
1

Area Fill Synthesis

for Uniform Layout Density

Yu Chen, Andrew B. Kahng, Gabriel Robins, and Alexander Zelikovsky

Abstract— Chemical-mechanical polishing (CMP) and other manufacturing steps in very deep submicron

VLSI have varying effects on device and interconnect features, depending on local characteristics of the layout.

To improve manufacturability and performance predictability, we seek to make a layout uniform with respect to

prescribed density criteria, by inserting “area fill” geometries into the layout. In this paper, we make the follow-

ing contributions. First, we define the flat, hierarchical and multiple-layer filling problems, along with a unified

density model description. Secondly, for the flat filling problem, we summarize current linear programming

approaches with two different objectives, i.e., the Min-Var and Min-Fill objectives. We then propose several

new Monte-Carlo based filling methods with fast dynamic data structures. Third, we give practical iterated

methods for layout density control for CMP uniformity based on linear programming, Monte-Carlo and greedy

algorithms. Fourth, to address the large data volume and inherent lack of scalability of flat layout density con-

trol, we propose practical methods for hierarchical layout density control. These methods smoothly trade off

runtime, solution quality, and output data volume. Finally, we extend the linear programming approaches and

present new Monte-Carlo based methods for the multiple-layer filling problem. Comparisons with previous

filling methods show the advantages of the new iterated Monte-Carlo and iterated greedy methods for both flat

and hierarchical layouts, and for both density models (spatial density and effective density). We achieve near-

optimal filling for flat layouts with respect to each of these objectives. Our experiments indicate that the hybrid

hierarchical filling approach is efficient, scalable, accurate, and highly competitive with existing methods (e.g.,

linear-programming based techniques) for hierarchical layouts.

This research was supported by a Packard Foundation Fellowship, by the MARCO Gigascale Silicon Research Center, by NSF

Young Investigator Award MIP-9457412, by NSF grant CCR-9988331, and by a grant from Cadence Design Systems, Inc.
Y. Chen is with the Department of Computer Science, UC Los Angeles, Los Angeles, CA 90095-1596. E-mail:

yuchen@cs.ucla.edu.
A. B. Kahng is with the Departments of Computer Science and Engineering, and of Electrical and Computer Engineering, UC

San Diego, La Jolla, CA 92093-0114. E-mail: abk@cs.ucsd.edu.
G. Robins is with the Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442. E-mail:

robins@cs.virginia.edu.
A. Zelikovsky is with the Department of Computer Science, Georgia State University, Atlanta, GA 30303. E-mail:

alexz@cs.gsu.edu.

2

I. INTRODUCTION

As predicted by the Semiconductor Industry Association’s Technology Roadmap [21], VLSI

technology has entered deep submicron regimes, where the manufacturing process increasingly

constrains physical layout design and verification [16]. Many process layers, including diffusion

and thin-ox, have associated density rules that are satisfied by post-processing steps which add

area fill geometries to the layout. Historically, only foundries or specialized TCAD (Technol-

ogy Computer-Aided Design) tool companies performed the layout post-processing necessary to

achieve layout uniformity. Today, however, ECAD (Electronic Computer-Aided Design) tools for

physical design and verification cannot remain oblivious to such post-processing phases.

Literature on area fill has focused on chemical-mechanical polishing (CMP) of spin-on glass

(SOG) inter-layer dielectrics (ILD) [14] [18] [27]. Post-polish ILD thickness variation is kept

within acceptable limits by controlling local feature density, relative to a process-specific “window

size” (on the order of 1-3mm), that depends on CMP pad material, slurry composition, and other

factors [7].1

Application of area fill to device layers (diffusion, poly, thin-ox) is equally (or even more) criti-

cal. Isolated transistors are susceptible to contact overetch in reactive ion etch (RIE) process steps,

which results in leakage. Chemical vapor deposition (CVD) steps are also subject to iso-dense

variations. CVD and etch process variation are particularly troublesome with respect to today’s

lightly-doped drain (LDD) device properties. The bottom-line performance effects of these pro-

cess variations are well-known, e.g., Garofalo et al. [8] document 10% variation in interline capac-

itance resulting from 5% variation in linewidth, and 12% error in ring oscillator frequency solely

from proximity effects. At the same time, it is also well-known that the uniformity of feature den-

sity obtained via area fill can mitigate macroscopic process proximity effects such as contact etch

variation in reactive ion etch, and nonuniformity of chemical vapor deposition.

With respect to the potential negative effects of area fill insertion, certainly the fill geometries

can affect interconnect capacitance, signal delay and crosstalk. The exact change in interconnect

capacitance mainly depends on the size of the fill geometries and proximity to interconnect lines.

However, Grobman et al. have recently given detailed experimental data [10] pointing out that

1We observe that the 1999 International Technology Roadmap for Semiconductors [22] added copper interconnect dishing to

the fundamental roadmap parameters for Interconnect. (The 2000 ITRS also added copper interconnect thinning in CMP to the

fundamental parameters.) Density-mediated process variation has therefore become a first-order concern for interconnects.

3

capacitance of dense lines is not significantly affected by floating fill geometries on neighboring

layers, since this capacitance is mostly dominated by same-layer neighbor coupling. Furthermore,

smaller fill geometries reduce crosstalk to distant neighbors and lead to a smaller increase in total

capacitance. The conclusion from such analyses is that the first-order performance concern remains

to improve planarization and uniformity of geometry via area fill insertion.

Finally, we note that current industry tools appear to be slow in handling detailed physical mod-

els of CMP, such as those addressed by our work. To the best of our knowledge, most current

industrial tools such as Cadence Assura 2.0 perform fill insertion as part of physical verification,

using rule-based methods. The underlying geometry engines are tuned to boolean operations on

layout layers, and to local (e.g., width/spacing rule) checks. A typical use of such infrastructure

is to simply insert area fill geometries to increase local density wherever there exist large enough

slack areas. This is usually done with boolean operations to find the slack areas and fill them with

geometries of a prescribed density. The main problem with this method is that the spread between

minimum and maximum densities is usually fairly large, and it is unclear how the fill insertion

approach is related to known analytical models for the relationship between local density and ILD

thickness. Comparisons with industry tools have not been possible, as no commercial tools of

which we are aware offer hierarchical fill insertion capability, and the related methods of [25] are

Motorola-internal and not publically available [9].

A. Organization of the Paper

The remainder of our paper reviews the range of local density models and density control ob-

jectives, then proposes several new approaches to a flat and hierarchical density control for CMP.

Section II defines the single-layer filling problem for both flat and hierarchical layouts. Both for-

mulations are based on the practical industry-standard fixed dissection density analysis regime

[12]. Relevant objectives include the Min-Var and Min-Fill objectives. Though hierarchical filling

can speed up verification of filled layout and decrease data volume, there is an obvious conflict

between honoring the layout hierarchy and achieving high-quality filling results. The filling prob-

lem for multiple-layer layouts is then discussed, where the cumulative density effect is considered.

Section III gives a unified description of existing models for density calculation for CMP. We re-

view a standard model for oxide planarization via CMP, and describe spatial local density and

effective local density models. Section IV first reviews several linear programming (LP) -based ap-

4

proaches that determine the optimal fill amounts to be inserted into the layout, with respect to the

Min-Var and Min-Fill objectives. Then, because LP approaches tend to require too much memory

in practice, we propose new Monte-Carlo -based approaches for flat filling, which are as accurate

as yet faster than LP approaches. Section V analyzes the difficulties inherent in hierarchical fill-

ing, as well as the reasons why the LP approach is sometimes inapplicable. We then propose a

new Monte-Carlo filling approach and a hybrid hierarchical/flat filling approach which is scalable,

efficient and highly competitive with flat filling. Section VI discusses the extensions of LP and

Monte-Carlo approaches to a multiple layer model. Sections VII and VIII describe our implemen-

tation testbed and computational experience, and Section IX concludes with directions for future

research.

II. THE FILLING PROBLEM

Layout Density Control consists of two phases: density analysis and fill synthesis. Density

analysis determines the area available for filling. Fill synthesis then computes the amount of fill

feature area which should be added into each part of the layout in order to achieve uniformity, and

then generates the required fill geometries. In this paper, we address the main problem of the area

fill synthesis phase:

A. Flat Filling

Given a design rule-correct layout in an n � n layout region, along with a window size w � n,

and upper (U) and lower (L) bounds on the feature density in any window, add area fill geometries

to create a filled layout such that either:

� (Min-Var Objective) the variation in window density (i.e., maximum window density minus

minimum window density) is minimized while the window density does not exceed the given

upper bound U ; or

� (Min-Fill Objective) the number of inserted fill geometries is minimized while the density of

any window remains in the given range
�
L � U � .

The Min-Var objective, introduced in [12], captures the “manufacturing side” of fill synthesis,

which seeks the most uniform density distribution possible. The Min-Fill objective, recently pro-

posed in [25], models the “design side” in that it seeks to minimize the coupling capacitance and

the uncertainty caused by filling. Algorithms for filling flat designs can be classified into two cate-

5

gories: linear-programming (LP) based approaches [12] [25], and Monte-Carlo based methods [4]

[5].

B. Hierarchical Filling

Hierarchy arises in both custom and semi-custom design flows. In custom design, hierarchy

is used mostly for streamlining the management and the decomposition of the design problem.

In semi-custom design, hierarchy is associated more with reuse of standard cells, whose layouts

include device layers and local interconnect, or IP blocks. The key observation is that hierarchical

designs become difficult to verify when flattened. Hence, hierarchical filling can enable simpler

and faster verification of the filled layout, since verification can still follow the structure of the

original hierarchy. Hierarchical filling can also decrease data volume for standard-cell designs.

(In general, data volume is a big issue for area fill since a filling solution can consist of many

millions of tiny geometries.) Thus, hierarchical fill generation is an emerging requirement for

future commercial EDA tools [20].

Our present work investigates approaches and tradeoffs inherent in filling master cells rather than

just individual instances. We consider hierarchical filling as a post-processing step performed (on

device layers) after placement. When router access to local interconnect (salicide) and M1 layer is

strongly restricted2, then hierarchical filling may be performed after routing as well. Hierarchical

filling entails obvious complex constraints:

� When area fill is inserted into a master cell, it must satisfy density constraints in all contexts

for instantiations of the master;

� There are many interactions or interferences at master cell boundaries and at distinct levels

of the hierarchy (see Fig. 1);� Solution quality in terms of either the Min-Var or Min-Fill objective will be worse for hier-

archical solutions than flat solutions, because the former are more constrained; and

� The number of constraints for LP-based hierarchical filling explodes combinatorially for the

known LP-formulations, rendering unusable the linear programming techniques which have

been successful for flat filling [12] [25].

