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Abstract

Motivated by practical VLSI routing applications, we study the maximum vertex degree
of a minimum spanning tree (MST). We prove that under the L, norm, the maximum vertex
degree over all MSTs is equal to the Hadwiger number of the corresponding unit ball; we
show an even tighter bound for MSTs where the maximum degree is minimized. We give the
best-known bounds for the maximum MST degree for arbitrary L, metrics in all dimensions,
with a focus on the rectilinear metric in two and three dimensions. We show that for any finite
set of points in the rectilinear plane there exists an MST with maximum degree of at most 4,
and for three-dimensional rectilinear space the maximum possible degree of a minimum-degree
MST is either 13 or 14.

1 Introduction

Minimum spanning tree (MST) construction is a classic optimization problem for which several
efficient algorithms are known [9] [15] [19]. Solutions of many other problems hinge on the con-
struction of an MST as an intermediary step [4], with the time complexity sometimes depending
exponentially on the MST’s maximum vertex degree, as in the algorithm of Georgakopoulos and
Papadimitriou [8]. Applications that would benefit from MSTs with low maximum vertex degree
include Steiner tree approximation [14] as well as VLSI global routing [1] [18]. With this in mind,

we seek efficient methods to construct an MST with low maximum vertex degree:

The Bounded Degree Minimum Spanning Tree (BDMST) problem: Given a complete
weighted graph and an integer D > 2, find a minimum-cost spanning tree with maximum vertex

degree < D.
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Finding a BDMST of maximum degree D = 2 is equivalent to solving the traveling salesman
problem, which is known to be NP-hard [7]. Papadimitriou and Vazirani have shown that given
a planar pointset, the problem of finding a Euclidean BDMST with D = 3 is also NP-hard
[17]. On the other hand, they also note that a BDMST with D = 5 in the Euclidean plane is
actually a Euclidean MST and can therefore be found in polynomial time. The complexity of the
BDMST problem when D = 4 remains open. Ho, Vijayan, and Wong [12], proved that an MST
in the rectilinear plane must have maximum degree of D < 8, and state (without proof) that the
maximum degree bound may be improved to D < 6. The results of Guibas and Stolfi [10] also

imply the D < 8 bound.

In this paper we settle the bounded-degree MST problem in the rectilinear plane: we show
that given a planar pointset, the rectilinear BDMST problem with D < 3 is NP-hard, but that
the rectilinear D > 4 case is solvable in polynomial time. In particular, we prove that in the
rectilinear plane there always exists an MST with maximum degree of D < 4, which is tight. We
also analyze the maximum MST degree in three dimensions under the rectilinear metric, which
arises in three-dimensional VLSI applications [11], where we show a lower bound of 13 and an
upper bound of 14 on the maximum MST degree (using the previously known techniques, the best
obtainable lower and upper bounds for three dimensions under the rectilinear metric were 6 and
26, respectively).

More generally, for arbitrary dimension and L, metrics we investigate : (i) the maximum
possible vertex degree of an MST, and (ii) the maximum degree of MSTs in which the maximum
degree is minimized. We prove that the maximum MST degree under the L, metric is equal to the
so-called Hadwiger number of the corresponding L, unit ball. The relation between MST degree
and the packing of convex sets has not been elucidated before, though Day and Edelsbrunner [6]
studied the related “attractive power” of a point. For general dimension we give exponential lower
bounds on the Hadwiger number and on the maximum MST degree.

Our results have several practical applications. For example, our efficient algorithm to compute
an MST with low maximum degree enables an efficient implementation of the Iterated 1-Steiner

algorithm of Kahng and Robins for VLSI routing [14], which affords a particularly effective approx-



imation to a rectilinear Steiner minimal tree (within 0.5% of optimal for typical input pointsets
[21]), and where the central time-consuming loop depends on the maximum MST degree [1] [2].
Our results also have implications to newly emerging three-dimensional VLSI technologies [11], as

well as for any other algorithms that use an MST as the basis for some other construction.

The remainder of the paper is as follows. Section 2 establishes the terminology and relates
the maximum MST degree to the Hadwiger numbers (the central result is Theorem 4). Section
3 studies the L; Hadwiger numbers and the maximum MST degree for the L; metric. Section
4 considers the Hadwiger numbers and the maximum MST degree for arbitrary L, metrics. We
conclude in Section 5 with open problems. A preliminary version of this work has appeared in

[20].
2 Hadwiger and MST Numbers

A collection of open convex sets forms a packing if no two sets intersect; two sets that share a
boundary point in the packing are said to be neighbors. The Hadwiger number H(B) of an open
convex set B is the maximum number of neighbors of B considered over all packings of translates
of B (a translate of B is a congruent copy of B moved to another location in space while keeping
B’s original orientation).

