An Architecture-Independent Approach to FPGA Routing
Based on Multi-Weighted Graphs *

Michael J. Alexander, James P. Cohoon, Joseph L. Ganley, and Gabriel Robins

Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442

Abstract

We propose a general framework for FPGA rout-
ing, which allows simultaneous optimization of mul-
tiple competing objectives under a smooth designer-
controlled tradeoff. Qur approach is based on a new
multi-weighted graph formulation, enabling a theoreti-
cal performance characterization, as well as a practical
implementation. Qur FPGA router is architecture-
independent, computationally efficient, and performs
well on industrial benchmarks.

1 Introduction

Field-programmable gate arrays (FPGAs) are an
inexpensive and flexible design alternative to custom
integrated circuits. FPGAs are reusable high-density
ASICs that can be easily (re)configured by the user,
which has made them a popular “low risk” way to im-
plement digital designs [29] [32]. Although there are
a number of different commercially available FPGA
technologies, an FPGA architecture generally con-
sists of a symmetrical array of user configurable logic
“blocks” or “cells” (each of which implements a por-
tion of the design logic) and a set of interconnection
resources used for routing [8].

Partitioning and technology mapping in FPGAs
has been extensively studied by e.g. [10] [15] [21]
[26], where a typical goal is to minimize the maximum
input-to-output circuit depth (which reduces delay) by
varying the total number of logic blocks used (which
in turn affects placement and routing feasibility), or
some tradeoff between these two goals [27]. More re-
cent work has addressed the issue of FPGA routability
prediction during higher levels of the design cycle [6]
[9] [28]. Routability is the likelihood of a particular
placement being feasible to route using the available
interconnect resources.

While technology mapping and routability have
been studied extensively, less attention has been fo-
cused on the actual routing. This is surprising, since
it has been noted that feasibility in FPGA designs is
constrained by routing resources more than by logic
resources [28]. Moreover it was observed that FPGA
performance is often limited by routing delays, rather
than by logic-block delays [6]. Much previous work
centered around the CGE and SEGA routers [7] [8]

[23], which use a global router [25] to select a sequence

*Corresponding author is Professor Gabriel Robins, De-
partment of Computer Science, Thornton Hall, Univer-
sity of Virginia, Charlottesville, VA 22903-2442, Email:
robins@cs.virginia.edu, phone: (804) 982-2207, FAX: (804) 982-
2214. Professor Robins is partially supported by NSF Young In-
vestigator Award MIP-9457412. Professor Cohoon is partially
supported by NSF grants MIP-9107717 and CDA-8922545.

of candidate channel edges for each connection. In the
technology mapping research of [6], Steiner routing is
performed by a global router; other work has adopted
a more abstract model of FPGA routing [24], or ex-
plored issues such as bend reduction [30].

We propose the first unified general frame-
work for FPGA routing, where multiple compet-
ing objectives can be optimized simultaneously un-
der a smooth designer-controlled tradeoff. Our
architecture-independent approach is based on a new
and general multi-weighted graph formulation and es-
capes the pitfalls of the conventional global /local rout-
ing dichotomy by offering a single unified and effective
method. Our techniques may also be extended to ad-
dress high-performance FPGA routing [2].

2 A Typical FPGA Architecture

A typical symmetrical-array FPGA [8] consists of
a rectangular array of logic blocks, separated by
channels containing routing resources (i.e., channel
edges, connection edges and switchboxes), as illus-
trated in Figure 1. Logic blocks can be software-
(re)programmed to implement arbitrary logic func-
tions; the input and output pins of these logic
blocks may then be connected using the software-
(re)programmable routing resources.

i s A //“\\

L_F L —1 I\ —
LogicBlocks — [

1 1 | |

L L, Switch Box

Connection Edge

~

Channel Edge x
N == St

Figure 1: A symmetrical-array FPGA.

Each switchbox contains internal edges which can
be programmed to connect channel edges on differ-
ent sides of the switchbox, allowing routing paths to
pass through the switchbox. A switchbox allows inter-
connections from a given channel edge to only a sub-
set of the channel edges on the other three sides and
this interconnection pattern need not be symmetric
[8]. Connection edges are used to connect logic-block
pins to channel edges. The FPGA may be modeled
as a graph, where the overall graph topology mirrors
the complete FPGA architecture; paths in this graph
correspond to feasible routes on the FPGA, and con-
versely (See Figure 2).