The filling problem for hierarchical (standard-cell) layouts is similar to its counterpart for flat

layouts, except that the hierarchical structure of master cells must be preserved, i.e., the same

2E.g., Cadence and Avant! gridded routers are often restricted to well-defined pin availabilities at points of the routing grid.

6

Cell B

Cell A

Cell A

Overlaps between 2 instances of the same master cell

Overlaps between 2 instances of different master cells

Overlaps with features

Fig. 1. The types of interactions or interferences with master cells.

filling geometry is simultaneously added to all instances of the same master cell. Here, we assume

that we can fill the slack (i.e., free) area of each master cell independently and uniformly.

The Hierarchical Filling Problem: Solve the Filling Problem for a given standard-cell layout so

that:

� filling geometries are added only to master cells;

� each cell of the filled layout is a filled version of the corresponding original master cell; and

� the increase in (hierarchical) layout data volume does not exceed a given threshold.

C. Multiple-Layer Filling

In the layout with multiple layers, each layer except the bottom one can’t assume a perfectly flat

starting surface. Thus, independently filling each layer optimally may not achieve an acceptable

planarization for the top layers as layers are stacked during the manufacturing process.

The Multiple-Layer Filling Problem: Solve the Filling Problem for a given multiple-layer layout

so that either:

� (Min-Var Objective) the sum of variations in window density on each layer is minimized, or

the variance of variations in window density on each layer is minimized; or

� (Min-Fill Objective) the number of inserted fill geometries is minimized while the density of

any window remains in the given range (Lk, Uk) for each layer k.

7

III. A UNIFIED DESCRIPTION OF LAYOUT DENSITY MODELS FOR CMP

Several models for oxide planarization via CMP are reviewed in [18]. In particular, the accurate

and well accepted model of [23] is neither computationally expensive nor difficult to calibrate. In

this model, the interlevel dielectric thickness z at location
�
x � y � is calculated as:

z �
���� z0 � � Kit

ρ � x � y � � t � �
ρ0z1 �
	 Ki

z0 � z1 � Kit � ρ0
�
x � y � z1 t � �

ρ0z1 �
	 Ki

(1)

where Ki is the blanket polish rate, z0 is the height of oxide deposition, z1 is the height of existing

features, t is the polish time, and ρ0 is the initial pattern density. The crucial element of the model

is the determination of the effective initial pattern density ρ
�
x � y � . In this section, we give a unified

approach to two different definitions of pattern density studied in [12] and [25], respectively. This

unification will allow us to exploit the same methods for layout density control for both pattern

density definitions.

The pattern density in
�
x � y � is a local property and therefore depends on spatial pattern density

within some close range of the point
�
x � y � . This local property may be captured by introducing

(for a certain w) a w � w-window W centered at
�
x � y � , and assuming that ρ

�
x � y � depends only on

the pattern density distribution in W .

To make the filling problem more tractable, a standard industry practice is to consider only a

finite set of layout windows. Bounding the effective density in a fixed set of w � w windows can

incur substantial error, since other windows could still violate the density bounds.3 A common

industry practice is to enforce density bounds in r2 overlapping fixed dissections, where r deter-

mines the “phase shift” w 	 r by which the dissections are offset from each other. In other words,

to help control layout density in arbitrary windows, density bounds are enforced only for windows

of the fixed r-dissection (see Fig. 2), which partitions the n � n-layout into tiles Ti j, then covers the

layout by w � w-windows Wi j, i � j � 1 �

 � nr
w � 1, such that each window Wi j consists of r2 tiles

Tkl , k � i �

�
 � i � r � 1, l � j �

�

 � j � r � 1. Note that windows are “wrapped around” the layout,

e.g., a window that overlaps with the upper edge of the layout also contains tiles on the bottom of

the layout. This is not only convenient, but also reflects the fact that layout density at the edge of

one die may affect the manufacturing of the die’s neighbors on the wafer.

3The analysis in [12] bounds the error that results from considering only a finite number of windows, versus considering all

possible windows.

8

tile

windows

n

w
 w/r

X

Y

Fig. 2. The layout is partitioned using r2 (r � 4 in this example) distinct dissections (each with window size w � w),

into nr
w
� nr

w tiles. Each dark-bordered w � w window consists of r2 tiles.

We seek to understand how the effective density depends on the spatial pattern density distribu-

tion in a window. The simplest model for ρ
�
x � y � is the local area feature density, i.e., the window

density is simply equal to the sum:

ρ
�
Wi j � � i � r � 1

∑
k � i

j � r � 1

∑
l � j

area
�
Tkl � (2)

where area
�
Tkl � denotes the original layout area of the tile Tkl . This model is due to [12], which

solved the filling problem using linear programming.

A more accurate model considers the deformation of the polishing pad during the CMP process

[7], where the effective local density ρ
�
x � y � is calculated as the sum of weighted spatial pattern

densities within the window, relative to an elliptical weighting function:

f
�
x � y � � c0 exp

�
c1

�
x2 � y2 � c2 � (3)

with experimentally determined constants c0, c1, and c2 [25]. The discretized effective local pat-

tern density ρ for a window Wi j in the fixed-dissection regime (henceforth referred to as effective

window density) is:

ρ
�
Wi j � � i � r � 1

∑
k � i

j � r � 1

∑
l � j

area
�
Tkl ��� f

�
k � �

i � r 	 2 � � l � �
j � r 	 2 � � (4)

9

where the arguments of the elliptical weighting function f are the x- and y-distances of the tile Tkl

from the center of the window Wi j.

IV. FILL SYNTHESIS FOR FLAT LAYOUTS

A. Linear Programming Approaches

The linear programming (LP) approach seeks the optimum fill area pi j to be inserted into each

tile Ti j. The fill area pi j cannot exceed slack
�
Ti j � , which is the area available for filling inside the

tile Ti j computed during density analysis. The first LP formulation for the Min-Var objective is

[12]:

Maximize: M

Subject to:

pi j � 0 i � j � 0 �

�

 � nr
w � 1 (5)

pi j � slack
�
Ti j � i � j � 0 �

 � nr

w � 1 (6)

i � r � 1

∑
s � i

j � r � 1

∑
t � j

pst � αi j
�
U � w2 � areai j � �

i � j � 0 �

�

 � nr
w � r � 1 (7)

M �
i � r � 1

∑
s � i

j � r � 1

∑
t � j

area
�
Tst � � i � r � 1

∑
s � i

j � r � 1

∑
t � j

pst �

i � j � 0 �

�

 � nr
w � r � 1 (8)

where αi j � 0 if areai j � U � w2 and = 1, otherwise.

The constraints (5) imply that we can only add features to, but cannot delete features from, any

tile. The slack constraints (6) are computed for each tile: if a tile Ti j is originally overfilled, then

we set slack
�
Ti j � � 0. The values of pi j from the LP solution indicate the fill amount to be inserted

into each tile Ti j. The constraints (7) ensure that no window can have density more than U after

filling, unless it was initially overfilled. Inequalities (8) imply that the auxiliary variable M is a

10

lower bound on all window areas which include the original feature areas area
�
Tst � and the fill

areas pst . The linear program seeks to maximize M, thus achieving the Min-Var objective.

A followup work [25] proposed the Min-Fill objective, along with a Ranged Variation LP:

Minimize: ∑
i � j pi j

Subject to:

pi j � 0 i � j � 0 �

�

 � nr
w � 1 (9)

pi j � slack
�
Ti j � i � j � 0 �

 � nr

w � 1 (10)

L � ρ0
�
i � j � � U i � j � 1 �

�

 � nr

w � 1 (11)

Here, ρ0
�
i � j � is the effective density of tile Ti j; L and U are the minimum and maximum tile

effective densities, respectively.

We also note a variant LP for the Min-Var objective: given a target window density M (instead

of an upper bound on window density), we minimize the variability budget ε:

Minimize: ε

Subject to:

0 � p
�
Ti j � � slack

�
Ti j � (12)

M � ε 	 2 � ρ
�
Ti j � � M � ε 	 2 i � j � 1 �

�
 � nr

w � 1 (13)

B. New Monte-Carlo and Greedy Approaches

B.1 Min-Var Objective

The number of variables and the number of constraints in the linear program described above

are both O
� � nr

w � 2 � . Although the LP solution is optimal, it has several drawbacks. First, solving

a very large linear program is too time consuming (expected runtimes are O
�
v3 � , where v is the

number of variables in the LP). Second, an optimal solution for an r-dissection is not necessarily

an optimal solution for e.g., a 2r-dissection and may also result in a high floating window density

variation, (i.e., density variation over all windows, not only over the fixed-r dissection). Third,

11

rounding is another source of errors in LP formulations: when the tile size is sufficiently small, the

problem becomes an instance of integer programming, and rounding errors become crucial.

Monte-Carlo Approaches

Here we consider new approaches to the Filling Problem based on the Monte-Carlo paradigm.

Our goal is to develop a method with significantly better scaling properties than the LP formulation,

without incurring a serious loss of solution quality. Our approaches can transparently handle both

the spatial pattern density model as well as the effective pattern density model.

The Min-Var Monte-Carlo algorithm (see Fig. 3) randomly chooses a tile and increments its

content (i.e., spatial/effective density) by a prescribed fill amount. The probability of choosing a

particular tile Ti j is referred as the priority of that tile. The iteration ends when either the sum of

priorities of tiles is equal to zero, or when no tiles slack area is left.

Priorities

The Monte-Carlo methods considered in this paper randomly choose a tile and increment its

contents (i.e., area density) by a prescribed fill amount. The probability of choosing a particular

tile Ti j defines the priority of that tile. The priority of a tile may depend on the density of the

windows containing that tile, or else be independent of the window density. Note that the priority

of a tile is zero if it belongs to a window which has already achieved the density upper bound U

and is “locked” (see below).

We consider three different methods of computing tile fill priorities. The first method does not

take into account the density of the windows containing the tile. We call this the slack priority,

because it sets the priority to be equal to the slack of the tile. Intuitively, this means that we select

a tile with probability proportional to its empty area, i.e., the choice of any available legal position

of a fill geometry is uniform and independent. In order to take into account the density of windows

we consider two more alternatives:

� maximal priority of the tile Ti j is proportional to U � MaxWin
�
Ti j � ; and

� minimal priority of the tile Ti j is proportional to U � MinWin
�
Ti j � ,

where MaxWin
�
Ti j � and MinWin

�
Ti j � are the maximum and minimum densities over all windows

containing Ti j, respectively.

The intuition behind the maximal priority is to first insert fill into tiles for which the upper

density U is less likely to constrain the filling. In other words, we want to insert as much fill as

12

Monte-Carlo Filling Algorithm

Input: n � n layout,

fixed r-dissection into tiles Ti j, i � j � 0 ��������� nr
w
� 1,

slack
�
Ti j � = slack of tile Ti j,

area
�
Wi j � = area of w � w window Wi j,

unit f ill = unit filling area, and

U = upper bound on w � w window area.

