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Abstract

We address a practical problem which arises in several areas, including network design and VLSI
circuit layout. Given an undirected weighted graph G = (V, E) and a family N = {Ny,..., Ny} of
k disjoint groups of nodes N; C V, the Group Steiner Problem asks for a minimum-cost tree which
contains at least one node from each group N;. In this paper, we give polynomial-time O(k°)-
approximation algorithms for any fixed € > 0. This result improves the previously known O(k)-
approximation. We also apply our approximation algorithms to the Steiner problem in directed
graphs, while guaranteeing the same performance ratio.
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Group Steiner Problem, Graph algorithms, arborescences.

1 Overview

The classical Steiner problem can be formulated as follows: given an undirected weighted graph G =
(V,E) and M C V, find a minimum-cost tree which spans all of M. Nodes in V — M (referred to as
Steiner nodes) may be optionally included in order to reduce the total tree cost [14]. In this paper
we address a generalization of this problem, namely the Group Steiner Problem, which is motivated
by practical applications such as computer-aided design (CAD) of VLSI circuits, and network design.
This problem, which was first formulated in [19] and reviewed in [10], is formalized as follows:

The Group Steiner Problem [10, 19]: given an undirected weighted graph G = (V, E) and a

family N = {Ni, ..., N} of k disjoint groups of nodes N; C V, find a minimum-cost tree which
contains at least one node from each group NV;.
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Optional Steiner nodes may be included in order to reduce the cost of the spanning tree interconnecting
the groups of N (see Figure 1). The Group Steiner Problem captures practical scenarios in VLSI circuit
design [4, 9, 19], where circuit modules may be rotated and flipped when positioned on a VLSI chip.
This induces multiple potential connection points for a given circuit module, namely, one for each of
the eight possible orientations [4, 19] (see Figure 1(b)). These locations correspond to a group of up
to eight nodes in the Group Steiner Problem formulation when there is only one connection point for
the given module (see Figure 1(c)). This formulation also captures the pin assignment step in VLSI
physical design [18] where the locations of interconnection points (i.e., “pins”) on module boundaries
must be determined. Finally, the Group Steiner Problem also arises in various network design domains

(e.g., when a set of buildings or towns need to be interconnected with a communication network).
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Figure 1: (a) An example of an optimal group Steiner tree (solid dots represent
Steiner nodes). (b) A module is rotated and flipped to induce a group of up to
eight virtual positions (c).

Existing approximation algorithms for the Group Steiner Problem produce solutions which are O(k)
times worse than optimal [10, 11]. The main result of this paper is a new series of heuristics with an
improved performance ratio! of O(k€) for any fixed € > 0, where k is the number of groups. On the
negative side, it is known that this problem cannot be efficiently approximated with a performance

ratio of less than In % times the optimal [7, 12]. Our work has appeared in preliminary form in [4, 9].

The organization of the remainder of this paper is as follows. Section 2 introduces depth-d -bounded
Steiner trees and proves that they approximate the optimal group Steiner tree to within a factor of
2d- k. Section 3 presents our main heuristic for approximating optimal depth-d -bounded Steiner trees

to within a factor of (2+1n(2k))?~!, where d is the tree depth. In Section 4, we complete the description

!The performance ratio is an upper bound on the ratio of a heuristic solution cost divided by the optimal solution
cost.



(and the performance ratio proof) of our main heuristic by approximating minimum-norm partial d-
stars. The overall performance ratio of our heuristic is the product of these two bounds, which yields
our main result. In Section 5, we generalize our results to directed Steiner trees. Section 6 analyzes
the time complexity and suggests practical enhancements. Section 7 describes how to further improve
the performance ratio when groups of size one are present, and Section 8 extends our construction to
minimize the radius as well as the cost of group Steiner trees. We discuss our implementation and

compare our heuristic with a previous approach [19] in Section 9.

2 Depth-Bounded Steiner Trees

We now introduce the concept of Steiner depth-bounded? trees with the following two-fold motivation:
(1) depth-d -bounded trees can be used to approximate optimal group Steiner trees to within a factor
of 2d - ¥k, and (2) optimal depth-bounded Steiner trees can be approximated efficiently, as discussed
in the next two sections. Our overall method composes these two approximations, and its performance

bound is therefore the product of the two corresponding bounds.

A given graph G may in general violate the triangle inequality, i.e., there may be edges (u,v) in G
whose cost is greater than the cost of the minimum u-to-v path in G. Clearly, an optimal group Steiner
tree will contain no such edges, since replacing such edges with the corresponding shortest paths will
decrease the total tree cost. Therefore, without loss of generality, we replace G with its metric closure®.
In order to further simplify our analysis, we also modify G as follows. For any group node v € N;, we
create a new node v' and a new zero-cost edge (v,v'); thus, we let v' take on the role of v, as shown

in Figure 2. This transformation preserves the cost of Steiner trees, while allowing us to consider only

Steiner trees in which every group node is a leaf.

We define d-stars to be rooted trees of depth at most d. The goal of the rest of this section is to
show that for any arbitrary (but henceforth fixed) tree T' with root r, there exists a low-cost d-star
spanning the leaves of 7. This will imply that an optimal group Steiner tree can be approximated by
a low-cost group Steiner d-star. Formally, a Steiner d-star with a root r is a tree rooted at r spanning
at least one node from each group such that any root-to-leaf path has at most d edges. It was shown

in [11] that even a 1-star (see Figure 3(b)) provides a k -approximation to optimal group Steiner trees.