Figure 2: Construction of a routing graph for model-
ing symmetrical-array FPGAs.

3 FPGA Routing

Our work addresses the routing phase of FPGA de-
sign, where the appropriate sets of logic-block pins
(i.e., nets) must be interconnected. We assume that
partitioning, technology mapping, and placement have
already been performed. The FPGA routing problem
is therefore defined as follows:

The FPGA Routing Problem: Given an FPGA
architecture along with a configuration of logic-block
pin assignments and a collection of nets over these
pins, route all the nets without exceeding the total
available FPGA routing resources.

In traditional VLSI routing regimes, wires can be
placed in any available space within the routing re-
gion; therefore, the main considerations in traditional
routing are usually geometrical in nature (i.e., mini-
mizing wirelength, avoiding collisions with other nets,
compacting the overall layout, etc.). In contrast, an
FPGA architecture offers a limited discrete set of fixed
routing channels, and the utilization of a given chan-
nel edge in one route excludes its usage in the routing
of other nets; thus, the FPGA routing problem is es-
sentially combinatorial in nature (i.e., satisfying the
allowable connectivity, maintaining feasibility, etc.).
A purely topological approach to FPGA routing may
fail to exploit certain available geometrical informa-
tion, such as physical proximity of pins/blocks, dis-
tance from the FPGA “border”, etc. On the other
hand, a strictly geometric approach may fail to take
into account the topological /combinatorial constraints
induced by the discrete/limited nature of the available
FPGA routing resources.

With this in mind, we propose a hybrid FPGA rout-
ing framework that combines both geometric and com-
binatorial techniques, and which simultaneously en-
joys the attractive properties of each while retaining
computational efficiency. In particular, we hybridize
(i) the Tterated 1-Steiner routing method of [20] (which
is known to have both excellent empirical performance
as well as an efficient implementation [4]) with (ii) the
provably-good graph Steiner approximation scheme of
[22], which can also be implemented efficiently [31].

We show that the resulting combination of these two
methods inherits the best characteristics of its two
component methods.

3.1 Overview of Iterated 1-Steiner

The cost of an edge between two points in the Man-
hattan plane is the rectilinear distance between them.
A spanning tree over a pointset P is a connected graph
containing | P| — 1 edges. The cost of a tree T', denoted

T, is the sum of the costs of its edges. A minimum
spanning tree (MST) is a spanning tree having least
cost. A Steiner treeis a spanning tree over the original
pointset P and a (possibly empty) additional pointset
S (i.e., the Steiner points). We are now ready to define
the minimum rectilinear Steiner tree problem:

Minimum Rectilinear Steiner Tree (MRST)
problem: Given a set P of n points in the Manhat-
tan plane, find a set S of Steiner points such that the
MST over P U S has minimum cost.

Research on the MRST problem has been guided
by several fundamental results. First, Hanan [17] has
shown that there always exists an MRST with Steiner
points chosen from the intersection of all the horizon-
tal and vertical lines passing through all the points in
P. A second major result established that despite this
restriction on the solution space, the MRST problem
remains NP-complete [16], prompting a large number
of heuristics, as surveyed in [19].

The best known MRST heuristic is the Iterated 1-
Steiner (I1S) algorithm [20], which always performs
strictly better than % times optimal and achieves al-
most 11% average improvement over MST cost. More-
over, for typical nets, I1S has average performance

within 0.25% of optimal and produces optimal solu-
tions up to 90% of the time [4] [5].

For two pointsets P and S, define the MST savings
of S with respect to P as AMST(P,S) = MST(P) —
MST(PUS). We use H(Pg to denote the set of Hanan

Steiner point candidates (i.e., the intersections of all
horizontal and vertical lines passing through points of
P). For a pointset P, a 1-Steiner point ¢ € H(P)
maximizes AMST(P, {z}) > 0. The I1S method re-
peatedly finds 1-Steiner points and includes them in
S. The cost of the MST over P U S will decrease
with each added point, and the construction termi-
nates when there is no with AMST(PUS, {z}) > 0.
Figure 3 describes the algorithm formally.