Output: filled layout

1. For each tile T initialize

2. insert in
�
T � � 0

3. priority
�
T � � f

�
U � slack

�
T � � MaxWin

�
T ���

4. While the sum of tile priorities is positive Do

5. Select a random tile T according to priorities

6. insert in
�
T � � insert in

�
T ��� 1; slack

�
T � � slack

�
T � � unit f ill

7. If slack
�
T �
	 unit f ill Then priority

�
T � � 0

8. Else priority
�
T � � priority

�
T � � unit f ill

9. For each window W containing T Do

10. area
�
W � � area

�
W ��� unit f ill

11. For each tile T ��� W Do

12. Update priority
�
T � � according to area

�
W �

13. For each tile T Do

14. Randomly perturb sequence of grid positions: random
�
i � � 1 �������
� slack

�
T �
� unit f ill

15. For i � 1 ��������� insert in
�
T � Do

16. Insert a unit-fill geometry into the random
�
i � th grid position

17. Output the filled layout

Fig. 3. The Monte-Carlo based filling algorithm.

possible before all tiles either exhaust their slack, or belong to a window with density U . On the

other hand, the minimal priority scheme ensures a preference toward tiles which belong to the

most underfilled windows. Thus, each such insertion of a filling geometry increases the current

minimum window density with higher probability. The Monte-Carlo algorithm with this minimal

priority scheme can be viewed as a randomized greedy algorithm for solving the linear program

(Equations (5)-(8)).

We may further increase the relative probabilities of selecting tiles with relatively higher (min-

imal or maximal) priorities. This is easily accomplished, e.g., by raising priorities to the power

of 2 or 4 before normalizing them. Raising priorities to a higher power brings the Monte Carlo

13

algorithm even closer to the greedy algorithm (which fills tiles in a deterministic order).

Updating the Priorities

Regardless of which priority scheme is used, it is essential to update the priority of tiles which

belong to locked windows (i.e., windows with density U). Thus, when newly added fill causes a

window to reach its maximum allowable density, all tiles in that window should be removed from

the prioritization scheme, since they cannot be assigned any more fill. We propose two heuristic

schedules for updating tile priorities after each fill geometry insertion. In the context of Fig. 3,

these are:

(H1): Update the priorities of all affected tiles, i.e., execute all lines in the algorithm shown in

Fig. 3; and

(H2): Update the priorities only of tiles which belong to locked windows, i.e., in the algorithm

of Fig. 3, omit Line 8 and execute the loop at Lines 11 � 12 only if window W achieves the

maximum density U .

The above discussion implies that the underlying data structures must support two distinct op-

erations, namely, priority-based tile selection, and the efficient updating of priorities. One simple

way of implementing tile selection is to (1) arrange tiles in a 1-dimensional array Ti � i � 1

 � k;

(2) create a list of sums of priorities S0 � 0 � S1 �

 � Sk, such that Si � 1 � Si � priority
�
Ti � ; and (3)

choose a random number in the range
�
0 � Sk � which will belong to some subinterval

�
Si � 1 � Si � cor-

responding to selection of the tile Ti. Such tile selection is very fast, but unfortunately priority

updating requires O
�
k � time on average. We recommend the quadrisection approach which recur-

sively partitions the design into 4 quadrants and maintains the sum of priorities of all tiles in each

quadrant. The runtime of our data structure is O
�
logk � per insertion.4 Since heuristic schedule

H2 updates priorities only once (i.e., when the window containing a tile is locked), the average

insertion time will be much smaller for H2 than for H1 (see Table II).

Filling Schedule

A third family of implementation design choices depends on how many filling geometries may

be inserted into a tile per iteration. We compare two alternatives: (i) insert into a tile Ti j a single

4First, we select a random number R between 0 and the sum of all priorities. If R is greater than the priority of the first quadrant

q1, then we set R � R � q1 and so on, until R � qi. We then repeat this process recursively for all sub-quadrants of qi. Finally, after

at most O � logk � recursive steps, we will find the tile in which to insert fill. Priority updating can be done within the same time

complexity, using a bottom-up approach.

14

fill geometry per iteration, or (ii) insert the maximum possible number of fill geometries which is

min
�
U � MaxWin

�
Ti j � � slack

�
Ti j ��� .

Greedy Approaches

A variant of the Monte-Carlo approach is the deterministic Greedy algorithm. At each step the

Min-Var Greedy algorithm adds the maximum possible amount of fill into a tile with the highest

priority, i.e., at each step a tile with the highest priority is locked. The performance of the Min-Var

Greedy algorithm is illustrated in Table IV. Greedy run times are slightly higher than Monte-Carlo

run times, due to the necessity of finding highest-priority rather than random tiles.

B.2 Min-Fill Objective

In the presence of two objectives, a natural strategy is first to find a solution that optimizes one

of the objectives (Min-Var), and then modify that solution with respect to the other objective (Min-

Fill), hopefully without degrading the solution quality relative to the first objective. Thus, the first

objective (density variation) can hopefully be traded off towards a significant improvement in the

second objective (the amount of inserted fill). This strategy can be implemented with an LP-based

approach as follows:

1. Solve the Min-Var LP formulation with the given upper bound U on window density;

2. Decrease the obtained minimum window density M by a given amount L � M �
�
1 � ε � ;

3. Solve the Min-Fill LP formulation within the interval
�
L � U � .

To implement the same strategy with either the Monte-Carlo or this greedy approach, we assume

that the density of each window is already within the given interval
�
L � U � and then solve the

following:

Fill-Deletion Problem (with the Min-Fill objective): Delete as much previously inserted fill as

possible, while maintaining a minimum window density of no less than L.

To solve the Fill-Deletion problem using the Monte-Carlo approach, we iteratively delete a fill

geometry from a tile randomly chosen according to a certain priority. It is natural to choose this

priority symmetrically to the priority in the Min-Var Monte-Carlo algorithm, i.e., proportional to

MinWin
�
Ti j � � L. Again symmetrically, no filling geometry can be deleted from the tile Ti j (i.e.,

Ti j is locked) if and only if it either has zero priority, or else all fill previously inserted into Ti j has

been deleted.

15

Thus, the Min-Fill Monte-Carlo algorithm deletes fill geometries from unlocked tiles which

are randomly chosen according to the above priority scheme (see Fig. 4). Similarly, the Min-Fill

Greedy algorithm iteratively deletes a filling geometry from an unlocked tile with the currently

highest priority.

Min-Fill Monte-Carlo Algorithm

Input: n � n filled layout,

fixed r-dissection, w � w window,

lower bound on window density L

Output: filled layout with minimized amount of inserted fill area

1. While there exist an unlocked tile do

2. Choose an unlocked tile Ti j randomly, according to its priority

3. Delete a filling geometry from Ti j

4. Update priorities of tiles

5. Output the resulting layout

Fig. 4. The Monte-Carlo algorithm for the Fill-Deletion problem deletes fill geometries from randomly chosen

unlocked tiles (i.e., tiles which still have filling geometries, but which belong to windows having density greater

than L).

Iterated Monte-Carlo and Greedy Methods

Min-Var Objective: As mentioned above, both the Monte-Carlo and Greedy Algorithms are

suboptimal for the Min-Var Objective, and although they are both fast in practice, the resulting

minimum window density may be significantly lower than the optimum. We now propose iter-

ated methods based on alternating the Min-Var and Min-Fill objectives (see Fig. 5), resulting in

a monotonic narrowing of the gap between the upper window density bound U and the minimum

window density L. Such iterated methods are still very fast and retain all the advantages of their

non-iterated Monte-Carlo and Greedy counterparts, yet offer improved accuracy (see Table IV).

Min-Fill Objective: To solve the Filling Problem with the Min-Fill Objective, the Iterated Monte-

Carlo and Greedy Filling algorithms (see Fig. 5) may be modified as follows:

1. Interrupt the filling process as soon as the lower bound L on window density is reached, i.e.,

when M � L, instead of improving the minimum window density (while possible) for the Min-

Var objective.

2. Continue iterating, but without changing the lower density bound M � L. Although this does

16

Iterated Monte-Carlo and Greedy Filling Algorithms

Input: n � n layout,

fixed r-dissection, w � w window,

upper bound on window density U

Output: filled layout

1. Repeat forever

2. Run Min-Var Monte-Carlo (Greedy) Algorithm with the upper window density U

3. If resulting minimum window density equals the previous M Then exit repeat

4. Update the densities of tiles and windows and the minimum window density M

5. Run Min-Fill Monte-Carlo (Greedy) Algorithm with the lower window density M

Fig. 5. In the Iterated Monte-Carlo and Greedy Filling approach, each iteration consists of two applications (with the

Min-Var and Min-Fill objectives) of the Monte-Carlo and Greedy algorithms.

not guarantee that the total filling area will not increase, an improved solution can typically be

obtained if we keep track of the best solution seen over all iterations.

V. FILL SYNTHESIS FOR HIERARCHICAL LAYOUTS

Most modern designs are hierarchical, with layout representations that are substantially more

succinct than flat layouts, and that hence can be analyzed and processed more efficiently. The fill-

ing problem for hierarchical (standard-cell) layouts is similar to its flat layout counterpart, except

that the hierarchical structure of master cells must be preserved, i.e., the same filling geometry is

simultaneously added to all instances of the same master cell. The slack area of each cell can be

filled independently and uniformly, as is the case when the size of fill geometries is sufficiently

small.

A. Why Not Linear Programming

The filling constraints due to hierarchical characteristics make the LP approach for hierarchical

filling problem infeasible. Instead of using O
� � nr

w � 2 � variables and constraints corresponding to

each tile and window in the LP formulation for the flat fill problem, we must define the variables

and constraints for each window, all instances of each master cell, all feasible fill positions in each

master cell, and each window. This greatly increases the number of variables and constraints (e.g.,

the number of grid cells is much larger than number of tiles). The LP formulation is furthermore

complicated by the transformations of master cell instances and the overlaps between the instances.

Based on these considerations, the Monte-Carlo method constitutes a much more feasible approach

17

Monte-Carlo Hierarchical Filling Algorithm

Input: hierarchical layout, fixed r-dissection, buffer distance,

w � w window, upper bound U on window density

Output: new hierarchical layout with filled master cells

1. For each Master Cell Mi in the layout Do

2. Partition the Master Cell Mi according to the given grid size

3. For all grids in the Master Cell Do

4. Mark the status of grid “occupied” if it is covered by the original features or the sub Master Cell

5. For all instances I j of the Master Cell Mi Do

6. If the instance I j is overlapped with features or instances of other Master Cells Then

7. Update the status of grids which are covered

8. Calculate the priority of the Master Cells

9. While the sum of priority � 0 Do

10. Use the Monte-Carlo method to select one Master Cell Mi

11. Randomly select a slack grid position in the master cell

12. For each corresponding position of the grid in all instances of the Master Cell Mi Do

13. If the insertion causes any window density to exceed the upper bound U on window density Then

14. Discard the insertion and lock slack grid position

15. Go over all other grid positions in master cell which are covered by the exceeded window and lock them

16. Else Increase the fill area of the Master Cell

17. Add the new fill geometry into the Master Cell

18. Update the relevant windows’ densities

Fig. 6. The Monte-Carlo Hierarchical filling algorithm.

for the hierarchical filling problem than linear programming.

