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Abstract

This paper presents a performance-oriented placement
and routing tool for field-programmable gate arrays.
Using recursive geometric partitioning for simulta-
neous placement and global routing, and a graph-
based strategy for detailed routing, our tool optimizes
source-sink pathlengths, channel width and total wire-
length. Our results compare favorably with other
FPGA layout tools, as measured by the maximum
channel width required to place and route a number
of industrial benchmarks.

1 Introduction

Field-programmable gate arrays, or FPGAs, afford
designers a versatile and inexpensive way to imple-
ment and test VLSI designs [5, 10]. FPGAs are avail-
able in a number of styles and configurations [29]. One
of the most common FPGA architectures consists of
symmetrical arrays of user-configurable logic blocks
interconnected by a set of programmable routing re-
sources [32] (Figure 1).

FPGA reprogrammability is achieved at the ex-
pense of performance, i.e., long signal delays through
the reconfigurable routing resources. This penalty is of
primary concern to designers and users alike [28]. To
increase FPGA performance, partitioning and tech-
nology mapping have been extensively studied [7, 12,
18, 24]. However, the observation that circuit perfor-
mance is impacted more by routing delays rather than
by device delays [4, 17] has focused recent attention
on routing [1, 2, 6, 9, 21, 22, 31].

In this paper we present an FPGA Placement and
Routing (FPR) tool. FPR is based on a recursive geo-
metric strategy for simultaneous placement and global
routing, followed by a graph-based detailed-routing
phase. FPR heuristically minimizes both wirelength
and source-sink pathlengths. Thus, FPR optimizes the
number of FPGAs required to implement a given de-
sign, as well as the performance of the implementa-
tion. In particular, FPR successfully routes a number
of large industrial benchmark circuits using smaller
channel widths than other FPGA layout tools.
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Figure 1: Symmetrical-array FPGA.

2 Overview

Placement and routing are performed after the
technology-mapping phase of the FPGA design pro-
cess. Thus, the input to FPR consists of unplaced logic
blocks and a set of nets (a net is a set of logic block
I/O pins that must be interconnected). FPR performs
simultaneous placement and global routing using a
recursive geometric technique called thumbnail par-
titioning, which decomposes the circuit area into an
m x n grid, for some small fixed m and n. This grid
is called the partitioning template. The placement is
then optimized and a global routing is determined rel-
ative to the partitioning template using optimal rec-
tilinear Steiner arborescences'(RSAs) [23]. Since m
and n are small and fixed, these optimal RSAs (called
thumbnails) may be precomputed for efficient lookup
during execution. Setting m = n = 3 yields the basic
3 x 3 partitioning template that is used in our im-
plementation (Figure 2). Thumbnail partitioning is a
generalization of sharp partitioning [3], which in turn
1s a generalization of quadrisection [27].

The overall strategy consists of a placement and
global-routing phase, followed by a detailed-routing
phase. During placement and global routing, a par-
titioning heuristic is used to assign the logic blocks

TAn RSA is a minimum-weight rectilinear tree that contains
a shortest path from a designated source vertex to all other
vertices/ sinks.



Figure 2: (a) Partitioning template for m = n = 3;
(b) a sample pointset (the source is at the upper-left);
and (c) one of its possible thumbnails.

to regions in the partitioning template, minimizing
source-sink pathlengths as well as the total length of
the thumbnails. When the circuit area is divided ac-
cording to the partitioning template, each logic block
lies in one of the m x n regions. For each net, we
construct a pointset in the m x n grid, where a point
is present in a region if some logic block associated
with the net lies in that region. A thumbnail over this
pointset is then determined.

To reduce overall routing congestion, alternative
thumbnails are selected in order to balance the number
of thumbnail edges that cross each edge of the par-
titioning template. “Virtual” pins are then created
at the intersections of thumbnails and partitioning-
template edges, and the algorithm is then applied re-
cursively to each subregion of the partitioning tem-
plate. This scheme simultaneously produces both a
placement and a global routing in which source-sink
pathlengths, total wirelength, and maximum channel
congestion are all heuristically minimized. The result-
ing placement and global routing is then used in the
detailed-routing phase to produce a complete routing
solution.

Detailed routing consists of assigning specific rout-
ing resources from the global routes to each net. By
modeling the FPGA routing architecture as a graph,
efficient graph-search algorithms can be used to pro-
duce detailed-routing solutions. The nets are routed
one at a time. As resources are committed to nets,
the corresponding edges in the underlying graph are
made unavailable to subsequent nets.

The next three sections detail the main phases of
FPR, namely: (1) logic-block placement and thumbnail
selection for balancing congestion, (2) global routing,
and (3) detailed routing.