3.2 Overview of the KMB Method

Often one encounters the graph version of the
Steiner problem, which is embedded in a given graph
G = (V, E), where V is the node set and EC V x V is
a set of weighted edges. Here we are asked to span a
subset of the nodes N C V, while using the remaining
nodes as Steiner points. Fach edge e;; € £ has weight
w;j, and our goal is to minimize the total spanning
cost. Figure 4 shows a graph and a Steiner minimum
tree spanning the highlighted subset of the nodes; the
graph Steiner problem is defined as follows:

The Iterated 1-Steiner (I1S) Algorithm [20]

The KMB Algorithm [22]

Input: A set P of n points
Output: A rectilinear Steiner tree over P

S=10

While T' = {z € H(P)|AMST(PUS, {z}) >0} # 0 Do
Find z € T with maximum AMST(P U S, {z})
S=5SuU{zr}

Output MST(P U S)

Input: A graph G = (V, E) with edge weights w;; and
anet NCV
Output: A low-cost tree 7' = (V', E') spanning N
(ie. NCV’CVandE'CE)

Figure 3: The Iterated 1-Steiner (I1S) algorithm.

The Graph Steiner Minimum Tree (GSMT)
problem: Given a weighted graph G = (V, E) and
a net of terminals N C V to connect, find a tree

T = (V/,E") with N C V! CV and)2 C F such
that Ze,jeE’ w;j 1s minimized.

2 %?T*?
1 \ \ \
2] ;77\ T |
1]
1)
: | | }
L b0 —6——-6

Figure 4: A graph (a) and a Steiner minimum tree
(b) spanning the highlighted nodes.

The GSMT problem is NP-complete [19], and thus
in order to remain computationally efficient, we must
resort to heuristic solutions. The algorithm of Kou,
Markowsky and Berman [22] solves the GSMT prob-
lem in polynomial time and is guaranteed to yield solu-
tions never more than 2- (1 — %) times optimal, where

L is the minimum number of leaves in any optimal
solution. We refer to this as the KMB algorithm:
first, construct the complete graph G’ over N with
the weight of each edge e;; equal to distq(N;, Nj),
the cost of the corresponding shortest path in G be-
tween N; and Nj. Second, compute MST(G'), the
minimum spanning tree of G, and expand each edge
e;j of MST(G') into the corresponding shortest path,
denoted pathg(N;, Nj), yielding a subgraph G that
spans N. Finally, compute MST(G"), and delete pen-
dant edges from MST(G") until all leaves are members
of N. We denote the resulting tree as KMB and the

cost of this tree as KMB. A formal description of the
KMB method is given in Figure 5.

G =(N,N x N), with edge weights w! ; =dista(N:, Nj)
Compute T'= (N, E") = MST(G")

Let the graph G = Ue,,em pathg(Ni, N;)

Compute T’ = MST(G")

Delete from 7" all leaf nodes that are not in N

Output 7’

Figure 5: The KMB heuristic for the GSMT problem.

3.3 A New FPGA Routing Algorithm

Our approach to FPGA routing is based on combin-
ing the geometric I1S heuristic with the graph-based
KMB algorithm. This strategy allows us to model the
FPGA architecture in a very natural and general way
(i.e., as a graph), as well as to exploit geometrical in-
formation about the physical layout of the FPGA in
order to yield improved routing solutions. Indeed the
resulting hybrid method inherits the excellent aver-
age empirical behavior of I1S, as well as the provably-
good theoretical performance of KMB. We refer to
this hybrid method as the Iterated- KM B (IKMB) algo-
rithm. Note that the present discussion assumes that
the graph edges each have a single weight. In Section
4 we explain how to extend our routing methodology
to multi-weighted graphs.

Our overall IKMB method is an adaptation of 118
to graphs; but when we need to span a subset N of the
nodes in a graph, the notion of “MST” is no longer
well-defined. In essence, a “spanning tree” for N is
now actually a “Steiner” tree, and can no longer be
computed efficiently (since this is NP-complete and is
what we are trying to compute in the first place). The
key to this dilemmais to replace the “MST” construc-
tion with the KMB construction. In other words, in-
stead of using an “MST” subroutine to determine the
“savings” of a candidate Steiner point/node, we use
the KMB algorithm for this purpose. Thus, given a
graph G = (V,E), the net N C V, and a ‘set S of
potential Steiner points, we define the following:

AKMBg(N,S) =

KMBg(N) — KMBg(N U S)

The TIKMB algorithm starts by computing the
KMB tree. Then, at each iteration the IKMB method
repeatedly finds additional Steiner node candidates
that reduce the overall KMB cost and includes them
in the growing set of Steiner nodes S. The cost of the
KMB tree over N U S will decrease with each added
node, and the construction terminates when there is

no z € V with AKMB(N U S, {z}) > 0. The overall
IKMB method is formally described in Figure 6.