2We define the depth of a rooted tree T as the maximum number of edges in any root-to-leaf path.
3The metric closure is defined as the complete graph where the cost of each edge (u,v) is equal to the cost of the
minimum wu-to-v path in G.
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Figure 2: Transformation of G: each group node v in the graph G connects to a
newly-created node v' with a zero-cost edge (i.e., newly-created nodes replace the
corresponding original group nodes). This transformation alters G in a way that
enables us to transform a solution in the modified graph back into a solution of the
same cost in the unmodified graph.

Our overall strategy is to specify a low-cost d-star and derive upper bounds on its total cost.

We now construct a low-cost d-star Sy from the tree T' with the same root and same set of leaves L.
Thus, to completely specify the d-star S, we need to select an appropriate set of intermediate nodes
that lie on paths between the root r and the leaves. Note that because our approximate tree is a d-star,
it must have at most d — 1 levels of intermediate nodes. The leaves form the set of level-d nodes in Sj.

Similarly, we refer to the lowest level of intermediate nodes as level-(d — 1) nodes and so on. Finally,

the root is connected to the level-1 intermediate nodes.
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Figure 3: (a) A tree T rooted at r may have an arbitrary depth. (b) A 1-star and
(c) a 2-star are represented by dashed lines which connect the root 7 to all leaves.
The edge e is (re)used three times by edges of the 1-star in (b) and twice by edges
of the 2-star in (c).

We determine an appropriate set of intermediate nodes for a d-star Sg in T, as follows. First, we
sort the nodes of T in a depth-first manner (so that we can extract ordered subsequences of nodes
from this sorted list). Then, we partition the sorted subsequence of leaves into contiguous blocks of

fixed size b (later we will determine an appropriate value for b). We select the level-(d — 1) nodes of



T to be the set of least common ancestors* of the leaves in each of the blocks. Next, we partition
these level-(d — 1) intermediate nodes into contiguous blocks of fixed size b, and we thus obtain the
level-(d — 2) intermediate nodes by selecting the least common ancestors of each of these blocks (see the
bottom of Figure 4(a)). We repeatedly use this procedure to define each level of intermediate nodes
until we reach the root. Thus, in our final tree S4, each level-i node is connected to b level-(i + 1) nodes

below and to one level-(i — 1) node above. In particular, all level-1 nodes are connected to the root.

To prove upper bounds on the cost of d-stars, we will sum the costs of tree paths between nodes
which are adjacent in d-stars. However, since such paths are not necessarily disjoint, the same tree
edge may be counted multiple times in this sum, a situation we refer to as edge reuse (see Figure 3).
For a tree T, edge reuse provides a loose upper bound on the ratio cost(d-star)/cost(T), since if no
edge is used more than j times when replacing edges of a d-star by the corresponding paths in 7', then
the d-star has cost no more than j times the cost of the tree 7. Our strategy for deriving upper bounds

on the cost of Sy is to bound its edge reuse.

Let reuser(Sy) denote the maximum number of times that any tree edge is used in tree paths
connecting nodes adjacent in S;. We distinguish two types of paths that contribute to the edge reuse
of the resulting d-star: (a) paths from the root to level-1 intermediate nodes (top part of Figure 4(a)),
and (b) paths from level-i intermediate nodes to level-(i + 1) nodes, where 1 <7 < d—1 (Figure 4(b)).
The number of paths of type (a) is bounded by the number of level-1 intermediate nodes. Note that
each level contains a factor of b fewer intermediate nodes than the level below it. Thus, there are no

more than |L|/b%~! level-1 nodes, where b is the block size (see Figure 4(a)).

We now estimate the contribution of type-(b) paths to the reuse of an arbitrary (but henceforth
fixed) edge (u,v) of the tree T' with u being the parent of v. Let S be the depth-first -ordered sequence
of level-(i + 1) intermediate nodes which descend from v. Note that S forms a contiguous subsequence
in the sequence of all level-(i 4+ 1) intermediate nodes. If a size-b block is completely contained in the
sequence S, then its least common ancestor (which is a level-i intermediate node) necessarily descends
from v (Figure 4). Therefore, the edge (u,v) does not lie on paths to level-(7 + 1) nodes that belong to

such completely-contained blocks, and no contribution to the reuse of the edge (u,v) occurs here.

We are thus only concerned with blocks which may be not completely contained inside S, because

type-(b) paths ending only in such blocks can contribute to the reuse of the edge (u,v). Since the

4We define a node u as an ancestor of v (in other words, v descends from u) if the path from the root to v passes
through u.
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Figure 4: Triangles represent depth-first -ordered subtrees. (a) Type-(a) paths
which reuse the edge (u,v) terminate at level-1 intermediate nodes below v (there
are no more than |L|/b%! of these). (b) Type-(b) paths which reuse the edge (u, )
terminate at intermediate nodes (or leaves) contained in only the leftmost and the
rightmost blocks. These two blocks together contain at most 2b level-(7 + 1) nodes.

nodes of S are sorted in depth-first order, the only blocks relevant to this analysis are the leftmost
and rightmost blocks. The total contribution to the reuse of edge (u,v) due to the paths ending in the

leftmost and rightmost blocks cannot exceed the total size of these two blocks, namely 2b (Figure 4).