B. The Monte-Carlo Method

Our proposed hierarchical filling algorithm (see Fig. 6) starts by computing the slack for all

master cells. (Cell overlaps are possible and must be addressed carefully, as detailed below.)

We then create buffer zones around master cells to avoid overfilling the regions near master cell

boundaries. Master cells are then filled in a Monte-Carlo fashion, according to a priority scheme

where master cells that are more severely underfilled receive higher priority for filling at each

iteration. This process continues until all master cells are filled past the lower bound density

threshold, or until the slack in all underfilled master cells is exhausted.

18

C. Slack Computation for Hierarchical Layouts

For each master cell, area fill may be inserted only into the slack area of a master cell, not into

its subcells. Computing the slack of a master cell proceeds by first determining the number of grid

positions inside the bounding box of the master cell, while excluding all positions that overlap with

either a “bloated” feature (i.e., a forbidden buffer zone around each feature) or a “bloated” subcell.

However, slack area computation is complicated by the fact that instances of master cells may

overlap. Such overlaps can occur between the master cell instance and the features, or between

two or more master cell instances (see Fig. 7). In general, overlaps may have a very complicated

structure. We distinguish the following cases:

(1) The overlap between a master cell instance and a feature;

(2) The overlap between two instances of different master cells;

(3) The overlap between more than two instances of different master cells; and

(4) The overlap between two or more instances of the same master cell.

For each region of master cell overlap we must determine which master cell “owns” that inter-

section region. In other words, it is necessary to assign the space available for filling to the slack of

a single master cell. We resolve this “ownership” problem by fixing a containment order over all

master cells, starting from the global master cell (containing the entire layout), all the way down

to individual features. This hierarchy can be represented as an acyclic directed graph H, with the

set of nodes consisting of all master cells and individual features, and where there is an arc from a

cell A to another cell or feature B, if and only if B participates in the definition of A.

The topological order of the graph H is a linear ordering of its nodes in such a way that all

arcs point in the same direction (say, left-to-right). Such a topological order may be obtained

by a breadth-first-search traversal of H, starting from the global master cell, and represents a

containment-based ordering of the hierarchy where no master cell appearing later in the order may

use in its definition any master cells appearing earlier in the order. For every intersection of master

cell instances, we check which of the master cells appears later in the topological order and assign

the intersection area to this master cell. This correctly resolves the overlap cases (1-3) above.

Unfortunately, case (4) cannot be resolved in this manner because hierarchy cannot distinguish

different instances of the same master cell. Thus, we exclude such type-(4) overlapping regions

from the slack of master cells, thereby leaving such regions unavailable for fill.

19

�����������
�����������
���������
���������

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���������
���������
���������
���������

Subcells Features

Cell

Fig. 7. Computing master cell intersections: the dark features and patterned subcells may either completely or partially

overlap with a given master cell.

D. Hybrid Hierarchical/Flat Filling Approaches

Pure hierarchical filling may tend to result in some sparse or unfilled regions (e.g., due to over-

laps between different instances of master cells and features, or due to the interactions among the

“bloat” regions around master cells), which could result in an unacceptably high layout density

variation. A natural and simple solution is to apply a post-processing “cleanup” phase, i.e., apply

a standard flat fill algorithm to the output of the hierarchical phase. However, a purely flat fill

approach, even when applied as a secondary post-processing phase, may greatly increase the re-

sulting data volume and runtime, negating the benefits of using a hierarchical approach in the first

place.

We propose a new algorithm for mitigating this drawback, by combining hierarchical filling

techniques with a flat filling approach, in a way that smoothly trades off the respective efficiency

and accuracy of these two approaches. In our proposed method, varying a user-controlled parame-

ter yields a smooth tradeoff among solution quality, data volume, and runtime, as confirmed by our

computational experience. Our three-phase hybrid hierarchical-flat filling approach is summarized

as follows:

1. A purely hierarchical fill phase; followed by

2. A split-hierarchical phase, where certain master cells that were deemed to be underfilled in

phase 1, would be replicated so that distinct copies of the same master cell may be filled

differently than other copies of the same master cell; and finally,

3. A flat fill “cleanup” phase (say, Monte-Carlo based), which will fill any remaining sparse or

unfilled regions that were not processed satisfactorily during the first two phases.

20

The overall goal with this strategy is to quickly fill as much of the layout as possible in phases 1

and 2 while keeping the fill output data volume relatively low, and then further improve and tune

the resulting filled layout using a flat filling approach in phase 3 on the (presumably small number

of) remaining sparse or unfilled areas.

In particular, phase 2 consists of repeatedly splitting master cells located in regions which were

determined to be underfilled during phase 1, as follows. Given a top-down containment-based

topological ordering of the n master cells, i.e. C1 � C2 � C3 �

 � Cn � 2 � Cn � 1 � Cn, where a master cell Ci

can only contain master cell C j if and only if i � j, a master cell Ci may be split into two master

cells Ci � 1 and Ci � 2 and any C j containing master cell Ci is then modified to point to either the copy

Ci � 1 or Ci � 2 (say, randomly chosen). More generally, rather than performing only two-way splits,

we can perform k-way splits (see Fig. 8).

Varying the parameter k (which controls the split factor) from 1 (pure hierarchical) to an arbitrar-

ily large number (pure flat), yields a smooth tradeoff between solution quality, data volume, and

runtime. As k is increased, the solution quality asymptotically approaches that of flat fill. If the

result of hierarchical filling does not satisfy the technological constraints, we then recommend fore-

going the original hierarchy in favor of a more uniform filling. This can be implemented by storing

in the original cell library different filled versions of each master. Such a scheme will not necessar-

ily slow down verification, since having fixed permanent structure, they can be “pre-verified”, and

thus dramatically improve the uniformity of hierarchical filling without a large runtime increase.

VI. FILL SYNTHESIS FOR MULTIPLE-LAYER LAYOUT

In the model of [28], topographic variation of each layer attenuates through subsequent CMP

steps, each of which is modeled as a low-pass filter based on equations (3) and (4), according to

the following equation:

ˆρ0 � k � �
�� � �

d̂k � � zk � 1
zk

� ˆρ0 � k � 1 � � � f̂ k � 1

d̂1
� f̂ k � 1

(14)

where “ ˆ ” is the Fast Fourier Transform (FFT) operator, ˆρ0 � k � is the effective local density, zk

is the step height (i.e., the height of layer k from the first layer), dk is the local density (all for

layer k), and f is the weighting function. In the discussion below, we will not explicitly address

the multiple-layer model. However, our linear programming and Monte-Carlo algorithms have

straightforward extensions for simultaneously handling multiple layers.

21

k-Way Master Cell Splitting Algorithm

Input: hierarchical layout, and a splitting parameter k

Output: new hierarchical layout with new copies of master cells

1. For i � 1 to n Do

2. Create k new copies of Ci, namely Ci � 1 � Ci � 2 ��� � �Ci � k
3. For any master cell C � containing in the master cell Ci Do

4. For all 1
�

j
�

k Do

5. Put an arc from the master cell Ci � j to C �
6. For any master cell C which contains master cell Ci Do

7. Replace Ci inside C with copy Ci � j for random j, 1
�

j
�

k

8. In the hierarchy H, replace the arc
�
C � Ci � with

�
C � Ci � j �

9. Output resulting new hierarchical layout

Fig. 8. Improving the hierarchical filling approach by splitting master cells k-ways: each master cell is replaced with

k distinct masters, each of which may be filled independently and differently.

By mathematical induction on the layer number k and the linearity of Fourier transforms, Equa-

tion (14) can be written as [25]:

ˆρ0 � k � � k

∑
l � 1

� �
zl 	 zk � f̂ k � l � 1 � d̂l (15)

Furthermore, in order to achieve effective density at location
�
i � j � on layer k, each term in the

summation induces a multiple circular convolution in the physical domain:

�
IFFT

�
f̂ � α � � d̂l � � �

i � j � � �
α� ��� ��

f � f � � � f ��� dl
� �

i � j �
� ∑

i1
∑
j1

�
f

�
i1 � i � j1 � j � � � � �

�
∑
iα

∑
jα

�
f

�
iα � iα � 1 � jα � jα � 1 � � �

xiα jαl � x0
iα jαl � � � � (16)

Since a multiple convolution written as a series of summations is linear in term of pi � j, all LP

formulations can be easily extended to multiple layers.

A. Linear Programming Approaches for Multiple-Layer Fill

Wong et al. [25] extended the linear programming formulation to address multiple layers, with

the objective of minimizing the sum of density variations over all layers.

22

Minimize: ∑K
k � 1

�
Hk � Lk �

Subject to:

0 � Lk � ρ0
�
i � j � k � � Hk �

k

∑
l � 1

� zl

zk
� i � j � 0 �

 � nr

w � 1 � k � 1 �

 � K (17)

0 � xi jk � slack
�
Ti jk � i � j � 0 �

�

 � nr

w � 1 � k � 1 �

�

 � K (18)

Considering only the sum of layer variations in the objective function cannot guarantee that the

filling on each layer will satisfy the Min-Var objective. A bad polishing of an intermediate layer

due to nonplanarization can potentially cause problems on subsequent (upper) layers. We therefore

formulate a linear program for multiple-layer fill with the objective of minimizing the variance of

density variations over all layers:

Minimize: M

Subject to:

0 � Lk � ρ0
�
i � j � k � � Hk �

k

∑
l � 1

� zl

zk
� i � j � 0 �

 � nr

w � 1 � k � 1 �

 � K (19)

�
Hk � Lk � � M k � 1 �

 � K (20)

0 � xi jk � slack
�
Ti jk � i � j � 0 �

�

 � nr

w � 1 � k � 1 �

�

 � K (21)

B. Monte-Carlo Approaches for Multiple-Layer Fill

LP-based methods for the fill problem have two main drawbacks: (1) solving large problems is

very time consuming, and (2) rounding errors adversely affect the solution quality. In this section,

we address the multiple-layer fill problem using new Monte-Carlo based approaches.