Since an optimal Steiner tree for a 3-pin net in a

graph can have at most one Steiner point with de-
gree > 2, our IKMB algorithm, which selects the best
Steiner point candidate, is guaranteed to find the op-
timal solution for any 3-pin net. In general, given a
weighted graph, and a single arbitrary net, we can
show the following:

Theorem 3.1 The IKMB algorithm will find a rout-
ing solution with cost less than 2~(1—%) times optimal,
where L is the minimum number of leaves in of any
optimal solution. n

We can bound the time and space that IKMB requires
to route a single n-pin net by O(|G|-n®logn) and O(n-
|G|), respectively, where |G| is the size of the routing
graph. We note that a method similar to IKMB has
recently been applied to “escape graphs” to address
routing in the presence of obstacles [13].

The Iterated-KMB (IKMB) Algorithm

Input: A weighted graph G = (V, E) and net N C V
Output: A low-cost tree spanning N

S=10
While C = {z € V — N|AKMBg(N U S, {z}) > 0} # 0
Do Find z € C with maximum AKMBg(N U S, {z})
S =5U{z}
Return KMBg(N U S)

Figure 6: Iterated-KMB algorithm (IKMB).

3.4 Routing Multiple Nets

We use the notion of congestion as a measure of re-
source utilization. Clearly as congestion increases, fu-
ture routing feasibility decreases, with routing becom-
ing altogether impossqible when congestion reaches a
high enough value. Rather than risk formation of con-
centrated congestion, we prefer to “spread” the con-
gestion around, so as to retain the routing feasibility
of future nets. Initially, congestion values on all edges
are zero; after a net has been successfully routed, the
graph is updated by increasing the congestion values of
nearby edges, and the edges used to route the net are
then removed from the graph. We use a move-to-front
rule when infeasibility is encountered, although rip-up
and re-route can also be used. After an attempt has
been made to route all nets, those nets which could
not be routed are given a higher priority by moving
them to the front of the net-routing order. The rout-
ing graph is then re-initialized and the new routing
order is tried.

4 Multi-Objective Optimization

Recall that ideally we wish to simultaneously opti-
mize k multiple (possibly competing) objectives (1.e.,
wirelength, jogs, congestion, etc.). We now show how
to accomplish this; by generalizing the IKMB heuris-
tic to multi-weighted graphs, where each optimization

criterion has a separate set of edge weights. The simul-
taneous optimization is accomplished by transform-
ing these multiple edge weights into a single weighted
average, which is then used by IKMB in the normal
way. The relative magnitudes of the weighing factors
dy,dg,- -, dy (i.e., tradeoff parameters) are designer
controlled, which enables a smooth tradeoff among the
various competing objectives.

This technique is flexible in that new criteria are
easily incorporated into the model by introducing ad-
ditional weight sets into the graph. Such a framework
subsumes e.g., “alpha-beta” routing (which has been
used for jog minimization in IC design [11] [18]), and
also has practical application in non-VLSI domains
[12].

Let V = {vy,va,---,v,} be a set of nodes, and let
E CV xV be aset of edges. We define a k-weighted
graph G = (V,E) to be a weighted graph with a
vector-valued weight function @ : £ — RF. In other
words, associated with each edge e;; € E is a vector
of k real-valued weights w;; = (wsj1, wij2, - -, Wijk)-
Note that ordinary Weighteé graphs are a special case
of k-weighted graphs, with £ = 1.

Let d = (di,da,---,di) be a vector of k real-
valued tradeoff parameters, where 0 < d; < 1 for

0 <i <k, and Ele d; = 1. From the k-weighted
graph G = (V, E) and the tradeoff parameters d we
construct a new weighted tradeoff graph G(J) =(V,E)

with weight function w;j =d- W = Efn:l

dm cWijm-
The tradeoff graph G is an ordinary weighted graph
having the same topology as GG, but whose single edge

weights represent the weighted averages of the multi-
weights of G, with respect to d.