There is a vast literature on Hadwiger numbers (e.g., Croft et al. [5], Fejes T6th [22]). Most
results address the plane, but there are several results for higher dimensions. In particular, if S is

a convex set in R* (i.e., k-dimensional space), the Hadwiger number H(S) satisfies:
E+k<HS)<3%-1

It is known that the regular k-simplex realizes the lower bound and the k-hypercube realizes
the upper bound [22]. Tighter bounds are known for k-hyperspheres; Wyner [23] showed that
the Hadwiger number for spheres is at least 20-207k(1+0(1)) " and Kabatjansky and Levenstein [13]

showed that it is at most 20-401k(1+o(1))

Only four Hadwiger numbers for spheres are known
exactly; these are the numbers in dimensions 2, 3, 8, and 24, and they are 6, 12, 240, and 196560,

respectively. The three-dimensional Hadwiger number has a history dating back to Newton and



was only determined much later.

For two points z = (z1,%2,...,2;) and ¥y = (y1,¥2,...,¥x) in k-dimensional space R*, the
L, distance between z and y is ||[zy||, = {/Zle |z; — yi|P. For convenience, if the subscript p
is omitted, the rectilinear metric is assumed (i.e., p = 1). Let B(k,p,z) denote an open L, unit
ball centered at a point z in §Rf) (we use §RI’§ to denote k-dimensional space where distances are
computed under the L, metric). When z is the origin, B(k,p,z) is denoted as B(k,p), and we

use H(k,p) to denote the Hadwiger number of B(k,p).

Let I(k,p) be the maximum number of points that can be placed on the boundary of an L,
k-dimensional unit ball so that each pair of points is at least a unit apart. With respect to a finite
set of points P C §RI’§ and an MST T for P, let v(k,p, P,T) be the maximum vertex degree of T'
(also referred to as simply the degree of T'). Let v(k,p, P) = max v(k,p, P,T), where T is the set of
all MSTs for P, and let v(k,p) = 1£I<1;azr§e v(k, p, P). In other words, v(k, p, P) denotes the maximum
degree of any MST over P, and v(k,p) denotes the highest possible degree in any MST over any

finite pointset in k-dimensional space under the L, metric.

We will need the following result, which is easily established.

Lemma 1 |jzy||, > 2 if and only if B(k,p,z) N B(k,p,y) = 0. Further, ||zy||, = 2 if and only if

B(k,p,z) and B(k,p,y) are tangent.

Lemma 2 The Hadwiger number H(k,p) is equal to I(k,p), the mazimum number of points that
can be placed on the boundary of the unit ball B(k,p) so that all interpoint distances are at least

one unit long.

Proof: We first show that I(k,p) < H(k,p). Suppose that I(k,p) points are on the boundary of
B(k,p) and are each at least a unit distance apart. Consider placing an L, ball of radius % around
each point, including one at the origin. By Lemma 1, these balls form a packing, and all the balls
touch the ball containing the origin. Therefore, I(k,p) < H(k,p).

Next we show that H(k,p) < I(k,p). Consider a packing of L, unit balls, and choose one to be
centered at the origin. Consider the edges connecting the origin to each center of the neighboring

balls. The intersections of these edges with the boundary of B(k,p) yield a pointset where each



pair of points is separated by at least a unit distance, otherwise we would not have a packing of

L, unit balls. O

Lemma 3 The Hadwiger number H (k,p) is equal to v(k,p), the mazimum MST degree over any

finite pointset in §Rf,.