The edge (u,v) may be used simultaneously in paths starting from different levels. Thus, we bound
the total contribution of type-(b) paths for all levels by 2b- (d — 1), and the total edge reuse is at most
|L|/b%~t +2b- (d — 1). Choosing b = {/]L|/2 yields an upper bound on edge reuse of 2d - {/|L|/2.
This proves that for any tree T, with the set of leaves L and root r, there is a d-star rooted at r with
the same set of leaves L, having cost at most 2d - W - cost(T). Therefore, by approximating the
optimal group Steiner tree (spanning k groups and thus having k leaves) with an optimal Steiner d-star

(i.e. the minimum-cost Steiner d-star), we obtain the following result.

Theorem 1 Let Opt be an optimal group Steiner tree over k groups, and let r be an arbitrary node of

Opt. Then the cost of an optimal Steiner d-star rooted at r is at most 2d - {/k/2 - cost(Opt).

3 The Main Heuristic

As shown above, an optimal Steiner d-star is a reasonable approximation of an optimal group Steiner

tree (denoted Opt). On the other hand, it can be proven that even the problem of approximating



an optimal Steiner d-star is as difficult as approximating a minimum set cover. Therefore, for any
€ > 0, it is unlikely that there exists a polynomial-time approximation algorithm with performance
ratio (1 —€) - In k, where k is the number of groups [7]. In this section, we will indirectly approximate

Opt by approximating an optimal Steiner d-star.

In order to apply Theorem 1, we must ensure that the root of the Steiner d-star produced by our
algorithm belongs to the optimal group Steiner tree Opt. Although we do not know which nodes are in
Opt, this is not an obstacle: For each node r of an arbitrary fixed group (say N;), we construct a low-
cost Steiner d-star Approxgq with root ». We then select the least-cost Approzg over all possible choices
of r. Because Opt contains at least one node from each group, this guarantees (within polynomial
time) that at least one of the | N1 | trees thus constructed had the proper choice for the root. Therefore,
without loss of generality we may fix the root r, i.e., we consider the rooted version of the Group

Steiner Problem.

Define Opt4(r) as the optimal Steiner d-star rooted at r, for any positive integer d. The main idea in
constructing the approximate Steiner d-star Approxy is to successively refine an initial approximation
coinciding with Opt; (r). There are two advantages to using Opty(r) as an initial approximation for
Opt4(r): first, unlike Opty(r) for d > 2, the 1-star Opt;(r) can be computed efficiently; secondly, the
cost of Opt; (r) is bounded by k-cost(Opt) (from Theorem 1, for d = 1). To measure the approximation
quality of a d-star, we will therefore compare its cost to the cost of an optimal 1-star with the root r

and with leaves taken from the same groups spanned by the d-star.

Let S be a d-star with a root v € V and let groups(S) be the set of groups spanned by S. We
denote by S’ an optimal 1-star with the root r connected to groups(S). We define the norm of S as

norm(S) = cost(S)/cost(S'). Note that S and S’ may have different roots (see Figure 5(a)).

We represent our low-cost d-star Approry as a union of subtrees, each consisting of the root,
exactly one level-1 intermediate node, and all of the descendants of this intermediate node. Such
rooted subtrees of depth d will be called partial d-stars (see Figure 5(b)). We select partial d-stars
for Approz, in the following greedy manner. First, we find a partial d-star P with an approximately
minimum norm. Next, we remove the groups that are spanned by P (i.e., groups(P)) from further
consideration. Finally, we determine the next partial d-star with an approximately minimum norm
and iterate this process until all groups are spanned. Figure 6 formally describes the algorithm, and

an execution example (for d = 2) is given in Figure 7.
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Figure 5: (a) A d-star S rooted at v (shaded area) and the corresponding optimal
1-star S’ rooted at r (dashed lines). (b) A Steiner 2-star, with a (shaded) partial
2-star.

Rooted Steiner d-Star Heuristic

Input: A graph G = (V, E), a family N of k disjoint groups Ny,...,N; CV,
arootr€V,and anodev eV

Qutput: A low-cost d-star Approzy rooted at node v and intersecting each group N;

Approzg < {v}
N' « N

While N’ # () do
Find a low-norm (with respect to r) partial d-star P = Partialgz(v, N')
(see Section 4)
N' + N' — groups(P)
Approzg < Approry U P
Output Approxy

Figure 6: Our greedy d-star heuristic for a given (fixed) root. At each loop iteration,
the heuristic approximates the lowest-norm partial d-star, adds it to the solution,
and removes its groups from future consideration. Termination occurs when no
groups remain to be spanned.

To complete the description of our heuristic, we need to describe an efficient procedure which, given
aroot r and set of groups M, finds a low-norm partial d-star Partialg(r, M) rooted at r spanning some
of the groups of M. We call this procedure the Partial d-Star Heuristic and describe it formally in the
next section. Before stating the performance ratio of the Partial d-Star Heuristic, we first define ¢, as

follows:

Ya = (2 + In(2k))? 2 (1)



Lemma 2 Let Partialy be the partial d-star produced by the Partial d-Star Heuristic, and let Partial Optg
be the corresponding partial d-star with minimum norm. The performance ratio of the Partial Star

Heuristic for d > 2 is at most:
norm(Partialg)
norm(Partial _Opty)

< g

Proof: (See Section 4.)