Let @ = (1,...,1), and ; = (0,---,0,;,0,---,0)
denote the vector obtained from the vector ¥ by using
v; in the ¢-th place, and the rest of the places being
set to zero. Thus, u; denotes the vector consisting
of zeros everywhere except the i-th place, which will
contain a 1. A k-weighted graph G induces k distinct
graphs G; = G(i4;), each with an identical topology
but with edge weights restricted to only one of the &
components of vector-valued weight function .

We define the minimum spanning tree for a multi-
weighted graph G with respect to the tradeoff param-

eters d as the “normal” MST over the tradeoff graph

o~ o

CA}(J), and denote it by MST(G(d)). Similarly, we can
compute the MST on each of the £ induced graphs Gj,
and we denote these MST(G;).

We have the following bounds (proofs are omitted
due to space limitations; see [1] [3] for details).

Theorem 4.1 For any k-weighted graph G and trade-
off parameters d, Zle d;-MST(G;) < MST(G(d)). 0

We can also show the non-existence of general up-
per bounds:

Theorem 4.2 For any k- wezghted graph G and trade-
off parameters d MST(G()) can not be bounded by

any function of only MST(G;) s, d, n, and k. 0

On the other hand, we can show a general upper
bound for metric graphs:

Theorem 4.3 For any metric k- weighted graph G
and tradeoff parameters d MST(G(d)) < (n-1)-
>io1 di - MST(Gy) O

Since most nets in typical VLSI designs contain
three pins or less [13], we derive a tighter upper bound
for 3-pin nets where metricity holds (i.e., graphs
with weight functions satisfying the triangle inequality

dist(a, b)+ dist(b, ¢) > dist(a, c), Va,b,c € V):

Theorem 4.4 For 2-weighted metric graphs with
three nodes, and any scaling vector d= (d1,d2), the
following holds: dy - M—ST(Gl) + ds - M—ST(GQ) <
MST(G(d)) < % - [di - MST(G1) + do - MST(Go)] [

Recently, tighter bounds on MSTs over multi-
weighted graphs were derived [14].

5 Experimental Results

We compared the performance of KMB and IKMB
over 10,000 random nets of cardinality 3, 4, 5, 7
and 10, with coordinates uniformly distributed in the
range [0,...,10000]. We routed each net in the grid
graph induced by the intersection of the vertical and
horizontal lines passing through the pins, and com-
pared the wirelength required by each algorithm. The
results in Table 1 indicate that IKMB consistently uses
less wirelength than KMB.

Average wirelength savings of IKMB w.r.t KMB
Net Size [| 3-pin | 4-pin [5-pin [7-pin | 10-pin
Savings || 3.31% | 4.64% | 5.53% | 6.45% | 6.72%

Table 1: Avg. wirelength savings of IKMB vs. KMB.

We have also implemented an FPGA router, based
on the IKMB algorithm, using C++ in the SUN IPC
workstation environment. The code is available from
the authors upon request. A common criterion used
to evaluate the quality of FPGA routing solutions is
the maximum width of the channels (i.e., how many
edges wide are they) required to successfully route all
nets of a circuit [8]. We have therefore compared the
maximum channel width our router required to that
required by CGE [8], using identical switchbox and
interconnection options.

We have tested our router on the five industrial
benchmarks used in [8] (see Table 2). Table 3 com-
pares our router with CGE on these benchmarks. Note
that in three of the five cases, our router is able to
successfully route all nets using fewer edges per chan-
nel. This indicates that our router is relatively thrifty

in its utilization of the available resources, and can
produce feasible routings where other routers cannot.
FPGAs are available in several standard sizes, each
with a fixed number of edges per channel [29]; clearly
being able to successfully route designs using fewer re-
sources will enable the usage of smaller (and cheaper)
standard-sized parts, or may allow designs to be imple-
mented using fewer fixed-size FPGAs when the design
cannot fit on a single FPGA chip. Figure 7 shows the
solution produced by our router for the smallest of the
benchmark circuit.