Proof: We show that v(k,p) < I(k,p), the maximum number of points that can be placed on the
boundary of an L, k-dimensional unit ball so that each pair of points is at least a unit apart. Let
z be a point, and let y1,...,y, be points adjacent to z in an MST, indexed in order of increasing
distance from 2. Note that (y;,y;) must be a longest edge in the triangle (z,y;,y;), and that the
MST restricted to « and y, ...,y is a star centered at z. Draw a small L, ball around z, without
loss of generality a unit ball, and consider the intersection of the segments (z,y;), 1 <1 < v, with
B(k,p,z). Let these intersection points be called g;, 1 < i < v, and suppose there is a pair ¢; and
Ui, 1 < g, with ||9:9;]|p < 1. Note that (g;,9;) is the shortest edge on the triangle (z, ¢;,;), and
(z,9;) is a longest edge. Now consider similar triangle (z,y;, 2), where z is a point on the edge
(z,y;)- The path from y; to z to y; is shorter than the length of (z,y;), so (y;,y;) is not a longest
edge in triangle (z,v;,y;), a contradiction. We note this bound is tight for pointsets that realize
I(k, p). O
We next consider a slightly different number 7(k, p), which is closely related to v(k, p). Recall
that v(k, p, P, T) denotes the maximum vertex degree of the tree T'. Let (k, p, P) = 1:,111611T1 v(k,p, P,T),
where 7 is the set of all MSTs for P, and let v(k,p) = Irjréag.ggc v(k,p, P). In other words, ©(k, p, P)
denotes the degree of an MST over P that has the smallest possible degree, and 7(k,p) denotes
the maximum of the degrees of all minimum-degree MSTs over all finite pointsets in %f, (recall
that we use the phrase “the degree of T” to refer to the maximum vertex degree of the tree T').
Although it is clear that D(k,p) < v(k,p), it is not clear when this inequality is strict. In order
to count (k,p), we define the MST number M (k, p) similarly to the Hadwiger number H (k, p),
except that the translates of the L, unit ball B(k,p) are slightly magnified. The underlying
packing consists of B(k,p) as well as multiple translated copies of (1 + €) - B(k,p), and M (k,p)

is the supremum over all € > 0 of the maximum number of neighbors of B(k,p) over all such



packings. Clearly M (k,p) < H(k,p). We also define I (k,p) as the number of points that can be
placed on the boundary of B(k,p) so that each pair is strictly greater than one unit apart.
Consider a set S = {z;,...,z,} of n points in §Rf,. For convenience, let N = 2(;), and let

S1,...,9n be the set of sums of the interdistances, one sum for each distinct subset. Let
0<dé= lgggljngNHSi — S| : 18— S;] > 0}

A perturbation of a pointset S is a bijection from S to a second set S’ = {z},...,z},} (for conve-
nience, assume that the indices indicate the bijection); we say that a perturbation of S is small
if
n
3l < o
=1
In discussing spanning trees of S and the perturbed set S’, we assume that the vertex set [n]

consists of the integers 1 to n, where vertex i corresponds to point z; or point z;. The topology of

a tree over vertex set [n] is the set of edges in the tree.

Theorem 4 Let S be a set of points in §Rf,, and let S' be a set of points corresponding to a small

perturbation of S. Then the topology of an MST for S' is also a topology for an MST for S.

Proof: Let T be an MST for S, and let T’ be an MST for S’. Let [(T') and I(T") be the lengths
of T and T', respectively. Then [(T) — § < I(T') < I(T) + §. Consider the tree T with the
same topology as T' but with respect to pointset S. Now, I(T') — § < UT) < U(T") + g, 50
I(T) — 6 < I(T) < I(T) + 6. Since & is the minimum positive difference between the sums of any

two distinct subsets of interdistances, [(T') = I(T), and T is also an MST for S. 0

Lemma 5 The mazimum of the degrees of all minimum-degree MSTs over all finite pointsets in
§Rf, , 15 equal to the mazimum number of slightly magnified unit balls that can be packed around a

gwen unit ball; that is, v(k,p) = M(k,p).

Proof: Let S be a set of points, and let 6 be defined as above. Place a small L, ball about each
point z € S (without loss of generality a unit ball, though the intent is that z is the only point

inside B(k,p,z)), and connect each distinct pair (z,y), z,y € S, with a line segment. Consider



the intersections of these edges with B(k,p,z). Perform a small perturbation on S so that no
two intersection points have length 1. Repeat the argument used in the proof of Lemmas 2 and
3, this time with balls of the form (1 + ¢€) - B(k, p), for small € > 0. The first part shows that
I(k,p) = M(k,p), and the second that 7(k,p) < I(k,p). This bound is tight for pointsets that

realize I(k,p). 0
3 The Maximum L; MST Degree

Hadwiger numbers are notoriously difficult to compute. In this section, we determine the 2 and 3
dimensional Hadwiger numbers for the diamond and octahedron, respectively. The first of these
numbers is well-known, but we could not find any reference for the octahedron. We also study the
MST numbers, obtaining a value of 4 in two dimensions, and bounds in higher dimensions. For

notational convenience, we define:

The Uniqueness Property: Given a point p, a region R has the uniqueness property with
respect to p if for every pair of points u,w € R, ||lwu|| < max(||wp||, ||upl|)-

A partition of space into a finite set of disjoint regions is said to have the uniqueness property if

each of its regions has the uniqueness property.