3 Placement

The placement phase overlays the FPGA with the
partitioning template and initially partitions the de-
sign logic into the m - n regions. Cut lines of the par-
titioning template go through switch blocks so that
each logic block lies entirely within a single region of
the partitioning template. The distribution of logic

blocks among regions of the partitioning template is
then improved using simulated annealing [19], where
a move consists of swapping two logic blocks that lie
in different regions of the partitioning template and
the objective is to minimize (1) the sum of the max-
imum source-sink pathlengths in the thumbnails over
the nets, and (2) the total length of the thumbnails
for all nets. I/O blocks on the perimeter of the FPGA
are not moved during these iterative refinement steps.

An important measure of the quality of a placement
and global routing is maximum congestion, which in
our case is the number of thumbnail edges crossing
any given partitioning-template edge. Thus, once logic
blocks have been assigned to regions in the partition-
ing template, a congestion-balancing step is under-
taken.
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Figure 3: All eight thumbnails for the pointset shown
in the 3 x 3 partitioning template (source is at upper-

left).

Note that a typical pointset can have many thumb-
nails; for example, Figure 3 illustrates a pointset and
its eight thumbnails. The objective of the congestion-
balancing step is to assign one of the precomputed
thumbnail alternatives to each net in a manner that
minimizes the maximum thumbnail congestion. This
task is accomplished using the following greedy heuris-
tic:

o Sort the nets in ascending order of the number of
distinct thumbnails for each net; and

e For each net on this list, choose the thumbnail
that minimizes the maximum congestion induced
by all previously processed nets.

This scheme postpones the global routing of nets for
which there are more thumbnail choices. This in-
tuitively enables FPR to better compensate for the
less avoidable congestion incurred earlier by nets with
fewer thumbnail choices.
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Figure 4: Global-routing information for a three-
pin net, showing the associated logic blocks (dark
squares), global route (cross-hatched region), and po-
tential Steiner switch block (single gray square).

4 Global Routing

Thus far in our discussion, FPR has mapped the
logic blocks to regions in the partitioning template
and each net has been assigned a thumbnail. Next,
every edge in each thumbnail must be assigned to a
specific switch block along the crossed cut-line of the
partitioning template. Each such switch block is then
conceptually added as a new “virtual” pin in the net.
The portion of each net within each region of the par-
titioning template is then passed on to a lower level of
the recursion (this is similar to the virtual terminal [3]
and terminal propagation [8] techniques). Thus, the
global routing computed for a net corresponds to the
topology of its thumbnail.

The assignment of nets to switch blocks is accom-
plished in a manner similar to [26]. The number
of nets that can be assigned to each switch block is
bounded by the number of nets crossing the cut, di-
vided by the number of switch blocks on the cut. This
construction induces a complete bipartite graph with
nets in one partition and switch blocks in the other.
Edge weights in this graph model the cost of assigning
a net to the corresponding switch block. Assignments
are then determined by computing a minimum-cost
matching.

The recursion terminates when a region contains at
most one logic block (along with the adjacent channel
segments, connection blocks, and switch blocks). We
then route nets within the channels surrounding the
logic block (if it exists) while minimizing the maxi-
mum channel congestion. In our implementation, an
optimal solution is computed using integer program-
ming. This is efficient in practice since the number of
nets involving any single logic block is small [11].
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Figure 5: Global-routing information (a) is used to

construct routing graph (b) for a Xilinx [32] 4000-
series part with a channel width of 2.

5 Detailed Routing

Following the placement and global-routing phases
described above, FPR performs detailed routing by as-
signing specific channel and switch-block edges to each
net. The placement and global-routing phase passes
the following to the detailed router: (1) the locations
of relevant logic-block pins (i.e., the net to be routed),
(2) a “loose” route for the net (leaving unspecified the
edges within channel segments and switch blocks), and
(3) switch blocks that are likely to serve as Steiner
nodes in the detailed routing (Figure 4).

A main design goal for FPR is the ability to han-
dle a wide variety of FPGA architectures. To achieve
this goal we have adopted a graph-based approach to
detailed routing. Each switch block contains inter-
nal switch-block edges that may be programmed to
connect incoming channel edges. This allows detailed
routes to pass through the switch block (Figure 1).
Connection edges allow logic-block pins to latch onto
adjacent channel edges. The routing structure of the
entire FPGA is captured by a routing graph: de-
tailed routes on the FPGA correspond to paths in the
routing graph, and vice-versa (Figure 5). In a rout-
ing graph, vertices model logic-block and switch-block
nodes, while the edges correspond to connection, chan-
nel, and switch-block edges. This strategy enables the
detailed router to employ generic graph algorithms in
order to produce detailed-routing solutions.



