to hierarchical designs is usually a di�cult task. In this
section we discuss how the multilevel approach to layout
density control in the �xed-dissection regime can be applied
to hierarchical designs. The main obstacle in hierarchical
layout density control is that we cannot atten the layers
because doing so will be prohibitive in terms of memory us-
age. The problem then is how to analyze and �ll hierarchical
designs without actually attening them.

5.1 Hierarchical Filling

We assume that we can �ll the slack area of each cell in-
dependently and uniformly, as is the case when the size of
�ll geometries is su�ciently small. For attened designs, our
LP formulation includes area, slack and �lling computations
for each tile, as follows.

Maximize M subject to:

pij � 0; i; j = 1; : : : ;
nr

w
� 1 (1)

pij � slack(Tij); i; j = 1; : : : ;
nr

w
� 1 (2)

i+r�1X

s=i

j+r�1X

t=j

pst � �ij
�
U � w2

� areaij
�
;

i; j = 1; : : : ;
nr

w
� r+ 1 (3)

M � areaij+

i+r�1X

s=i

j+r�1X

t=j

pst; i; j = 1; : : : ;
nr

w
�r+1 (4)

where

areaij =

i+r�1X

s=i

j+r�1X

t=j

area(Tst)

is the area of the (i; j)-th window, and �ij = 0 if areaij >
U � w2 and 1, otherwise.

The constraints (1) imply that we can only add features,
and cannot delete features from any tile. The slack con-
straints (2) are computed for each tile. If a tile Tij is orig-
inally over�lled, then we set slack(Tij) = 0. The values of
pij from the LP solution indicate the �ll amount to be in-
serted in each tile Tij . The constraints (3) say that the no
window can have density more than U after �lling unless it
was initially over�lled. Inequalities (4) imply that the aux-
iliary variable M is a lower bound on all window densities.
The linear program seeks to maximize M , thus achieving
the min-variation objective. The number of variables and
the number of constraints in the linear program are both
O((nr

w
)2). In practice, even for a large die and a user re-

quirement of high accuracy, we might have n = 15; 000,
w = 3; 000, and r = 10, which still yields a linear program
of tractable size.

We now show how to compute the �ll areas for cells
(rather than tiles), with the main goal being to minimize
the window density variation while preserving the hierarchi-
cal structure of the design. For each tile Tij we consider its
partition into cells, while viewing the �ll area as a sum of
normalized �ll areas in each intersecting cell (Figure 3).

area(Tij) =
X

kl

�ij;kl � area(Ckl) (5)
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Figure 3: Intersection of a tile and a cell. The dark features
and patterned subcells may completely or partially overlap
with the tile.

where for a tile Tij intersecting the l-th copy Ckl of a the k-
th cell Ck, we de�ne �ij;kl = area(Tij \Ckl)=area(Ck) to be
the normalized area of features overlapping with each tile.
Let the variables dk indicate the �ll amount to be inserted
in each cell Ck.

pij =

cX

k=1

dk �
X

l

ij;kl (6)

where ij;kl = slack(Tij \ Ckl)=slack(Ck) is the normalized
slack of each cell-tile intersection. In the new LP formulation
we add constraints (5 - 6) and replace constraints (1-2) with
the following two constraints:

dk � 0; k = 1; : : : ; c (7)

dk � slack(Ck); k = 1; : : : ; c (8)

Observation 3 The solution for the LP above optimally
solves the �ll synthesis problem for hierarchical designs.

6 Experimental Results

Our current experimental testbed integrates GDSII Stream
input, conversion to CIF format, and internally-developed
geometric processing engines, coded in C++ under Solaris.
We ran experiments using three metal layers extracted from
industry standard-cell layouts (Table 1). Benchmark L1 is
the M2 layer from an 8,131-cell design; Benchmark L2 is
the M3 layer from a 20,577-cell design; and Benchmark L3
is the M2 layer from the same 20,577-cell design. The layout
dimension N , number of rectangles k, and window size w (w
always chosen to equal 1.5mm) for each test case are shown
in Table 1.

Table 2 compares the runtimes4 of the �xed-dissection
analysis for r = 4; 8 and the multilevel analysis with accu-
racy tolerance � = 2%; 3%. To enable comparison of results,
for multilevel analysis we report the maximum density of
a standard window, rather than the midpoint between the
maximum-density standard and bloated windows. The data
indicates that the multilevel approach is more accurate as
well as more e�cient than the �xed-dissection analysis.