Define the diagonal partition of the plane as the partition induced by the two lines oriented at 45
and -45 degrees through a point p (i.e., partitioning R? — {p} into 8 disjoint regions, four “wedges”
of dimension two (labeled R1 through R4 in Figure 1(a)), and four “half-lines” of dimension one
(labeled R5 through R8 in Figure 1(a)). It is easy to show that the diagonal partition has the
uniqueness property, which in turn implies an upper bound of 8 on the maximum MST degree in

the rectilinear plane.

Lemma 6 Given a point p in the rectilinear plane, each region of the diagonal partition with

respect to p has the uniqueness property.

Proof: We need to show that for any two distinct points u and w that lie in the same region,
||wu|| < max(||wpl|, ||up||). This is obvious for the one dimensional regions. Consider u,w in one of

the two dimensional regions. Assume without loss of generality that ||up|| < ||wp]|| (otherwise swap



the roles of w and v in this proof). Consider the diamond D with left corner at p and center at c,
such that u is on the boundary of D (see Figure 1(c)). Let a ray starting at p and passing through

w intersect D at b. By the triangle inequality, ||wu|| < ||Jwb|| + |[bu|| < ||wb|| + ||be|| + ||cu|| =

|[wd]| + ||be|| + |lep|l = |Jwp||.- Thus every one of the 8 regions of the diagonal partition has the
uniqueness property. 0
\ . /
R 2
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Figure 1: A partition of ® — {p} into 8 regions such that for any two points u and w that lie in
the same region, either ||lwu|| < ||wp|| or else |Juw|| < ||up]|.

Corollary 7 The mazimum possible degree of an MST over any finite pointset in the rectilinear

plane is equal to 8; that is, v(2,1) = 8.

Proof: By Lemma 6 the diagonal partition has the uniqueness property, which implies that



I(2,1) < 8. The pointset {(0,0), (£1,0), (0,%1), (+3,+1)} shows that this bound is tight.

Lemmas 2 and 3 imply that the maximum MST degree in the rectilinear plane is equal to 8. 0

We now show an analogous result for three-dimensional rectilinear space. Consider a cuboc-
tahedral partition of 3 into 14 disjoint regions corresponding to the faces of a truncated cube
(Figure 2(a-b)), i.e., 6 congruent pyramids with square cross-section (Figure 2(c)) and 8 congruent
pyramids with triangular cross-section (Figure 2(d)). Most of the region boundaries are included
into the triangular pyramid regions as shown in Figure 3(c), with the remaining boundaries form-
ing 4 new regions (Figure 3(d)), to a total of 18 regions. Following the same strategy as in the

two-dimensional case, we first show that the uniqueness property holds.

Lemma 8 Given a point p in three-dimensional rectilinear space, each region of the cuboctahedral

partition with respect to p has the uniqueness property.

Proof: We need to show that for any two points v and w that lie in the same region of the
cuboctahedral partition, ||wu|| < max(||wp||, ||up||). This is obvious for the 2 dimensional regions

that are the boundaries between the pyramids (by an argument analogous to that of Lemma 6).

Consider one of the square pyramids R with respect to p (Figure 2(c)), and let u,w € R. Assume
without loss of generality that ||up|| < ||wp|| (otherwise swap the roles of u and w). Consider
the locus of points D C R that are distance ||up|| from p. (Figure 2(e)); D is the upper half
of the boundary of an octahedron. Let ¢ be the center of the octahedron determined by D, so
that ¢ is equidistant from all points of D. Let b be the intersection of the surface of D with a
ray starting from p and passing through w. By the triangle inequality, ||wu|| < |Jwb|| + ||bul] <
|wb|| + ||be]| + ||cu|| = ||wb|| + ||be|| + ||epl| = ||wp|| (recall that the square pyramid regions do not
contain their boundary points). Thus, w is closer to u than it is to p, which implies that the region

R has the uniqueness property.