For the multiple-layer fill problem where the objective is to minimize the sum of density varia-

tions over all layers, we define a tile stack as a column of tiles all having the same position on each

layer [2]. We also define the density of a tile stack as the sum of densities of all the tiles in that tile

stack. The Monte-Carlo algorithm (see Fig. 9) assumes the original maximum density to be the

upper bound for each layer. It then randomly chooses a tile stack according to its priority value,

selects a layer in that stack, and increments the tile’s density as well as the tile stack’s density

23

Multiple-Layer Monte-Carlo Filling Algorithm

Input: layout with multiple layers, and fill feature size

Output: layout with multiple filled layers with respect to the minimized

sum of density variations of all layers, or other objectives

1. For L= bottomLayer To topLayer Do

2. For each tile[i][j] on layer L Do

3. Compute its slack area slackAreaOfTile[L][i][j] and cumulative effective density mlEffDenOfTile[L][i][j]

4. mlSlackAreaOfTileStack[i][j] += slackAreaOfTile[L][i][j]

5. mlEffDenOfTileStack[i][j] += mlEffDenOfTile[L][i][j]

6. Compute the priority of tile stacks according to mlEffDenOfTileStack[i][j]

7. While (sum of priorities � 0) Do

8. Randomly select a tile stack TS(i,j) according to its priority

9. For L = bottomLayer to topLayer Do

10. If slackAreaOfTile[L][i][j] � 0 Then

11. For every neighboring tile[L][m][n] located in
�
L � 1 � � �

L � 1 � square Do

12. If the insertion on tile[L][i][j] causes the neighboring tile meet the upperbound Then

13. Exit loop

14. Insert the fill feature into tile[L][i][j]

15. Update the slackAreaOfTile[L][i][j] and mlSlackAreaOfTile[i][j]

16. Update the priorities

17. Exit loop

18. Else Lock the tile on layer L

Fig. 9. The Multiple-layer Monte-Carlo filling algorithm.

by a prescribed fill amount, assuming that this insertion is permitted with respect to the overall

objective.

The probability of choosing a particular tile stack T Si j is referred as the priority of that tile

stack. Note that the priority of a tile stack T Si j is zero if and only if either T Si j has already

achieved the density upper bound U , or the slack of T Si j is less than the prescribed fill area. Tiles

with zero priority are said to be locked. Based on our computational experience with single-layer

fill synthesis, the priority of a tile stack T Si j is chosen to be proportional to U -EffDen(TSi j), where

EffDen(T Si j) is the effective density of the tile stack T Si j.

During the algorithm’s execution, after choosing which tile stack to fill next, we also need to

decide into which layer the fill features should be inserted. We consider three different ways to

choose the insertion layer. The first method entails choosing the bottom layer first, and then trying

24

Iterated Monte-Carlo and Greedy Filling Algorithms

Input: n � n multiple-layer layout with l layers, fixed r-dissection, w � w window,

density upper bound Ul on each layer

Output: Filled multiple-layer layout

1. Repeat forever

2. Run Min-Var Monte-Carlo (Greedy) Algorithm with the upper window densities Ul

3. If resulting sum of density variations equals the previous solution Then Exit repeat

4. Else

5. While there exist an unlocked tile stack Do

6. Choose an unlocked tile stack T Si j randomly, according to its priority

7. Choose a layer

8. If the deletion does not deteriorate the solution Then

9. Delete a fill feature from the layer

10. Else

11. Lock the tile stack

12. Update the priorities of the tile stacks

Fig. 10. The Iterated Monte-Carlo and Greedy multiple-layer filling approach.

an upper layer if the current layer is not feasible. The second method is to select the top layer first,

and then try a lower layer only if the current layer is not feasible. For these two approaches, once

no layer is suitable for fill, the tile stack will be “locked” and will not be subsequently selected for

any more filling. The third approach is to randomly choose one layer for fill, and then to try the

upper layer or the lower layer with equal probability. Here, a tile stack is “locked” when it contains

no remining slack area. Our experimental results indicate that the second method described above

outperforms the other two approaches.

A variant of the Monte-Carlo approach is the deterministic Greedy algorithm. Unlike the Monte-

Carlo approach, at each step the Greedy algorithm adds a prescribed amount of fill into a tile with

the highest priority. The experiments show that the run times of this Greedy approach are slightly

higher than Monte-Carlo’s, due to the necessity of finding a tile with the highest priority, rather

than a random tile.

We can also implement the Iterated Monte-Carlo and Greedy methods for the multiple-layer fill-

ing problem; our approach again alternates between the Min-Var and Min-Fill objectives, resulting

in a monotonic narrowing of the density variation (see Fig. 10). Such iterated methods are still

very fast and retain all the advantages of the non-iterated Monte-Carlo and Greedy counterparts,

25

but offer improved accuracy.

VII. IMPLEMENTATION DETAILS

Our implementation of hierarchical filling for layout density control is further enhanced with the

following important practical features:

� Grid slack computation. In previous academic and industry approaches, the area slack in each

tile, i.e., the area available for filling, was assumed to be proportional to the total tile area minus

the area of original features after the bloating of features by a certain buffer distance. However,

such a calculation is quite optimistic because fill geometries have lower/upper bounds on their

dimensions. That is also the reason the prescribed LP fill solution may not correspond to a legal

filling. An alternative grid slack computation entails using an underlying grid and the actual fill

pattern to compute the maximum number of legal positions for fill geometries in each tile. This

method of slack calculation is more precise and realistic, since it guarantees that the calculated

fill amount can actually be legally inserted into the corresponding tile.

� Doughnut area computation. In shallow-trench isolation processes, so-called reverse active-

area mask steps lead to a density criterion whereby only the width-d “outer ring” of a large

feature contributes to the effective density. Our tool is enhanced to optionally apply such a

“doughnut” area computation.

� Wraparound window density analysis and synthesis. In the CMP process, the polishing pad

typically polishes multiple neighboring dies simultaneously. Since all dies on a wafer are

usually identical, we may assume that the rightmost tile of the layout is adjacent to the leftmost

tile in the same row, and that the topmost tile is adjacent to lowest tile in the same column. In

order to take this into account while performing density analysis as well as fill synthesis, the

windows are thus “wrapped around” the layout so that a window overlapping with the upper

(left) edge of the layout also contains tiles from the bottom (right) portion of the layout.

� Different pattern types. In order to reduce worst-case coupling capacitance to fill, we may

impose a constraint dictating that the same amount of fill area should be intersected by any

vertical or horizontal line. To this end, a basket-weaving pattern has been suggested in [12].

Our implementation allows insertion of filling geometries either on a rectangular grid or in a

basket-weaving manner. Our implementation can also easily support more exotic fill pattern

types.

26

� Compressed fill insertion. In practice, filling can increase the size of the output GDSII file

by a large factor (sometimes by more than an order of magnitude) due to the small size of

the filling geometries and the possibly large amount of empty area in the original layout. We

have therefore implemented a “compressed fill” approach which greatly reduces the size of

the GDSII file (via the AREF construct). The basic idea here consists of utilizing several fill

patterns of increasing size, e.g., 1 filling geometry, 4 filling geometries arranged in a 2-by-2

square, 16 filling geometries arranged in a 4-by-4 square, etc. The insertion phase tries to first

fit in the largest feasible fill pattern, and then gradually reduces the size of the fill pattern if it is

no longer possible to insert any larger patterns. Naturally, for certain layouts with large empty

areas, the file size reduction realized by this technique may even be exponential. Note that this

is in itself a third form of hierarchy in our filling solution.

VIII. COMPUTATIONAL EXPERIENCE

A. Experiments on Flat Layouts

Our experiments were performed using part of a metal layer extracted from an industry standard-

cell layout5 (see Table I for details6). Benchmark L1 is the M2 layer from an 8,131-cell design,

and Benchmark L1x4 is the same layout replicated four times in a 2x2 array to create a larger test

case. Benchmark L2 is the M3 layer from a 20,577-cell layout. L2x4 is this same layout replicated

four times in a 2x2 array.

TABLE I

PARAMETERS OF FOUR INDUSTRY TEST CASES.

Test Cases

Testcase L1 L2 L1x4 L2x4

layout size n 125,000 112,000 250,000 224,000

rectangles k 49,506 76,423 198,024 305,692

Table II compares the CPU runtimes and the original and resulting minimum window densities

for the minimal, maximal, and slack priorities. All data provided in this paper are the average

values of ten runs, and all experiments assume that U is equal to the maximum window density of

5Our experimental testbed integrates GDSII Stream input, conversion to CIF format, and internally-developed geometric process-

ing engines, coded in C++ under Solaris.
6In the given coordinate system, 40 units is equivalent to 1 micron.

27

TABLE II

MONTE-CARLO METHODS WITH VARYING TILE SELECTION PRIORITIES AND UPDATING SCHEDULES.

NOTATION: T/W/r: LAYOUT / WINDOW SIZE / R-DISSECTION; Max in Layout Info: THE MAXIMUM WINDOW

DENSITY IN THE ORIGINAL LAYOUT; Min in Layout Info: THE MINIMUM WINDOW DENSITY IN THE ORIGINAL

LAYOUT; Max Pri = MAXIMAL PRIORITY; Min Pri = MINIMAL PRIORITY; SLK Pri = SLACK PRIORITY. THE

COLUMNS Min AND CPU CORRESPOND TO THE MINIMUM WINDOW DENSITY OF THE RESULTING FILLED

LAYOUT, AND THE RUNTIME IN CPU SECONDS, RESPECTIVELY. THE MAXIMUM WINDOW DENSITY IN THE

FILLED LAYOUT IS THE SAME AS IN THE ORIGINAL LAYOUT.