Table 3 compares the �xed-dissection [4] and oating de-
viation LP approaches. The minimum density achieved by
the new approach is slightly lower than for the standard ap-
proach because the new approach tries to make the �lling
area distribution more uniform. The more uniform distribu-
tion is achieved with similar total runtime (LP generation,
LP solution and �ll pattern generation).

4CPU time corresponds to seconds on a 140MHz Sun Ultra-1 with
256MB RAM.

Acknowledgments. We thank Larry Camilletti and Du-
ane Boning for enlightening discussions, and gratefully ac-
knowledge software donations from Avant! Corp. and Art-
work Conversions, Inc.

References

[1] R. Bek, C. C. Lin and J. H. Liu, personal communication, De-
cember, 1997.

[2] R. R. Divecha, B. E. Stine, D. O. Ouma, J. U. Yoon, D. S. Bon-
ing, J. E. Chung, O. S. Nakagawa, and S. Y. Oh, E�ect of Fine-
line Density and Pitch on Interconnect ILD Thickness Varia-
tion in Oxide CMP Process, in Proc. CMP-MIC, Santa Clara,
February 1998.

[3] A. B. Kahng, G. Robins, A. Singh, H. Wang, and A. Zelikovsky,
Filling and Slotting: Analysis and Algorithms, in Proc. Inter-
national Symposium on Physical Design, Monterey, CA, April
1998, pp. 95{102.

[4] A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, New and
Exact Filling Algorithms for Layout Density Control, in Pro-
ceedings of the 12th International Conference on VLSI Design,
1999.

[5] H. Landis, P. Burke, W. Cote, W. Hill, C. Hoffman, C. Kaanta,

C. Koburger, W. Lange, M. Leach, and S. Luce, Integration of
Chemical-Mechanical Polishing into CMOS Integrated Circuit
Manufacturing, Thin Solid Films, 220 (1992), pp. 1{7.

[6] W. Maly, Moore's Law and Physical Design of ICs, in Proc.
International Symposium on Physical Design, Monterey, Califor-
nia, April 1998. special address.

[7] G. Nanz and L. E. Camilletti, Modeling of Chemical-
Mechanical Polishing: A Review, IEEE Trans. on Semiconduc-
tor Manufacturing, 8 (1995), pp. 382{389.

[8] SIA, The National Technology Roadmap for Semiconductors,
Semiconductor Industry Association, December 1997.

[9] M. Tomozawa, Oxide CMP Mechanisms, Solid State Technol-
ogy, (1997), pp. 169{175.

[10] K. Wampler and T. Laidig, personal communication, September,
1997.

Industry Test Cases
Benchmark layout size # rectangles window size

L1 125,000 49,506 31,250
L2 112,000 76,423 28,000
L3 112,000 133,201 28,000

Table 1: Parameters of three industry test cases.

Fixed-Dissection & Multilevel Density Analysis
Fixed-Dissection Multilevel

Bench- r Max CPU � Max Std CPU
mark Density (sec.) Density (sec.)
L1 4 .2125 2.9 3% .2184 2.8
L1 8 .2170 9.2 2% .2184 2.8
L2 4 .1791 4.5 3% .1829 3.8
L2 8 .1791 14.5 2% .1830 6.9
L3 4 .2895 8.0 3% .2911 6.6
L3 8 .2910 25.1 2% .2925 7.1

Table 2: Fixed-dissection (r = 4; 8) and multilevel (accuracy
tolerance � = 2%, 3%) density analysis results.

Fixed-dissection LP Floating Deviation LP
Bench- r Min CPU Min CPU
mark Density (sec.) Density (sec.)
L1 2 .2192 7.6 .2184 7.5
L1 4 .2192 7.6 .2165 7.7
L1 8 .2189 31.9 .2109 19.3
L2 2 .1816 8.0 .1748 8.0
L2 4 .1704 11.9 .1470 10.8
L2 8 .1631 62.5 .1354 64.9
L3 2 .2640 13.5 .2619 14.3
L3 4 .2606 18.2 .2578 20.2
L3 8 .2553 59.7 .2487 54.1

Table 3: Total CPU times for solving the Filling Problem
while minimizing �xed-dissection and oating deviation.