Using the routing-graph approach, detailed rout-
ing entails interconnecting the logic-block vertices us-
ing the edges and vertices inside the corresponding
global-route region. This goal is modeled by the graph
Steiner tree (GST) problem: given graph G = (V, E),
where V' is the vertex set and £ C V x V is a set
of weighted edges, find a minimum-weight tree in G
that spans a subset of the vertices N C V (the logic-
block vertices in a net), using switch-block vertices as
possible Steiner nodes.

Since the GST problem is NP-complete [15], we uti-
lize the heuristic of Kou, Markowsky and Berman [20]
(KMB), which approximately solves the GST problem
in polynomial time, and is guaranteed to yield solu-
tions with cost less than twice the optimal. While the
KMB heuristic always finds a feasible detailed routing
if one exists, it often does not “branch” at the ap-
propriate Steiner nodes (Figure 6(a)). This potential
drawback is effectively ameliorated using the greedy
strategy described below.

Our detailed-routing algorithm is based on com-
bining a greedy, iterated heuristic [13, 16] with the
KMB algorithm; we refer to this hybrid method as
the Iterated-KMB (IKMB) algorithm [1]. Given a
routing graph G = (V}E), anet N C V, and a
set S of potential Steiner nodes, we define the sav-
ings of S with respect to N as AKMBg(N,S) =
KMBg(N) — KMBg(N U S).

Intuitively, AKMBg(XN, S) represents the intercon-
nect savings incurred by KMB when Steiner nodes in
S are included into the node set N to be spanned. This
is illustrated in Figure 6(b), where using a candidate
Steiner node from the shaded switch block results in
an optimal solution. In order to efficiently find such
Steiner nodes, a set of candidate Steiner nodes is de-
termined for each net. Candidate Steiner nodes are
switch-block nodes that correspond to Steiner switch

blocks (Figure 4).

Figure 6: Detailed-routing solutions; (a) a KMB solu-
tion containing unnecessary parallel paths, while (b)
the IKMB solution reduces total number of channel
edges by 22%.

Given these definitions, the IKMB method oper-
ates by repeatedly finding candidate Steiner nodes
that reduce the overall KMB cost by the largest
amount, and then including them into a growing set
S of Steiner nodes. The cost of the KMB tree over
N U S decreases with each added node, and the con-
struction terminates when there is no z € V with
AKMB(N U S,{z}) > 0. The final topology is
obtained by computing the KMB construction using
NUS as the pins and the remaining V — (N U.S) nodes
as potential Steiner nodes.

The placement and global-routing phases seek to
minimize congestion, thereby enabling the detailed
router to find a feasible (and high-quality) solution
more easily. However, since it is NP-complete to deter-
mine whether there exists a feasible detailed-routing
solution for all nets [30], we use a deterministic net-
ordering scheme to route the nets one at a time. When
a detailed-routing solution for a net is found, the cor-
responding routing resources are committed to that
net and are made unavailable for subsequent nets (i.e.,
they are removed from the underlying graph). If in-
feasibility is encountered during the detailed routing
of a net (i.e., some logic-block pin is unreachable in
the routing graph from the other pins of the net), the
following two heuristics are employed.

We first use an incremental “wavefront-expansion”
technique to gradually “loosen” the global route, al-
lowing the detailed route to detour around local block-
ages caused by previously-routed nets (Figure 7).
Note that this wavefront-expansion technique deter-
mines the region searched by the routing algorithm,
as opposed to the order in which graph edges are ex-
plored [14]. We found that in practice, the vast ma-
jority of those nets that fail to route using the initial
global route become routable after only a single loos-
ening operation. In cases where wavefront expansion
fails to produce a routing solution, we next employ a
“move-to-front” heuristic [25], where unroutable nets
are moved to the beginning of the net-routing order
and the new routing order is attempted.

Figure 7: Wavefront expansion is used to “loosen”
global routes when infeasibility is encountered.




6 Experimental Results

We have implemented our algorithms and incorpo-
rated them into FPR. Two FPGA architectures, corre-
sponding to Xilinx 3000-series and 4000-series parts,
were modeled [5, 32]; these architectures are identical
to the ones used by CGE [6], SEGA [22] and GBP [31],
respectively. We compared the performance of these
tools on fourteen large benchmark circuits: the suite of
five 3000-series benchmarks used by [6], and the suite
of nine 4000-series benchmarks used by [22] and [31].
The 3000-series benchmarks were routed on FPGAs
with switch-block flexibility Fy = 6 and connection
flexibility F. = [0.6 - W, where W is the the channel
width. The 4000-series benchmarks use FPGAs with
Fo=3and F, = W.