Figure 7: For an input instance of the Group Steiner Problem, our heuristic does
the following for each possible root r: (a) find the optimal 1-star, (b) find a low-
norm partial d-star (shaded region), (c) store this star in the solution and remove its
groups from future consideration, (d) find the next low-norm partial d-star (shaded
region), (e) repeat step (c) for the next partial d-star, and finally (f) find the last
low-norm partial d-star and output the union of all stored partial d-stars.




In the remainder of this section, we analyze the Rooted Steiner d-Star Heuristic described in Figure
6. In particular, Lemma 3 below gives the performance ratio for this heuristic. Together with Theorem

1, this will imply our main result, namely Theorem 4.

Lemma 3 Let Opty(v) be an optimal Steiner d-star rooted at v, and let Opty(r) be the optimal Steiner

1-star rooted at r. The cost of the tree produced by the Rooted Steiner d-Star Heuristic is at most:

cost(Opt1 (1))

cost(Approzq) < (2 +1In cost(Optd(v))) - cost(Optq(v)) - Ya

Proof: We compare the optimal d-star rooted at v to the approximate solution produced by our
heuristic. The optimal d-star Optg(v) can be partitioned into partial d-stars denoted Ry,...,R;.
Let P, Ps,..., P, be the t partial d-stars selected by the Rooted Steiner d-Star Heuristic, i.e., the

approximate Steiner d-star Approzg is a union of these ¢ partial d-stars.

The algorithm greedily chooses a partial d-star, removes the groups spanned by this partial d-star,
and then repeats this process until no more groups remain. At each iteration, the algorithm chooses
a low-norm partial d-star P; which has lower cost than the corresponding optimal 1-star (hereafter
denoted P/). Let C; denote the cost of the optimal Steiner 1-star at the ‘! iteration of the loop, when
the groups spanned by Pi, ..., P; have already been removed (see Figure 8). In the first iteration, we

have Cy = cost(Opt1(r)). Inductively, we obtain:

Ci=Ci_1 —cost(P}), 1=1,..,t (2)

cost(Opt )+ Vg

cost(Opt (1) = C, c, c, c, Cpag C, CF 0

TPy way ] ey el

Figure 8: The Rooted Steiner d-Star Heuristic (Figure 6) iteratively modifies the
problem instance by repeatedly removing groups associated with low-cost partial
d-stars P;. The cost of the optimal 1-star Cy originally exceeds cost(Optq(v)) - ¥q,
but finally the cost of the optimal 1-star for the remaining groups becomes equal to
zero at step t. Therefore, there exists an n such that 1 <n <t and cost(Approz)
drops to strictly less than cost(Opty(v)) - 14 between steps n and n + 1.
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Assume that the partial d-stars Ry, ..., Rs of the optimal Steiner d-star are sorted by non-decreasing

order of their norms. Applying the ratio property®, we obtain:

Y j=1cost(R;) _ cost(Opta(v))
>i_icost(R;) Co

J

norm(Ry) <

Therefore, by Lemma 2, we have:

cost(Py)

cost(Optq(v))
cost(P])

CO N ’(/}d

= norm(P;) < norm(Ry) - g <

After the removal of groups(P;), the cost of the Steiner 1-star rooted at r reduces to C; = Cy—cost(P;),

and the cost of the optimal Steiner d-star cannot increase, that is:

cost(Ps)
cost(Py)

cost(Optq(v))
C1

<( ) - %d

Applying this observation inductively, we get:

cost(P;) _ cost(Optq(v))

< . for i =1,..,t
COSt(P'Z') — Ci_]_ d"d or 1 ’ ’ (3)
The relationships (2) and (3) together imply:
cost(F;)
i <Cim1-|1—
Ci s Cin ( cost(Optq(v)) '¢d)

Unraveling the inequality above, we obtain:

n cost(P;)
Cn < Co- H (1 B cost(Optq(v)) 'd’d)

i=1

Taking the natural logarithm of both sides and using the fact that In(1 + z) < z, we conclude:

ln@ S Yo, cost(P;)

Cpn — cost(Opta(v)) - Y

5The ratio property states that a/b < ¢/d if and only if (a + ¢)/(b+ d) < c/d, for any positive a, b, ¢, d. Its proof is as

follows: § < ¢ if and only if ad < bc which is true if and only if ad + cd < bc + cd which holds if and only if Z_t; <z

(4)

11



Since C; = 0, there exists an n such that C,, > cost(Optq(v)) - g > Cpy1 (see Figure 8). Otherwise,
even the cost of the simple 1-star is less than cost(Optq(v)) - ¢4, and Lemma 3 is clearly true. Note

that cost(P) ;) < Cp. Therefore, inequality (3) yields:

cost(Pp41) < cost(P;, )
cost(Optqa(v)) - g — Cn

<1 (5)

Finally, using (4) and (5), we can bound the performance ratio of the Rooted Steiner d-Star Heuristic

as follows (see Figure 8):

cost(Approza) Zle cost(P;)

cost(Opta(v))  cost(Opty(v))
< S, cost(P;) + cost(Ppy1) + Crta
- cost(Optq(v))
<

C
<ln C—: + 2) g
(ln cost(Opty(r))
cost(Opt4(v))

IA

+2>-1/1d

Together with Theorem 1, Lemmas 2 and 3 imply our main result:

Theorem 4 The Rooted Steiner d-star Heuristic with v coinciding with r (see Figure 6) solves the
Group Steiner Problem with performance ratio 2d - (2 + In(2k))4~! - vk, where k is the number of

groups.