To show the uniqueness property for the triangular pyramids, consider one of the triangular pyra-
mids R with respect to p (Figure 2(d)), and let u,w € R. Assume without loss of generality that
[|lup|| < ||wpl|| (otherwise swap the roles of u and w). Consider the locus of points D in R that are

at distance ||up|| from p (Figure 2(f)). Let b be the intersection of D with a ray starting from p



Figure 2: A truncated cube (a-b) induces a 3-dimensional cuboctahedral partition of space into 14
regions: 6 square pyramids (c), and 8 triangular pyramids (d). Using the triangle inequality, each
region may be shown to contain at most one candidate point for connection with the origin in an
MST (e-f).
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Figure 3: Assigning the boundary points to the various region: a hollow (solid) dot indicates
an open (closed) interval. A topological mapping of the cuboctahedron (a) is shown in (b). The
various boundaries are included into the triangular pyramid regions (c), while the square pyramids
do not contain any boundary points. The remaining boundaries form 4 new regions (d), bringing
the total to 18.

and passing through w. By the triangle inequality, ||wul|| < ||Jwb|| + ||bu|| < ||wb|| + ||bp|| = ||wp]|
(recall that each triangular region is missing one of its boundary faces, as shown in Figure 3(a-b)).

Thus, w is closer to u than it is to p, which implies that the region R has the uniquenes property.

Thus every one of the 18 regions of the cuboctahedral partition has the uniqueness property.

11



Corollary 9 The mazimum possible degree of an MST over any finite pointset in three-dimensional

rectilinear space is equal to 18; that is, v(3,1) = 18.

Proof: By Lemma 8 the cuboctahedral partition has the uniqueness property, which implies that
I(3,1) < 18. The pointset {(0,0,0), (+1,0,0), (0,%1,0), (0,0,+1), (£3,+3,0), (0,£3,+1),
(+1,0,+1)} shows that this bound is tight. Lemmas 2 and 3 imply that the maximum MST

degree in three-dimensional rectilinear space is 18. 0

We can further refine the maximum MST degree bound of Corollary 7 by applying the pertur-

bative argument of Theorem 4.

Theorem 10 The mazimum degree of a minimum-degree MST over any finite pointset in the

rectilinear plane is 4; that is, 0(2,1) = 4.

Proof: The pointset {(0,0), (£1,0), (0,%1)} establishes a lower bound of 4. To get the upper
bound of 4, consider 1(2,1), the number of points that can be placed on boundary of a unit
ball (i.e., a diamond) in ®2 such that each pair of points is strictly greater than one unit apart.
Consider the diagonal partition, as in the proof of Lemma 6; at most one point can be in the

closure of each of the four 2-dimensional regions, proving the result. 0

Theorem 10 has an interesting consequence on the complexity of the BDMST problem restricted

to the rectilinear plane:
Instance: A planar pointset P = {z1,...,2,}, and integers D and C.
Question: Is there a rectilinear spanning tree with maximum degree < D and cost < C?

If D = 4, the question can be decided in polynomial time. In fact, our methods establish that
such a bounded-diameter MST can be computed as efficiently as an ordinary MST. On the other
hand, if D = 2, the problem is essentially a rectilinear traveling salesman problem (a wandering
salesman problem, since the tour is a path rather than a circuit), and it is therefore NP-complete.
It turns out that the D = 3 question is also NP-complete, using a proof identical to the one
appearing in Papadimitriou and Vazirani [17] (their result is for the corresponding Euclidean
problem, but since they restrict their construction to a special type of grid graph, their proof holds

in the rectilinear metric as well). We can summarize the rectilinear and Euclidean results in the

12



following table:

Complexity of the BDMST Problem
D | Euclidean | rectilinear

2 | NP-complete | NP-complete

3 | NP-complete | NP-complete

4 open polynomial
> 5| polynomial polynomial

Next, we refine the maximum MST degree bound of Corollary 9.

Theorem 11 The mazimum degree of a minimum-degree MST over any finite pointset in 3-

dimensional rectilinear space is either 13 or 14; that 1s, 13 < 9(3,1) < 14.