Breakdown of nets by number of pins

Circuit [#nets [#2-3 [#4-10 | #over 10 | FPGA size
BUSC 151 115 28 8 12 x 13
DMA 213 139 52 22 16 x 18
BNRE 352 255 70 27 21 x 22
DFSM 420 361 26 33 22 X 23
703 608 398 176 34 26 x 27

Table 2: A breakdown of the benchmark circuits by
net size. Also shown is the size of the FPGA used to
route each circuit (the number of rows and columns of

FPGA logic blocks).

Maximum channel width
required to route all nets
Circuit | CGE TKMB
BUSC 10 8
DMA 10 9
BNRE 12 11
DFSM 10 11
703 13 13

Table 3: The maximum channel width required by
our router to successfully route all nets in each in-
dustry benchmark. For comparison we also give the
analogous maximum channel widths required by the

CGE detailed router.

6 Conclusion

We proposed a unified general framework for
FPGA routing, allowing the simultaneous optimiza-
tion of multiple competing objectives under a smooth
designer-controlled tradeoff. Our approach is based on
a new general multi-weighted graph formulation, re-
sulting in an architecture-independent and computa-
tionally efficient methodology. Finally, multi-weighted
graphs may be applied to other areas of CAD, as well
as to many other classic combinatorial optimization
problems (e.g., traveling salesman, matching, parti-
tioning, spanning and Steiner trees, etc.)

7 Acknowledgments

The authors would like to thank Jonathan Rose and
Stephen Brown for their code and advice.

References
[1] M. J. ALEXANDER AND G. ROBINS, An Architecture-
Independent Unified Approach to FPGA Routing, Tech.

Rep. CS-93-51, Department of Computer Science, Univer-
sity of Virginia, October 1993.

o
|
ﬂ

il
NN

= 4 T
R Al S

Figure 7: IKMB router solution for BUSC circuit.

(2]

10]

(11]

M. J. ALEXANDER AND G. ROBINS, High-Performance
Routing for Field-Programmable Gate Arrays, in Proc.
IEEE Intl. ASIC Conf., Rochester, NY, September 1994.

M. J. ALEXANDER AND G. ROBINS, A New Approach
to FPGA Routing Based on Multi- Weighted Graphs, in
Proc. ACM/SIGDA International Workshop on Field-
Programmable Gate Arrays, Berkeley, CA, February 1994.

T. BARRERA, J. GRIFFITH, S. A. McKEE, G. ROBINS, AND
T. ZHANG, Toward a Steiner Engine: Enhanced Serial
and Parallel Implementations of the Iterated 1-Steiner Al-
gorithm, in Proc. Great Lakes Symp. VLSI, Kalamazoo,
MI, March 1993, pp. 90-94.

T. BARRERA, J. GRIFFITH, G. RoOBINS, AND T. ZHANG,
Narrowing the Gap: Near-Optimal Steiner Trees in Poly-
nomial Time, in Proc. IEEE Intl. ASIC Conf., Rochester,
NY, September 1993, pp. 87-90.

N. B. BHaT anD D. D. HiLL, Routable Technology
Mapping for LUT FPGAs, in Proc. IEEE Intl. Conf.
Computer-Aided Design, 1992, pp. 95-98.

S. BrowN, J. Rosg, AND Z. G. VRANESIC, A Detailed
Router for Field-Programmable Gate Arrays, IEEE Trans.
Computer-Aided Design, 11 (1992), pp. 620-628.

S. D. BrownN, R. J. Francis, J. Rosg, aNnD Z. G.
VRANESIC, Field-Programmable Gate Arrays, Kluwer Aca-
demic Publishers, Boston, MA, 1992.

P. K. Cuan, M. D. F. ScHLAG, aND J. Y. ZI1EN, On
Routability Prediction for Field-Programmable Gate Ar-
rays, in Proc. ACM/IEEE Design Automation Conf.,
1993, pp. 326-330.

K. C. CHeN, J. Cong, Y. DinGg, A. B. KAHNG, AND
P. TRAIMAR, DAG-Map: Graph-Based FPGA Technology
Mapping for Delay Optimization, IEEE Design & Test of
Computers, 9 (1992), pp. 7-20.

J. P. CoHooN aAND D. S. RICHARDs, Optimal Two-
Terminal oo— B3 Wire Routing, Integration: the VLSI Jour-
nal, 6 (1988), pp. 35-57.