Heuristic I Heuristic II

Layout Info Min Pri Max Pri Min Pri Max Pri SLK Pri

T/W/r Max Min Min CPU Min CPU Min CPU Min CPU Min CPU

L1/31/2 0.20201 0.10548 0.19354 3.30 0.19336 2.21 0.19345 1.01 0.19327 1.00 0.19254 0.97

L1/31/3 0.20712 0.09683 0.19186 9.96 0.19102 5.96 0.19148 1.33 0.19093 1.31 0.19571 1.32

L1/31/4 0.21248 0.09369 0.19870 26.29 0.19811 15.18 0.19778 1.67 0.19660 1.69 0.19505 1.67

L1/31/5 0.21449 0.09097 0.19950 57.08 0.19871 32.35 0.19874 2.08 0.19847 2.07 0.19678 2.08

L1x4/31/2 0.21075 0.08739 0.15132 13.38 0.15132 10.08 0.15124 4.72 0.15044 4.66 0.14948 4.64

L1x4/31/3 0.21511 0.07808 0.14765 38.00 0.14765 25.10 0.14765 5.78 0.14765 5.72 0.14762 5.66

L1x4/31/4 0.21489 0.10775 0.19192 90.59 0.19101 54.50 0.19027 6.59 0.18977 6.55 0.19002 6.49

L1x4/31/5 0.21462 0.10103 0.18454 187.16 0.18445 109.58 0.18336 7.67 0.18307 7.65 0.18164 7.57

L2/28/2 0.18076 0.05065 0.11353 4.70 0.11327 3.98 0.11301 1.67 0.11411 1.68 0.11305 1.67

L2/28/3 0.22651 0.05125 0.14774 20.98 0.14538 15.98 0.14527 2.87 0.14612 2.86 0.14944 2.87

L2/28/4 0.21827 0.08072 0.17866 49.30 0.17796 35.05 0.17810 3.30 0.17814 3.29 0.17912 3.28

L2/28/5 0.23764 0.07203 0.17121 100.84 0.16703 78.74 0.16535 3.92 0.16582 3.91 0.16830 3.99

L2x4/28/2 0.22327 0.05011 0.17217 44.54 0.16472 34.63 0.16712 13.88 0.16450 13.90 0.16129 13.59

L2x4/28/3 0.20957 0.05087 0.12437 90.25 0.12514 69.53 0.12286 13.12 0.12234 13.19 0.12364 12.99

L2x4/28/4 0.22412 0.05010 0.17105 242.11 0.16867 176.95 0.16887 17.41 0.16908 17.33 0.16407 17.18

L2x4/28/5 0.23771 0.05005 0.16841 516.86 0.16482 373.06 0.16538 21.36 0.16285 21.32 0.16037 21.00

the original layout. All run times are in CPU seconds on a 300MHz Sun Ultra-5 10 with 640MB

of RAM. These results indicate a tradeoff between runtime and accuracy for different priorities:

the fastest slack priority has the lowest accuracy and the minimal priority, while the slowest slack

priority has the highest accuracy. The best choice seems to be the maximal priority, which is almost

as accurate as the minimal priority, but considerably faster.

Table III compares the optimal results obtained by solving the linear program7 (Equations (5)-

7In this paper, lp solve 3.0 is used as the linear programming solver.

28

(8)) from [13] with two fill schedule heuristics. Our results show that the accuracy of the Monte-

Carlo method is very high: in all of our test cases the resulting variation is no more than 5% larger

than the optimal solution obtained by the LP method. On the other hand, the Monte-Carlo method

is much faster than the LP method. When the window size is small and/or the number of fixed

dissections is large, the LP method becomes impractical, while our new method is still fast.

The exhaustive comparison of different tile priorities and updating schedules shows that the

minimal-priority updating is the best choice for the Monte-Carlo method (see Table III). On the

other hand, the faster filling schedule, which fills a chosen tile with the maximum possible num-

ber of filling geometries, loses in terms of performance, e.g., in some cases the window density

variation does not even change (see Table III).

The runtime advantage of the Monte-Carlo methods may be leveraged to obtain more uniform

filling. We apply the faster Monte-Carlo method to larger numbers of fixed dissections, resulting

in filled layouts which are more uniform than those obtainable with the LP method. For instance,

the LP method applied to the layout with parameters (L1/4/4) yields a filled layout with a density

variation of 15% measured for r � 16 fixed dissections. On the other hand, the Monte-Carlo

method with the slack priority, minimal updating, and single-geometry filling schedule applied

to the same layout but for r � 16 fixed dissections, yields a filled layout with a density variation

less than 14%. Moreover, the LP method requires almost two minutes of CPU time, while the

Monte-Carlo method takes only 10 seconds to run.

Table IV compares the minimum window density and the associated run times for the minimum

variation linear program, Greedy algorithm, Monte-Carlo algorithm, Iterated Greedy algorithm,

and Iterated Monte-Carlo algorithm. The table consists of two parts, corresponding to the spatial

and effective density measures, respectively. The left column of Table IV reports for each test case

the window size (in thousands of units), as well as the number r of fixed dissections.

The smaller r-value corresponds to the maximal value for which the LP approach can still pro-

duce the optimal minimum window density within a reasonable run time, and the larger r-value

is selected sufficiently high to demonstrate the accuracy of the suggested heuristics. The next two

table columns report the maximum and minimum window densities of the original layout before

filling.

Table IV indicates that the iterated methods are more accurate than previous non-iterated ap-

proaches, that they are more efficient than LP-based methods, and that they yield more even filling

29

TABLE III

OPTIMAL LP FILLING COMPARED WITH THE MONTE CARLO APPROACH USING DIFFERENT FILLING

SCHEDULES. NOTATION: Filling 1: INSERTING A SINGLE FILLING GEOMETRY INTO A TILE PER ITERATION;

Filling 2: INSERTING THE MAXIMUM POSSIBLE FILLING GEOMETRIES INTO A TILE PER ITERATION. THE

COLUMNS Min ANDCPU CORRESPOND TO MINIMUM WINDOW DENSITY OF THE FILLED LAYOUT AND THE

RUNTIME IN CPU SECONDS, RESPECTIVELY. THE MAXIMUM WINDOW DENSITY IN THE FILLED LAYOUT IS THE

SAME AS IN THE ORIGINAL LAYOUT. WE DID NOT FILL ONE OF THE ENTRIES IN THE TABLE DUE TO THE

PROHIBITIVELY LARGE RUNNING TIME OF THE LP METHOD FOR HIGHER VALUES OF r.

LP Method Heuristic I Heuristic II

Layout Info Filling 1 Filling 2 Filling 1 Filling 2

T/W/r Max Min Min CPU Min CPU Min CPU Min CPU Min CPU

L1/31/2 0.20201 0.10548 0.20119 0.11 0.19354 3.30 0.18036 0.11 0.19345 1.01 0.17834 0.17

L1/31/3 0.20712 0.09683 0.20026 0.23 0.19186 9.96 0.18763 0.12 0.19148 1.33 0.18218 0.14

L1/31/4 0.21248 0.09369 0.20084 0.57 0.19870 26.29 0.19176 0.35 0.19778 1.67 0.19164 0.22

L1/31/5 0.21449 0.09097 0.20328 1.75 0.19950 57.08 0.19212 0.56 0.19874 2.08 0.19634 0.49

L1/8/2 0.26966 0.02080 0.15968 1.52 0.15868 6.32 0.13249 0.20 0.15868 2.29 0.14865 0.36

L1/8/3 0.27043 0.03151 0.17174 11.54 0.17162 14.78 0.16882 1.14 0.17162 2.54 0.16635 1.12

L1/8/4 0.27375 0.03362 0.18261 39.66 0.18282 39.97 0.17834 3.76 0.18282 3.53 0.17763 4.54

L1/8/5 0.27213 0.02766 0.14901 60.80 0.14827 67.45 0.13564 9.21 0.14827 3.90 0.13678 1.42

L1/4/2 0.28250 0.00544 0.16734 24.47 0.16771 7.31 0.11763 0.92 0.16771 2.79 0.11143 3.97

L1/4/3 0.27807 0.00911 0.13792 67.61 0.13229 14.31 0.13102 2.99 0.13229 3.17 0.11784 2.72

L1/4/4 0.28250 0.00950 0.16914 395.95 0.16452 44.07 0.14987 9.57 0.16452 5.28 0.15212 38.36

L1/4/5 0.28237 0.00390 0.12928 335.0 0.12385 88.91 0.11373 22.70 0.12385 8.58 0.11234 45.82

L1x4/31/2 0.21075 0.08739 0.15845 35.9 0.15132 13.38 0.09343 0.23 0.15124 4.72 0.0902 0.87

L1x4/31/3 0.21511 0.07808 0.15082 378.9 0.14765 38.00 0.09188 2.34 0.14765 5.7 0.10465 1.52

L1x4/31/4 0.21489 0.10775 0.19812 1864.3 0.19192 90.59 0.11473 2.37 0.19027 6.5 0.11274 3.59

L1x4/31/5 0.21462 0.10103 N/A N/A 0.18454 187.16 0.11241 3.22 0.18336 7.67 0.10945 4.84

or larger number of tiles (corresponding to larger r). Finally, note that the iterated Monte-Carlo and

Greedy algorithms can output better solutions than LP-based approaches, since the LP’s rounding

errors become more significant for larger r.

B. Experiments on Hierarchical Layouts

Table V lists the attributes of our three test cases, i.e., the layout dimension N and the number

of rectangles k.

Table VI compares the minimum window density, data volume (i.e., the number of fill geometry

30

TABLE IV

THE ITERATED GREEDY (IGREED) AND ITERATED MONTE-CARLO (IMC) ALGORITHMS ARE MORE ACCURATE

THAN THE NON-ITERATED VERSIONS (GREED AND MC), AND ARE FASTER THAN A LINEAR PROGRAM-BASED

APPROACH (LP).

Orig. Density LP Greed MC IGreed IMC

Test case Max Min Min CPU Min CPU Min CPU Min CPU Min CPU

Spatial Density Model

L1/32/8 0.21447 0.10414 0.19864 41.5 0.18779 18.2 0.19221 17.3 0.19871 26.9 0.19871 24.8

L1/32/16 0.21783 0.10088 0.19768 1077.5 0.19044 21.9 0.19410 19.6 0.19779 98.1 0.19740 93.5

L1/16/8 0.26452 0.07803 0.17519 161.1 0.17556 21.8 0.17556 18.9 0.17556 36.7 0.17556 30.2

L1/16/16 0.26452 0.08551 N/A N/A 0.18868 44.2 0.18868 23.4 0.18868 202.3 0.18868 168.9

L2/32/8 0.22648 0.07039 0.14467 43.0 0.14257 25.5 0.13565 24.4 0.14469 41.3 0.14463 68.6

L2/32/16 0.22648 0.07650 0.15093 2716.0 0.14621 33.8 0.14459 29.4 0.14971 538.5 0.14940 317.2

L2/16/8 0.33022 0.04552 0.17926 1912.4 0.16709 42.1 0.17748 30.5 0.17980 170.1 0.17980 169.4

L1x4/32/8 0.21693 0.09657 0.18643 255.7 0.18183 82.6 0.18282 72.3 0.18648 131.9 0.18648 111.9

L1x4/32/16 0.21793 0.10263 N/A N/A 0.19574 124.3 0.19547 80.2 0.19933 632.8 0.19933 565.1

L2x4/32/8 0.22226 0.05776 0.14647 532.6 0.14480 150.7 0.13824 117.7 0.14649 289.5 0.14655 469.7

Effective Density Model

L1/32/8 0.41625 0.16255 0.31970 32.4 0.31859 22.8 0.31994 22.3 0.31994 26.5 0.31994 23.9

L1/32/16 0.46662 0.10626 0.28249 105.5 0.28353 27.4 0.28353 24.0 0.28353 33.2 0.28353 27.8

L1/16/8 0.46662 0.10626 0.28249 105.2 0.28353 27.1 0.28353 23.1 0.28353 32.8 0.28353 26.0

L1/16/16 0.48313 0.05693 N/A N/A 0.24748 49.7 0.24748 27.1 0.24748 74.2 0.24748 33.4

L2/32/8 0.53585 0.07249 0.34777 66.8 0.34538 39.7 0.31153 38.3 0.34629 49.5 0.33858 68.9

L2/32/16 0.84446 0.03514 0.35956 520.5 0.36007 57.4 0.34049 41.4 0.36007 67.9 0.35276 107.4

L2/16/8 0.84446 0.03514 0.35956 526.7 0.36007 57.3 0.34206 40.1 0.36007 68.7 0.35120 90.1

L1x4/32/8 0.43270 0.14665 0.28487 171.5 0.28505 107.2 0.28505 90.7 0.28505 126.5 0.28505 100.9

L1x4/32/16 0.46740 0.10494 0.28732 1238.8 0.28835 177.0 0.28835 106.3 0.28835 262.4 0.28835 125.5

L1x4/16/8 0.46740 0.10494 0.28732 1387.8 0.28835 188.8 0.28835 106.3 0.28835 266.6 0.28835 121.5

L1x4/16/16 0.48313 0.05160 N/A N/A 0.27197 586.0 0.27197 119.5 0.27197 975.0 0.27197 150.1

L2x4/32/8 0.52179 0.04467 0.34176 637.4 0.32008 241.5 0.30799 165.6 0.33620 342.0 0.33524 435.9

TABLE V

THE PARAMETERS OF THE TEST CASES.