Proof: For the lower bound, the following pointset shows that the maximum degree of an
MT is I(k,p) > 13: {(0,0,0), (£100,0,0), (0,+100,0), (0,0,+100), (47, —4,49), (—6,—49,45),
(—49,8,43), (—4,47,-49), (—49,—-6,—45), (8,—49,—43), (49,49, 2)}, since for this pointset, all
non-origin points are strictly closer to the origin than they are to each other, forcing the MST to

be unique with a star topology.

To obtain the upper bound of 14 on the maximum MST degree, consider the cubeoctahedral
partition. Any two points lying in the closure of one of the 14 main regions of the cuboctahedral

partition must be within distance 1 of each other. 0

We note that there is an elementary means to settle the 13 vs. 14 question raised in Theorem
11. Suppose we are trying to decide whether 14 points can be placed on the surface of a unit
octahedron so that each pair is greater than a unit distance apart. The relationship between point
(%i,¥:, 2;) and point (z;,y;,2;) can be phrased by the inequality |z; — z;| + [y; — y;| + |2i — 2;] > 1
subject to the constraints |z;| + |y;| + |2;| = 1 and |z;| + |y;| + |2;| = 1. The absolute values can
be removed if the relative order between z; and z-, etc., is known. We can therefore consider all
permutations of the coordinates of the 14 points and produce the corresponding inequalities. If the
inequalities corresponding to a particular permutation are simultaneously satisfied, #(3,1) = 14,
otherwise ©(3,1) = 13. Feasibility can be settled by determining whether a particular polytope
contains a nonempty relative interior (this approach is easily extended to any dimension k). We
have not settled the 13 vs. 14 question, and the above procedure seems impractical due to the

large number of resulting inequalities.

13



Monma and Suri [16] used a similar perturbation argument to prove that for any poinset in
the Euclidean plane, there is an MST with maximum degree of 5. Cieslik [3] has bounded the
vertex degrees of Steiner minimal trees in Minkowski planes (note however, that we bound the
minimum spanning tree degree, not the Steiner minimal tree degree as Cieslik does, so the results
of the two works are complimentary). We now address the Hadwiger and MST Numbers for the

k-crosspolytope.

Theorem 12 The mazimum degree of a minimum-degree MST over any finite pointset in RY is

at least Q(209312k) - that is, D(k,1) = Q(20-0312k),

Proof: Consider the family F(j) of points (:I:%, eee, ﬂ:%,O, ...,0), where j is an integer between
1 and k. (Here, the j nonzero terms can be arbitrarily interspersed in the vector.)

Each member of F'(j) is distance 1 from the origin; the distance between z € F(j) and y € F(j)
depends on the positions and signs of the nonzero terms. Given z = (21,22, ...,zx) € F(j), let T
be the binary vector containing a 1 in bit ¢ if ; # 0 and a 0 in bit ¢ if z; = 0. If the Hamming
distance between T and 7 is at least j, then ||zy|| > 1. (The Hamming distance between two bit
vectors is the number of bit positions in which they differ.) We want to find a large set of Z that

are mutually Hamming distance greater than j apart.

Consider the set V(j) of bit vectors containing exactly j 1’s; |V (j)| = (’;) Form a graph

G(t) = (V(¢), E(t)) for which (Z,7) € E(t) if and only if the Hamming distance between Z and 7

Li/2]

is at most j. Note that G(t) is regular with degree d(j) = Z (?) (¥77). To see this, we determine
i=1

the number of edges adjacent to Z = (1,...,1,0,...,0), where there are j 1’s. The set of vectors

in V(j) adjacent to & can be partitioned into vectors that contain ¢ 0’s in the first j positions,
1 << [4] +1. For a given i, there are (/) ways to choose the 0 positions and (*,7) positions to
place the displaced 1’s in the last & — j positions.

Here is our strategy to find a subset of V(j) of large cardinality that are mutually far apart:

choose a vertex, delete its neighbors, and continue. The number of vertices chosen must exceed

14



[V(5)]|/d(j)- Suppose that ¢cj = 16+/ej = k. Then

, ci/? " ( c )z—'i 1
=" (=
43./3 16
Here, ¢’ and ¢ are constants; the approximation to (f) is from Graham et al. [9]. Substituting

for ¢ gives the result. 0

4 The Maximum L, MST Degree

In this section, we provide bounds on M(k,p) for general L, metrics.

Theorem 13 The mazimum degree of a minimum-degree MST over any finite pointset in §Rf, 18

at least v(k,p) = Q(VE2"I~E(@)) where a = & and E(z) = zlgl + (1 —2)lg .