Proof: By Theorem 1, we know that cost(Opty(r)) < k- cost(Opt) < k- cost(Opt4(r)), where k is the
number of groups. Therefore, Lemma 3 implies that the cost of the tree produced by our main algorithm
(when v coincides with r) is at most g41 times the cost of the optimal Steiner d-star. Using Theorem
1 and identity (1), we obtain a group Steiner tree which costs no more than 2d - (2 + In(2k))* ! - V&

times the optimal. n

Corollary 5 The optimal group Steiner tree can be approximated in polynomial time with a perfor-

mance ratio of O(k¢) for any fixed ¢ > 0.

12



4 Approximating Minimum-Norm Partial d-Stars

Although minimum-norm partial 2-stars can be found efficiently, finding minimum-norm partial d-stars
becomes more difficult for d > 3. Indeed, the minimum-norm partial d-star S is an optimal Steiner
(d — 1)-star for the groups which are spanned by S, and the set-cover problem (which is NP-hard) can
be reduced to finding an optimal Steiner 2-star [12]. Thus, in this section, we describe our heuristic
for finding low-norm partial d-stars. First, we will describe how to find minimum-norm partial 2-stars,
and then we will show how to approximate minimum-norm partial d-stars for d > 3. Finally, we will

bound the error of our approximation (i.e., we will prove Lemma 2).

Figure 9 formally describes a procedure for finding minimum-norm partial 2-stars. Note that in
this procedure we use cost(u, N;) to denote the cost of the shortest edge between u and any node in

group N;.

Partial d-Star Heuristic (for d = 2)

Input: A graph G = (V, E), a family M C N of disjoint groups and root r € V
Qutput: The minimum-norm partial 2-star P(r, M) rooted at r with leaves from some groups of M

For each v € V do

_ cost(v,N;) cost(v,Nit1)
Sort M = {Niy, ..., Njp} such that cost(r N < Cost(T,Nij:)

Find j € {1,...,|M|} that minimizes norm(v) < COSt(r’ngijl(w;t;v’Ni)
~__ cost(r,N;
M(v) « {M, ..., N;} =
Find v having minimum norm(v)
Qutput the partial 2-star P(r, M) with the intermediate node v with root 7 and groups M (v)

Figure 9: Our algorithm for finding a minimum-norm partial 2-star (i.e., d-star for
d = 2). For each candidate v for the intermediate node, we sort groups N; according
to the potential improvement of inserting node v between the root r and each group.
Then, we include consecutive groups from the list while their inclusion decreases
the norm of the partial 2-star.

The following lemma establishes the correctness of the Partial 2-Star Heuristic.

Lemma 6 Given a family M C N of groups, the Partial 2-Star Heuristic (Figure 9) outputs a

minimum-norm partial 2-star.

Proof: Note that any partial 2-star (see Figure 5(b)) contains exactly one intermediate node (possibly
coinciding with the root). Let v be the intermediate node of a minimum-norm partial 2-star P with

root . The Partial 2-Star Heuristic sorts the family of groups M = {Ni,..., |5} such that for any

13



cost(v, N;)
cost(r, N;)

cost(v, Nit1)
cost(r, Niy1)

<

Let N; be the last group (in the sorted family of groups) which is connected to v in P. Since P is
optimal, disconnecting v from N; can only increase the norm of P. Let P’ denote the optimal 1-star

corresponding to P (i.e., the 1-star rooted at r spanning groups(P)). Then:

worn() = 20 <

cost(P) — cost(v, N;)
cost(P') — cost(r, N;)

cost(v,Nj;) < cost(P)—cost(v,Nj)

cost(r,N;) — cost(P")—cost(r,N;) and therefore:

By the ratio property, this implies that

cost(v, N;) < cost(P) (©)
cost(r, Nj) — cost(P')
It is sufficient to show that if we connect v to the contiguous sequence of groups Ni, Na,...,Nj,

then the norm of P may only decrease. Indeed, let N; (where i < j) be a group that is not adjacent

to v in P. Then we have:

cost(v, N;)
cost(r, N;)

cost(v, N;)
cost(r, N;)

cost(P)
cost(P")

< <

and the ratio property together with inequality (6) yields:

cost(P) + cost(v, N;) < cost(P)
cost(P') + cost(r, N;) — cost(P')

Thus, connecting v to V; cannot increase the norm of P. 0

Our Partial d-Star Heuristic finds a low-norm partial d-star Partialy = Partialg(r, M) with a given
root r spanning elements from some groups of a given subfamily M C N, where N is the family of all
groups (Figure 10 gives a formal description). The Partial d-Star Heuristic is recursive: in order to

find a partial d-star, we need to first find certain partial (d — 1)-stars.