Test Cases

Testcase Case1 Case2 Case3

layout size 260,000 288,000 504,000

rectangles k 216 432 540

31

references in the resulting GDSII output file), and the number of area fill features (i.e., the number

of fill geometries in the resulting layout after flattening) for five heuristics: (1) hierarchical, (2) flat,

(3) 2-way splitting, (4) hybrid of hierarchical and flat, and (5) hybrid of the hierarchical, splitting

and flat approaches. For each test case, we ran all the five filling heuristics under both the spatial

density model and the effective density model, with the window density upper bound equal to the

original maximum window density.

Table VI indicates that the Flat Monte-Carlo approach yields the best-quality results (i.e., highest

minimum density), but also produces the largest output data volumes. On the other hand, the

Hierarchical Monte-Carlo approach saves on data volume, but yields low-quality results. The

hybrids of the hierarchical and flat fill approaches produce substantially improved results, with

only a modest increase in data volume. Finally, we observe that the k-way Master Cell Splitting

approach smoothly trades off performance and data volume, i.e., it provides better results than the

pure Hierarchical Fill approach, yet produces less data volume than the pure Flat Filling approach.

C. Experiments on Multiple-Layer Flat Layouts

The layouts used in our multiple-layer filling experiments have either two or three layers with

the same dimensions. Table VII shows the performances of the two LP formulations proposed

in [25] and by us, respectively, for the different multiple-layer fill objectives. The experiments

indicate that the LP formulations designed to minimize the sum of density variations across all

layers can not at the same time also minimize the maximum density variation.

Table VIII compares the sum of density variations on all layers and the associated run times

for the linear programming method (LP0), Greedy method, Monte-Carlo (MC) method, Iterated

Greedy (IGreedy) method, and Iterated Monte-Carlo (IMC) method. Our results show that the

accuracy of the Monte-Carlo/Greedy methods is very high. When the window size is small and/or

the number of fixed dissections is large, the LP method becomes impractical for the multiple-layer

fill problem8, while the Monte-Carlo/Greedy methods are still fast. On the other hand, the round-

ing errors inherent in the LP method make its performance worse than the Monte-Carlo/Greedy

methods on the large test cases.

Table IX shows the performance of the Linear Programming method (LP1), Greedy method,

Monte-Carlo method, Iterated Greedy method, and Iterated Monte-Carlo method with respect to

8For example, the LP0 method did not terminate for the test case L6/8/5 after running for more than 12 hours.

32

TABLE VI

THE HIERARCHICAL, FLAT AND HYBRID FILLING APPROACHES. NOTATION: data: DATA VOLUME, I.E., THE

NUMBER OF FILL GEOMETRY REFERENCES IN THE RESULTING GDSII OUTPUT FILE; # fill : NUMBER OF FILL

FEATURES IN THE RESULTING LAYOUT; MinDen: MINIMUM WINDOW DENSITY ACROSS THE LAYOUT; Hier:

HIERARCHICAL FILLING APPROACH; EXTSLH+F: HIERARCHICAL + FLAT FILLING APPROACH; H+S :

HIERARCHICAL + 2-WAY MASTER CELL SPLITTING FILLING APPROACH; H+S+F : HIERARCHICAL + 2-WAY

MASTER CELL SPLITTING + FLAT FILLING APPROACH; Flat : FLAT FILLING APPROACH.

Density Model Spatial Density Model Effective Density Model

data #fill MinDen data #fill MinDen

Testcase 1

Original Layout 0.070 0.291

Hier 645 5136 0.11 1054 2608 0.369

H+F 1562 6053 0.335 2758 4312 0.655

H+S 2321 7601 0.17 1552 4166 0.525

H+S+F 2834 8114 0.339 2908 5522 0.676

Flat 5219 5219 0.403 5732 5732 0.735

Testcase 2

Original Layout 0.167 0.145

Hier 2081 16060 0.272 2142 16972 0.248

H+F 2451 16430 0.393 5630 17460 0.320

H+S 4368 17494 0.410 4531 18126 0.365

H+S+F 4374 17500 0.421 7234 20829 0.383

Flat 13974 13974 0.527 23415 23415 0.443

Testcase 3

Original Layout 0.000 0.091

Hier 4995 22566 0.071 4449 20320 0.157

H+F 7472 25043 0.532 9461 25332 0.371

H+S 9690 23622 0.102 8575 22990 0.159

H+S+F 12212 26144 0.540 13285 25700 0.394

Flat 17695 17695 0.547 31204 31204 0.483

33

TABLE VII

THE PERFORMANCE OF THE LP FORMULATIONS UNDER THE OBJECTIVES OF MINIMIZING (I) THE SUM OF

DENSITY VARIATIONS, AND (II) THE MAXIMUM DENSITY VARIATION, ON ALL LAYERS. NOTATION: L/W/r:

LAYOUT / WINDOW SIZE / R-DISSECTION; LP0 : THE LINEAR PROGRAMMING FORMULATIONS FOR MINIMIZING

THE SUM OF DENSITY VARIATIONS ON ALL LAYERS; LP1 : THE LINEAR PROGRAMMING FORMULATIONS FOR

MINIMIZING THE MAXIMUM DENSITY VARIATION ACROSS ALL LAYERS; SumVar: THE SUM OF DENSITY

VARIATIONS ON ALL LAYERS; maxDenVar: THE MAXIMUM DENSITY VARIATION ACROSS ALL LAYERS; CPU :

THE RUN TIME; Area: THE NUMBER OF INSERTED FILL FEATURES.

Testcase LP0 LP1

L/W/r SumVar maxDenVar CPU Area SumVar maxDenVar CPU Area

L4/16/4 0.2690 0.1696 42.0 20921 0.2875 0.1666 37.6 19609

L4/8/4 0.6626 0.4696 44.2 14769 0.6626 0.4696 43.2 14330

L5/16/4 0.3436 0.2420 101.0 38152 0.3843 0.1932 69.8 38241

L5/8/4 1.0585 0.5531 279.7 34942 1.0621 0.5393 655.7 33376

L6/16/4 0.5986 0.4080 91.3 65578 0.6333 0.3737 71.0 62113

L6/8/4 1.6116 1.1155 12617.0 67178 1.6584 1.0903 6649.0 65576

the maximum density variation objective across all layers. The Monte-Carlo and Greedy methods

yield better solutions than the LP-based approaches on these test cases within shorter run times.

IX. CONCLUSION

We developed a new Monte-Carlo approach for layout density control, and compared several cri-

teria to decide where to insert fill geometry. The Monte-Carlo method is scalable to large designs,

yet offers accuracy competitive with previously known linear programming based approaches.

We also presented a new unified approach to capturing different models of layout density control

for CMP. This enables the application of Greedy and Monte-Carlo methods that simultaneously

address different filling objectives for spatial and effective density definitions. Our new iterated

Greedy and Monte-Carlo methods are more accurate and practical than previous linear-program

based methods. We also discuss and compare extensions of the linear programming and Monte-

Carlo approaches to multi-layer designs.

For hierarchical layouts, we proposed a practical approach to hierarchical fill synthesis for lay-

out density control, which trades off runtime, solution quality, and output data volume. Our ap-

proach allows distinct copies of a master cell to be filled differently, which improves solution

34

TABLE VIII

THE PERFORMANCE OF LP0, GREEDY, MC, IGREEDY AND IMC FOR THE SUM OF DENSITY VARIATIONS

ACROSS ALL LAYERS. NOTATION: L/W/r: LAYOUT / WINDOW SIZE / R-DISSECTION; SumVar: THE SUM OF

DENSITY VARIATIONS ACROSS ALL LAYERS; CPU: THE RUN TIME. THE DATA IN BOLD DENOTES THE BEST

RESULTS.

Testcase LP0 Greedy MC IGreedy IMC

L/W/r SumVar CPU SumVar CPU SumVar CPU SumVar CPU SumVar CPU

L4/16/8 0.6626 33.1 0.6420 36.3 0.6285 36.6 0.6285 37.7 0.6285 33.9

L4/16/5 0.5435 30.7 0.5541 32.2 0.5535 33.0 0.5535 31.1 0.5535 30.5

L4/8/8 0.9031 140.1 0.7794 48.1 0.7766 36.2 0.7762 74.7 0.7762 34.5

L4/8/5 0.8351 33.4 0.7882 35.4 0.7804 32.7 0.7804 39.1 0.7804 30.7

L5/8/8 2.2118 8093.0 2.0526 102.8 2.0913 65.4 2.0526 111.7 2.0716 67.6

L5/8/5 1.3494 8879.0 1.3450 65.0 1.3943 54.2 1.3252 79.6 1.3476 59.3

TABLE IX

THE PERFORMANCE OF LP1, GREEDY, MC, IGREEDY AND IMC WITH RESPECT TO MAXIMUM DENSITY

VARIATION ACROSS ALL LAYERS. NOTATION: L/W/r: LAYOUT / WINDOW SIZE / R-DISSECTION; MaxDen: THE

MAXIMUM DENSITY VARIATION ACROSS ALL LAYERS; CPU: THE RUN TIME. DATA IN BOLD DENOTES THE

BEST RESULTS.