2p

Proof: Consider the vertices of the k-hypercube (£1,...,+1). Each of these points is k/? from
the origin. On the other hand, if points z and y differ from each other in j positions, they are
distance 25'/? from each other. If 2j'/? > k'/?_ then z and y are further from each other than

they are from the origin.

We need to find the largest cardinality set of points on the k-hypercube that differ in at least
J = 2% positions. To do this, construct a graph G whose vertex set is the set of binary strings of
length k, and for which there is an edge between string a and string b if and only if the Hamming
distance between a and g is at most J. Proceed in the same manner as in the proof of Theorem

12, except that d(J) = Z(f) The number of vertices chosen must exceed 2% /d(J). Now,

i=1

¥ <k> _ 9kB(a)—}1gk+O0(1)
K3

i<ak

for 0 < a < 1 (see Graham et al. [9], Chapter 9, Problem 42). Note that a = 5, so

2k -
2T\ [pk-B( )
d(J) Vi
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Theorem 13 shows that for any fixed p > 1, ¥(k, p) grows exponentially in the dimension. Note
that this bound is less than the bound obtained by Wyner [23] (for H(k,2), it is Q(20-18%) since
E(3) = 31g3 — 1~ 0.189), but it is sufficient for our purposes.

It is well known that H(k,p) < 3¥—1 (e.g., [22]). In 2-dimensional space, the Hadwiger number
is largest for Ly and L, the only planar L, metrics with Hadwiger number 8. For all other L,
metrics, the Hadwiger number is 6. On the other hand, the planar MST number is smallest for

L; and L, having a value of 4, and it is easily seen to be 5 for all other L, metrics.

These observations raise an interesting question: how does the MST number behave as a
function of p? Note that the maximum Hadwiger number is achieved by parallelotopes. Next
we derive the MST number for the Lo, unit ball (i.e., the k-hypercube), and show that the MST

number is not maximized in the L., metric in any dimension.

Theorem 14 The mazimum degree of a minimum-degree MST over any finite pointset in RE_ is

2k - that is, v(k,o00) = 2F.

Proof: We first show the result for p = co; note that the L, unit ball is a k-hypercube. The upper
bound is established by considering I (k, p), the number of points that can be placed on boundary
of a unit ball in éRf, such that each pair of points is strictly greater than one unit apart. Note that
at most one point can be placed in each k-ant (the k-dimensional analogue of “quadrant”). The

lower bound is established by considering the set of 2* vertices of a k-hypercube. 0

Theorem 15 For each k, there is a p such that the mazimum degree of a minimum-degree MST

over any finite pointset in ﬂ?f, space exceeds 2% ; that is, for all k there exists a p such that D(k,p) >

2k,

Proof: Consider the pointset (—1,+1,...,+1), (¢, £6,...,£6), and (k'/?,0,...,0), where (e +
(k —1)6P) = k. Tt is possible to choose €, §, and p so that each pair of points is on the surface of

a L, ball of radius k'/?, and all interdistances are greater than k'/?. 0
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5 Conclusion

Motivated by practical VLSI applications, we showed that the maximum possible vertex degree
in an L, MST equals the Hadwiger number of the corresponding unit ball, and we determined
the maximum vertex degree in a minimum-degree L, MST. We gave an exponential lower bound
on the MST number of a k-crosspolytope, and showed that the MST number for an L, unit ball,
p > 1, is exponential in the dimension. We concentrated on the L; metric in two and three
dimensions due to its significance for VLSI: for example, we showed that for any finite pointset
in the rectilinear plane there exists an MST with maximum degree of at most 4, and that for
three-dimensional rectilinear space the maximum possible degree of a minimum-degree MST is

either 13 or 14.

We solved an open problem regarding the complexity of computing bounded-degree MSTs
by providing the first known polynomial-time algorithm for constructing a MST with maximum
degree 4 for an arbitrary pointset in the rectilinear plane. Moreover, our techniques can be
used to compute a bounded-diameter MST as efficiently as an ordinary MST. Finally, our results
also enable a significant execution speedup of a number of common VLSI routing algorithms.

Remaining open problems include:

1. Whether the MST number for L; in three dimensions is 13 or 14;
2. The complexity of computing a planar Euclidean MST with maximum degree 4;

3. Tighter bounds on the Hadwiger and MST numbers for arbitrary k& and p.
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