Now we have completed the description of our main heuristic, and we are ready to prove Lemma

2, which states that the performance ratio of the Partial d-Star Heuristic is at most:

14



Partial d-Star Heuristic (for d > 3)
Input: A graph G = (V, E), a family M C N of disjoint groups and root r € V'
Qutput: A low-norm partial d-star Partialg(r, M) with root r and leaves from some groups of M
For each v € V do
Partialg + (r,v)
norm(Partialg) < oo
M' +— M
While M’ # ( do
Use the Partial d-Star Heuristic for depth d — 1: Partialy 1 < Partialg_1(v, M")
If norm(Partialy) < norm(Partials—1) then exit while
Partialy + Partialg U Partialg_
M' + M' — groups(Partialy_1)
norm(v) + norm(Partialy)
Find v having minimum norm(v)
Qutput the partial d-star Partialy(r, M) with the intermediate node v

Figure 10: Our heuristic for finding a low-norm partial d-star for d > 3.

norm(Partialg)
norm(Partial_Opty)

< g (7

where Partialy = Partialg(r, M) is the output partial d-star of the Partial d-Star Heuristic, Partial_Optq

is a partial d-star with minimum norm, and 4 = (2 + In(2k))?—2.

Proof of Lemma 2: We prove inequality (7) by induction on d, assuming that it is true for all depths
less than d (the base case d = 2 follows from Lemma 6). Because our algorithm examines each node
as a possible candidate for being the intermediate node in Partialg, we assume that the intermediate
node v in Partialg is the same as the intermediate node v in Partial_Opty. We distinguish three cases

(see Figure 11) depending on the relationship between groups(Partialy) and groups(Partial_Opty).
Case I. groups(Partialg) C groups(Partial_Opty).

If groups(Partialy) C groups(Partial_Optg), then for the purposes of analysis, we continue to
include partial (d— 1)-stars covering only groups of Partial_Opts until we run out of such groups. This
may only increase the norm of Partial; and therefore, without loss of generality, we may assume that

groups(Partialg) = groups(Partial_Opty).

The partial d-star Partial_Opty consists of the edge (r,v) and the optimal Steiner (d — 1)-star (the
shaded cone in Figure 11) for the set groups(Partial_Opty) rooted at v. By induction, we assume that

inequality (7) is true for all depths < d — 1. Therefore, we may apply Lemma 3 for depth d — 1 to the
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theroot r (@)

depth d-1

All groups

Figure 11: The three possible relationships (based on set inclusion) between

groups(Partial Opty) and groups(Partialg) correspond to Cases I, II, and III in
the proof.

instance of the Group Steiner Problem with the root v and groups(Partial_Opty) as follows:

cost(Partialg) — cost(r,v) <

cost(Opty(r)) ) B
(2 +1In (cost(Partial_Optd) = cost(r.0) Ya—1 - (cost(Partial Optg) — cost(r,v))

The right-hand-side of the inequality above cannot be more than:

cost(Opt1(r)) )
(2 +1n (cost(Partial_Optd) p—" v))) -g—1 - (cost(Partial Opty) — a - cost(r,v))  (8)

for any 0 < a < 1. This can be shown by taking the derivative with respect to a. For the purposes of

our analysis, we choose a = 1/2. The edge (r,v) belongs to Partial_Optg, and therefore cost(r,v) <

cost(Partial _Optg). Thus:

cost(Opty(r)) < cost(Opt1(r))
cost(Partial_Optq) — L - cost(r,v) ~ cost(Partial Opty) — % - cost(Partial _Opta)
By Theorem 1 for d = 1, we know that % < k. Therefore,

cost(Opti(r))  _ cost(Opti(r)) cost(Optq)
cost(Partial_Opty) ~  cost(Opty)  cost(Partial_ Optg) —
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Thus, we have:

cost(Opty(r)) 5. cost(Opt1(r)) <9k
cost(Partial_Optq) — L - cost(Partial Optq) 7 cost(Partial Optg) —

Inserting this inequality into expression (8), we get:

cost(Partialg) — cost(r,v) < (2 +In(2k)) - ¥4_1 - (cost(Partial Optq) — % - cost(r,v))

By identity (1), we know that (2 + In (2k)) - ¥4—1 = 4. Thus, we have:

1
cost(Partialg) — cost(r,v) < ¢q - cost(Partial _Optg) — g - 7 cost(r,v)

Since 14 > 2, we infer:

cost(Partialy) < 1q - cost(Partial _Optg)

Thus, we finally have proven inequality (7) for Case I, since Partialy and Partial_Opty cover the same

groups and therefore have the same corresponding 1-star.
Case II. groups(Partialg)Ngroups(Partial_Opty) # 0, but groups(Partialg) € groups(Partial Optg).

Let Pi,..., P; be partial (d — 1)-stars of Partialy found consecutively inside the while loop of the
Partial d-Star Heuristic (Figure 10). Also, let P; denote the optimal 1-star corresponding to P; (i.e.,

the 1-star rooted at » spanning groups(P;)).