3000-Series Benchmarks

Name | Size Nets CGE | FPR
busc 13 x 12 151 10 9
dma 18 x 16 213 10 9
bnre 22 x 21 352 12 11
dfsm 23 x 22 420 10 11
z03 27 x 26 608 13 13

Totals 55 53

4000-Series Benchmarks

Name Size Nets [ SEGA | GBP | FPR
9symml 11 x 10 79 10 9 9
term1 10 x 9 88 10 10 8
apex7 12 x 10 115 13 11 9
alu2 15 x 13 153 11 11 10
toolarge | 14 x 14 | 186 12 12 11
example2 | 14 x 12 205 17 13 13
vda 17 x 16 225 13 13 13
alu4 19 x 17 255 15 14 13
k2 22 x 20 404 17 17 17

otals 118 110 103

Table 1: Maximum channel width achieved by FPR on
the benchmark circuits.

A common objective in FPGA physical design is to
minimize maximum channel width. Table 1 shows the
maximum channel widths of actual complete place-
ment and routing solutions produced by FPR; these
compare favorably with CGE [6] for the 3000-series
benchmarks, and with SEGA [22] and GBP [31] for
the 4000-series benchmarks. The channel width re-
quired by FPR is smaller than that required by CGE,
SEGA, and GBP in 8 of the 14 benchmark circuits,
and is equal on all but one of the remaining 6 bench-
mark circuits.

We also measured how well FPR optimizes to-
tal wirelength and maximum source-sink pathlengths
(i.e., radius). Since previous works do not report these
statistics, we have implemented a modified version of
FPR, called SFPR, that uses unrooted Steiner trees as
thumbnails [11], instead of the preferred arborescence
thumbnails described in Section 3. We compared
the solutions produced by SFPR against performance-
oriented solutions produced by the unmodified FPR

tool. These results are summarized in Table 2, where
we observe that a 1.0% increase in wirelength has
yielded a 6.7% decrease in radius. The time to run
FPR is comparable to other tools: CPU times to com-
pletely route the circuits on a Sun SparcServer 10/514
workstation ranged from several minutes for the small-
est circuit to several hours for the largest.

3000-Series Benchmarks
Avg. Wirelength Avg. Max Radius

Name SFPR FPR [ A% | SFPR [ FPR A%
busc 9.3 9.1 | -2.2 6.6 6.0 -9.1
dma 13.2 | 13.0 | -1.5 8.6 7.7 | -10.5
bnre 14.0 | 14.0 0.0 9.0 7.9 | -12.2
dfsm 12.0 | 12.7 5.8 7.3 7.1 -2.7
z03 13.7 | 14.1 2.9 8.9 8.7 -2.2
Average 12.4 1 12.6 1.0 8.1 7.5 -7.3

4000-Series Benchmarks
Avg. Wirelength Avg. Max Radius

Name SFPR FPR [ A% | SFPR | FPR A%
9symml 11.4 1 109 | -44 7.1 6.1 | -14.1
term1l 7.0 74 5.7 5.2 5.2 0.0
apexT7 9.1 9.5 4.4 6.3 6.7 6.3
alu2 12.2 | 12.5 2.5 7.5 7.2 -4.0
too_large 11.9 | 11.5 | -3.4 8.5 7.2 | -15.3
example2 9.3 9.4 1.1 7.2 6.8 -5.6
vda 15.0 | 15.0 0.0 | 10.6 9.4 | -11.3
alu4 14.5 | 14.9 2.8 9.5 9.0 -5.3
k2 17.7 | 17.7 0.0 | 13.1 | 12.1 -7.6
Average 12.0 [ 12.1 1.0 8.3 7.7 -6.3

Overall | 122 [123 [ 1.0 | 82 ] 7.6 [ -6.7]

Table 2: Comparison of arborescence-based FPR
against Steiner-tree-based SFPR. The A% column gives
the percent change from SFPR to FPR.

7 Conclusion

We have developed FPR, a placement and routing
tool for FPGAs that combines a recursive geometric
strategy for simultaneous placement and global rout-
ing with a general graph-based detailed-routing algo-
rithm. FPR addresses performance issues by minimiz-
ing source-sink pathlengths as well as total wirelength
and maximum channel width. FPR compares favorably
to existing tools on both 3000-series and 4000-series
Xilinx-type parts, as measured by the maximum chan-
nel width required for the complete placement and
routing of a number of industrial benchmarks.
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