Testcase LP1 Greedy MC IGreedy IMC

L/W/r MaxDen CPU MaxDen CPU MaxDen CPU MaxDen CPU MaxDen CPU

L4/16/8 0.4696 34.8 0.4459 36.3 0.4454 36.6 0.4454 37.7 0.4454 33.9

L4/16/5 0.3638 36.5 0.3638 30.2 0.3635 33.0 0.3635 31.1 0.3635 32.5

L4/8/8 0.6255 120.8 0.5437 48.1 0.5410 36.2 0.5406 74.7 0.5406 34.5

L4/8/5 0.5897 33.2 0.5576 35.4 0.5497 32.7 0.5497 39.1 0.5497 30.7

L5/8/8 1.2174 761.3 1.1081 102.8 1.1089 65.4 1.1081 111.7 1.1081 67.6

L5/8/5 0.6886 524.0 0.6857 65.0 0.7050 54.2 0.6698 79.6 0.6746 59.3

quality in a user-controlled manner. Our system also generates filling geometries in compressed

GDSII format, which reduces the resulting fill data volume. Experiments indicate that this new

hybrid hierarchical filling approach is scalable, efficient, and highly competitive with previous

Monte-Carlo and linear programming-based methods.

Ongoing research includes developing alternate pure-hierarchical filling heuristics, and devel-

oping more robust hierarchy manipulators for in-memory layout representations, in order to enable

35

even more robust tradeoffs between solution quality and data volume. We also seek to make our

fill solutions reusable, so that fill solutions can be stored in a library along with the master cells,

and thus would not have to be recomputed from scratch in cases where a cell is used in a context

that has different density constraints. However, the reusability methodology currently can only be

applied to the master cells which neither overlap with other master cells, nor require routing over

their area. One way of achieving such “unrollable” solutions is to produce and store a fill solution

in a “monotone” manner, so that successively longer prefixes of a given fill solution would still

constitute valid fill solutions in lower density contexts.

REFERENCES

[1] SC Solutions. Inc., http://www.best.com/ � solvers/cmp.html

[2] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky, “Monte-Carlo Methods For Chemical-Mechanical Pla-

narization on Multi-Layer and Dual-Material Models”, SPIE Conference on Design and Process Integration for

Microelectronic Manufacturing, Santa Clara, March 2002.

[3] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky, “Hierarchical Dummy Fill for Process Uniformity”, Proc.

ASP-DAC, Jan. 2001, pp. 139-144.

[4] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky, “Practical Iterated Fill Synthesis for CMP Uniformity”,

Proc. Design Automation Conf., Los Angeles, June 2000, pp. 671-674.

[5] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky, “New Monte-Carlo Algorithms for Layout Density Control”,

Proc. ASP-DAC, 2000, pp. 523-528.

[6] CMP Technology Inc., http://www.cmptechnology.com/

[7] R. R. Divecha, B. E. Stine, D. O. Ouma, J. U. Yoon, D. S. Boning, et al., “Effect of Fine-line Density and Pitch

on Interconnect ILD Thickness Variation in Oxide CMP Process”, Proc. CMP-MIC, 1998.

[8] J. G. Garofalo, J. Q. Zhao, J. Blatchford and E. Nease, “Applications of enhanced optical proximity correction

models”, Proc. SPIE Optical Microlithography XI, SPIE Vol. 3334, Feb. 1998.

[9] W. Grobman, personal communication, August-September 2001.

[10] W. Grobman, M. Thompson, R. Wang, C. Yuan, R. Tian and E. Demircan, “Reticle Enhancement Technology:

Implications and Challenges for Physical Design”, Proc. Design Automation Conf., Las Vegas, 2001, pp. 73-78.

[11] W. Grobman, et al., ”Reticle enhancement technology trends: resource and manufacturability implications for

the implementation of physical designs,” Proc. International Symposium on Physical Design, 2001, pp. 45-51.

[12] A. B. Kahng, G. Robins, A. Singh, H. Wang and A. Zelikovsky, “Filling Algorithms and Analyses for Layout

Density Control”, IEEE Trans. Computer-Aided Design 18(4) (1999), pp. 445-462.

[13] A. B. Kahng, G. Robins, A. Singh and A. Zelikovsky, “New and Exact Filling Algorithms for Layout Density

Control”, Proc. IEEE Intl. Conf. on VLSI Design, Jan. 1999, pp. 106-110.

[14] H. Landis, P. Burke, W. Cote, W. Hill, C. Hoffman, et al., “Integration of Chemical-Mechanical Polishing into

CMOS Integrated Circuit Manufacturing”, Thin Solid Films 220(20) (1992), pp. 1-7.

36

[15] G. Y. Liu, Ray F. Zhang, Kelvin Hsu, and Lawrence Camilletti, “Chip-Level CMP Modeling and Smart Dummy

for HDP and Conformal CVD Films”, Proceedings of CMP-MIC, February, 1999.

[16] W. Maly, “Moore’s Law and Physical Design of ICs”, (special address), Proc. ISPD, 1998.

[17] V. Mehrotra, S. Nassif, D. Boning and J. Chung, “Modeling the Effects of Manufacturing Variation on High-

Speed Microprocessor Interconnect Performance”, International Electron Devices Meeting, San Francisco. CA,

Dec. 1998.

[18] G. Nanz and L. E. Camilletti, “Modeling of Chemical-Mechanical Polishing: A Review”, IEEE Trans. on Semi-

conductor Manufacturing 8(4) (1995), pp. 382-389.

[19] Praesagus, Inc., http://www.praesagus.com/

[20] J. Rey, personal communication, 2000.

[21] SIA, “The National Technology Roadmap for Semiconductors”, Semiconductor Industry Association, December

1997.

[22] International Technology Roadmap for Semiconductors,http://www.itrs.net/1999 SIA Roadmap/Home.htm,

December 1999.

[23] B. Stine, “A Closed-Form Analytical Model for ILD Thickness Variation in CMP Processes”, Proc. CMP-MIC,

1997.

[24] B. Stine et al., “The Physical and Electrical Effects of Metal-Fill Patterning Practices for Oxide Chemical-

Mechanical Polishing Processes”, IEEE Trans. On Electron Devices, Vol. 45, No. 3, March 1998.

[25] R. Tian, D. Wong, and R. Boone, “Model-Based Dummy Feature Placement for Oxide Chemical-Mechanical

Polishing Manufacturability”, Proc. Design Automation Conf., June 2000, pp. 667-670.

[26] R. Tian, X. Tang and D. F. Wong, “Dummy feature placement for chemical-mechanical polishing uniformity in

a shallow trench isolation process ”, International Symposium on Physical Design, April 2001, pp. 118-123.

[27] M. Tomozawa, “Oxide CMP Mechanisms”, Solid State Technology 40(7) (1997), pp. 169-175.

[28] T. Yu, S. Cheda, J. Ko, M. Roberton, A. Dengi, and E. Travis, “A Two-Dimensional Low Pass Filter Model for

Die-Level Topography Variation Resulting from Chemical Mechanical Polishing of ILD Films”, 1999 IEDM,

Washington, D. C., December 1999.

37

Yu Chen obtained the M.S. degree in Computer Science and Engineering from Zhejiang University in 1998

and the M.S. degree in Computer Science from University of California at Los Angeles in 2000. He is cur-

rently pursuing a Ph.D. degree at UCLA. His research interests include VLSI physical design, performance

analysis, combinatorial optimization, and computational commerce.

Andrew B. Kahng received the A.B. degree (in applied mathematics / physics) from Harvard College, and

the M.S. and Ph.D. degrees (computer science) from the University of California at San Diego. He was

with the UCLA computer science department from 1989 to 2000, most recently as Professor and Vice-Chair.

Since January 2001 he is Professor of CSE and ECE at UC San Diego. Professor Kahng has published

over 180 papers in the VLSI CAD literature, focusing on physical layout and performance analysis; he has

also received the National Science Foundation Young Investigator award and Best Paper awards at DAC,

ASPDAC and ISQED. He was the founding General Chair of the ACM/IEEE International Symposium on

Physical Design, co-founder of the ACM Symposium on System-Level Interconnect Prediction, and since 1997 has defined the

physical design roadmap for the SIA International Technology Roadmap for Semiconductors. He has been the Chair of the U.S.

Design Technology Working Group, and the International Design Technology Working Group, for the 2001 ITRS and 2002 ITRS

update. He is also General Chair of EDP-2002 (the Electronic Design Processes workshop of the IEEE DATC) and on the steering

committees of ISPD and SLIP. Professor Kahng’s research interests include VLSI physical layout design and performance analysis,

the semiconductor design-manufacturing interface, combinatorial and graph algorithms, and stochastic global optimization.

Gabriel Robins is a Professor in the Department of Computer Science at the University of Virginia, where

he received a Packard Foundation Fellowship, a National Science Foundation Young Investigator Award, a

University Teaching Fellowship, an All-University Outstanding Teaching Award, a Faculty Mentor Award,

and the Walter N. Munster Endowed Chair. He completed his Ph.D. in Computer Science in 1992 at UCLA,

where he received an IBM Fellowship and a Distinguished Teaching Award. Professor Robins’ primary

area of research is VLSI CAD, with emphasis on physical design. His interests also include computational

geometry, combinatorial optimization, and genomics. He co-authored a book on high-performance routing,

as well as over seventy refereed papers, including a Distinguished Paper at the 1990 IEEE International Conference on Computer-

Aided Design. Professor Robins is a member of the U.S. Army Science Board, and an alumni of the Defense Science Study Group,

an advisory panel to the U.S. Department of Defense. He also served on panels of the National Academy of Sciences and the

National Science Foundation. He was General Chair of the 1996 ACM/SIGDA Physical Design Workshop, and a co-founder of the

1997 International Symposium on Physical Design. Professor Robins also served on the technical program committees of several

other leading conferences, and on the Editorial Board of the IEEE Book Series. He is Associate Editor of IEEE Transactions on

VLSI, and a member of ACM, IEEE, SIGDA and SIGACT.

38

Alexander Zelikovsky received the Ph.D. degree (1989) in computer science from the Institute of Mathe-

matics of the Belorussian Academy of Sciences in Minsk, Belarusi. He worked at the Institute of Mathe-

matics in Kishinev as a senior research scholar during 1989-1995. Between 1992 and 1995 he visited Bonn

University and the Institut fur Informatik in Saarbrueken (Germany). Dr. Zelikovsky was a Research Sci-

entist at the University of Virginia (1995-1997) and a Postdoctoral Scholar at UCLA (1997-1998). Since

January 1999 he is an Assistant Professor in the Computer Science Department at Georgia State University.

He is the author of more than 50 refereed publications. Dr. Zelikovsky’s research interests include VLSI

physical design, performance analysis, design for manufacturing, discrete and approximation algorithms, combinatorial optimiza-

tion and computational geometry.