We split the cost of each 1-star P} into two parts, in_cost(P;) and out_cost(P}), where cost(P;) =
in_cost(P]) + out_cost(P}), as shown in Figure 11. The first part, in_cost(P}), is the cost of edges from
7 to the groups that are contained in groups(Partial_Opty), while the second part, out_cost(P)), is the
cost of edges from r to the groups that are not contained in Partial Opty (see Figure 11). We also
split the cost of P; in the same proportion as the cost of P}, i.e. we pick in_cost(P;) and out_cost(FP;)

such that cost(P;) = in_cost(P;) + out_cost(P;) and:

in_cost(P;)  out_cost(F;)

in_cost(P!)  out_cost(P!)
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which is always possible if in_cost(P]) # 0 and out_cost(P]) # 0. Otherwise, if in_cost(P}) = 0, we set

in_cost(P;) = 0, and if out_cost(P]) = 0, we set out_cost(P;) = 0. The ratio property implies:

cost(r,v) + 22:1 in_cost(P;) + 22:1 out_cost(P;)
St in_cost(P!) + Yt_, out_cost(P})
cost(r,v) + 22:1 in_cost(FP;)
22:1 in_cost(P))

norm/(Partialy)

Note that the previous argument for Case I is true for the “in-costs” (i.e., in_cost(P;) and in_cost(P}))

instead of the costs of P; and P, (if we omit the partial stars P; for which in_cost(P]) = 0). Indeed,

7

the minimum norm of partial (d — 1)-stars over all groups cannot be more than the minimum norm of

such stars over a subset of groups (namely, from groups(Partial_Opty)). Therefore,

cost(r,v) + 25:1 in_cost(P;)
22:1 in_cost(P])
norm(Partial -Optg) - g

INA

norm(Partialy)

A

Case III. groups(Partialg) N groups(Partial Opty) = (0 (see Figure 11).

For the purposes of analysis, we include Partialy_1 (v, groups(Partial_Opty)) in our d-star Partialg.
By the exit condition of the while loop (see Figure 10), this inclusion may only increase the norm of
Partialy. Since the intersection of groups(Partialy) and groups(Partial Opty) can be forced to be

non-empty, any instance of Case III can be transformed to an instance of Case II. 0

5 The Steiner Problem in Directed Graphs

The techniques above can be adapted to address a generalization of the Group Steiner Problem, namely

the Steiner problem in directed graphs, also known as the Steiner Arborescence Problem [10, 1]:

The Directed Steiner Problem [10]: given a directed weighted graph G = (V, E), a set of k
terminals N C V, and a root r € N, find a minimum-cost subgraph 7" which contains directed paths
from r to each terminal.

Without loss of generality, we may assume that the subgraph T is a directed tree®, otherwise T

would contain arcs which can be removed without increasing the cost of 7. As in the beginning of

6Bach node of T is reachable from the root via a unique directed path. This means that replacing all arcs (i.e.,
directed edges) by undirected edges would produce an undirected tree from T'.
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Section 2, we replace the directed graph G with its transitive closure” (an analog of metric closure),

and we may assume that each terminal is a leaf of T'.

We define directed d-stars to be directed trees of depth at most d. Again, as in Section 2, it can
be shown that the minimum-cost directed d-star costs at most 2d - ¢/k/2 times the optimal directed
Steiner tree. As in Section 3, we represent our low-cost directed d-star Approzg as a union of directed
partial d-stars. Each such partial d-star consists of the root r, exactly one arc from the root to a level-1

intermediate node, and the directed subtree rooted at this intermediate node.

The norm is still defined as it was in Section 3. Given a directed d-star S, let S’ be the corresponding
directed 1-star (with the same terminals and root). The norm of S is defined to be cost(S)/cost(S’).
Now we can use (an analog of) the Partial d-Star Heuristic for directed graphs in order to find a low-
norm directed partial d-star. In this way, the norm of the directed partial d-star obtained is bounded

as in Lemma 2.

In order to approximate an optimal directed Steiner d-star, we use (an analog of) the Rooted Steiner
d-Star Heuristic for directed graphs (see Section 3). Again, starting from an optimal 1-star, we update
the current solution with low-norm partial d-stars found by the Partial d-Star Heuristic. The algorithm
stops when all terminals are spanned with directed partial d-stars. The output of this algorithm is a
d-star with the same cost bound as in Lemma 3. Finally, combining the analogs of Lemmas 2 and 3

with Theorem 1, we obtain the following result®:

Theorem 7 Optimal directed Steiner trees can be approximated in polynomial time with a performance

ratio of O(k®) for any fized € > 0.

6 Time Complexity and Practical Enhancements

We now analyze the time complexity of our heuristic and discuss several ways of improving its runtime
and performance. The time complexity for preprocessing is dominated by the time to compute all-pairs
shortest paths in a graph G (we denote this time complexity by 7). All node-to-group distances (i.e.,
distances between each node and the closest node to it in each group) can be computed in time less

than 7.

"If a node v is reachable from a node u in G, then in the transitive closure of G there is an arc (u,v) whose cost is
equal to the cost of the minimum directed u-to-v path.

8 Although the case of acyclic directed graphs was considered in [24], the technique suggested there does not generalize
to arbitrary directed graphs.
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The time complexity of the Partial d-Star Heuristic (Figure 10) is O(|V|?"1 - k%), where k is the
number of groups, and d is the depth. Therefore, the Rooted d-Star Heuristic (Figure 6) has runtime
O(|V]#=t - k4*t1). In order to find a low-cost Steiner d-star, we run our Rooted d-Star Heuristic for
all possible roots from the smallest group (i.e., size at most |V'|/k). Therefore, an overall runtime of
O(t + (V] - k)?) is sufficient to find a group Steiner tree with cost at most 2d - (2 + In(2k))? ' - Vk

times optimal.