(12]

(13]

(14]

(15]

(19]

(20]

(21]

(22]

(23]

(24]

(23]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

W. C. CoLLIER AND R. J. WEILAND, Smart Cars, Smart
Highways, IEEE Spectrum, 31 (1994), pp. 27-33.

J. L. GANLEY AND J. P. COHOON, Routing a Multi-
Terminal Critical Net: Steiner Tree Construction in the
Presence of Obstacles, in Proc. IEEE Intl. Symp. Circuits
and Systems, London, England, May 1994, pp. 1.113—
1.116.

J. L. GANLEY, M. J. GoLIN, AND J. S. SALOWE, Mini-
mum Spanning Trees for Multiply- Weighted Graphs. un-
published manuscript, 1994.

T. Gao, K. C. CHEN, J. ConG, Y. DiNGg, anDp C. L.
Liu, Placement and Placement Driven Technology Map-
ping for FPGA Synthesis, in Proc. IEEE Intl. ASIC Conf.,
Rochester, NY, September 1993, pp. 87-91.

M. GAREY AND D. S. JOHNSON, The Rectilinear Steiner
Problem 1s NP-Complete, STAM J. Applied Math., 32
(1977), pp. 826-834.

M. HANAN, On Steiner’s Problem With Rectilinear Dis-
tance, SIAM J. Applied Math., 14 (1966), pp. 255-265.

T. C. Hu aND T. SHING, The a-3 Routing, in VLSI Circuit
Layout: Theory and Design, New York, 1985, IEEE Press,
pp. 139-143.

F. K. HwanGg, D. S. RicHARDS, AND P. WINTER, The
Steiner Tree Problem, North-Holland, 1992.

A. B. KAHNG AND G. RoBINs, A New Class of Iterative
Steiner Tree Heuristics With Good Performance, IEEE
Trans. Computer-Aided Design, 11 (1992), pp. 893-902.

K. KarprLus, Xmap: a Technology Mapper for Table-
lookup Field-Programmable Gate Arrays, in Proc.
ACM/IEEE Design Automation Conf., 1991, pp. 240-243.

L. Kou, G. MARKOWSKY, AND L. BERMAN, A Fast Al-
gorithm for Steiner Trees, Acta Informatica, 15 (1981),
pp. 141-145.

G. G. LEMieux aAnND S. D. BrROWN, A Detailed Rout-
ing Algorithm for Allocating Wire Segments in Field-
Programmable Gate Arrays, in Proc. ACM/SIGDA Phys-
ical Design Workshop, Lake Arrowhead, CA, April 1993.

F.D. LEwis AND W. C. PoNG, A Negative Reinforcement
Method of PGA Routing, in Proc. ACM/IEEE Design Au-
tomation Conf., 1993, pp. 601-605.

J. ROSE, Parallel Global Routing for Standard Cells, IEEE
Trans. Computer-Aided Design, 9 (1990), pp. 1085-1095.

K. Roy, B. Guan, aND C. SECHEN, FPGA MCM Par-
titioning and Placement, in Proc. ACM/SIGDA Physi-
cal Design Workshop, Lake Arrowhead, CA, April 1993,
pp. 211-212.

M. ScHLaGg, J. KonGg, AND P. K. CHAN, Routability-
Driven Technology Mapping for LookUp Table-Based FP-
GAs, in Proc. IEEE Intl. Conf. Computer-Aided Design,
1992, pp. 86-90.

S. TRIMBERGER AND M. R. CHENE, Placement-Based Par-
titioning for Lookup-Table-Based FPGAs, in Proc. IEEE
Intl. Conf. Computer-Aided Design, 1992, pp. 91-94.

S. M. TRIMBERGER, Field-Programmable Gate Array
Technology, S. M. Trimberger, editor, Kluwer Academic
Publishers, Boston, MA, 1994.

B. TsenGg, J. Rosg, AND S. BROWN, Improving FPGA
Routing Architectures Using Architecture and CAD In-
teractions, in Proc. IEEE Intl. Conf. Computer Design,
1992, pp. 99-104.

Y. F. Wu, P. WIDMAYER, AND C. K. WoNG, A Faster Ap-
prozimation Algorithm for the Steiner Problem in Graphs,
Acta Informatica, 23 (1986), pp. 223—-229.

X1LINX, The Programmable Gate Array Data Book, Xil-
inx, Inc., San Jose, California, 1993.