In practice, it would be of interest to improve the average-case runtime and solution quality of our
heuristics beyond the theoretical worst-case bounds derived above. For example, we may omit the
removal of the set of groups spanned by the minimum-norm d-star (see the inner loop of the algorithm
in Figure 6). Instead, every time we accept an intermediate node, we can update the best possible
current star by calculating the distance to a particular group, not from the root, but rather from the

closest already-accepted intermediate node. This will tend to improve the solution cost in practice.

The fact that an optimal group minimum spanning tree is at most twice longer than the optimal
group Steiner tree [16, 21] suggests another practical enhancement. This involves computing a group
minimum spanning tree instead of a group Steiner tree, i.e., a minimum spanning tree for a set of
nodes containing ezactly one node from each group. Since approximating the group Steiner tree by a
group minimum spanning tree incurs an approximation penalty of at most a factor of 2, this does not

asymptotically increase the overall bound yet can yield substantial runtime savings.

Finally, a post-processing step can be added which finds the minimum spanning (or approximate
Steiner) tree for the set of intermediate nodes chosen by the group Steiner heuristic. We may also
make local (one at a time) node substitutions in groups to re-arrange the tree topology in order to
reduce the overall cost. Although provably-good heuristics are frequently outperformed by local op-
timization methods, the output of provably-good heuristics can serve as a good starting point for
local-improvement post-processing schemes. For example, it was shown in [20] that Christofides’ trav-
eling salesperson heuristic [17] provides excellent initial traveling salesperson tours for further local

rearrangements.
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7 An Improved Bound for Instances with Degenerate Groups

Additional solution quality and runtime improvements may be realized when an instance of the Group
Steiner Problem contains degenerate groups (groups of size 1). The degenerate groups, when considered
by themselves, induce an instance of the classical Steiner problem, and such an instance can be approx-
imated efficiently by known methods (with a constant performance ratio). Thus, to solve the Steiner
Problem for degenerate groups, we may choose a provably-good heuristic from among the numerous
existing ones [5, 8, 13, 16, 22]. For example, in time O(|V|®) we may find a Steiner tree which is at

most 1l times longer than the optimal [23].

We now need to effectively combine the Steiner tree over the degenerate groups with a tree which
spans the non-degenerate groups. Let N = M; U M5 be the partition of all the groups in N into those
containing one node (M;), and those containing at least two nodes (M>). We define the Combined
Group Steiner Heuristic as follows. First, we find the usual Steiner tree approximation Approz; for
the degenerate groups M; using the algorithm from [23]. Next, using our group Steiner heuristic, we
find the group Steiner tree Approzs for the family of groups that includes the non-degenerate groups
M, and a single arbitrary degenerate group from M;. Finally, we output a minimum spanning tree

over the union Approz; U Approz, (Figure 12).

Figure 12: The Combined Group Steiner Heuristic spans the set M7 of degenerate
groups with an approximate Steiner tree Approz; (right). It then spans all non-
degenerate groups M» together with an arbitrary degenerate group using a group
Steiner tree Approzs (left).

In cases when the number of degenerate groups is large, the Combined Group Steiner Heuristic will

run considerably faster than the basic group Steiner heuristic described above. Moreover, the bound
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on the solution quality will also improve, as shown in the following theorem.

Theorem 8 The Combined Group Steiner Heuristic solves the Group Steiner Problem for k' mon-

degenerate groups with a performance ratio of at most:

11
i 2d-[2+1In(2- (K" + 1)) Vk' + 1

Proof: The optimal Steiner tree Opt; for the set of degenerate groups M;, cannot cost more than
the optimal group Steiner tree Opt. Therefore, for the approximate Steiner tree Approz; spanning the

degenerate groups of M; (see [23]), we have:

1
6

—_

11

- cost(Optq) < 5 - cost(Opt)

cost(Approz;) <

If we remove from the family of groups NV all but 1 of the degenerate groups, then the cost of the
optimal Steiner tree over the remaining groups can not be more than Opt. Theorem 4 implies that the

cost of the approximate Steiner tree Approzrs spanning the remaining k' + 1 groups is at most:

cost(Approzs) < 2d-[24+1In(2- (k' +1))]* - VE +1- cost(Opt)

Combining these two bounds on the cost of the trees Approx; and Approxs yields the desired result.

O

8 Group Steiner Trees With Bounded Radius

In deep-submicron VLSI design, the objective of delay minimization often induces wiring geometries
that are substantially different from those dictated by an optimal-area objective. This motivated
several bounded-radius® routing algorithms [2, 3, 6, 14, 15]. Our basic group Steiner tree approach can
be easily extended into a bounded-radius construction, thus yielding routing trees with source-to-sink

pathlengths bounded by a user-specified parameter.

Towards this goal we can utilize the tree produced by our main algorithm as the starting point in
the bounded-radius construction of [6]. For an instance of the Group Steiner Problem with & groups,

this approach yields a routing tree with the following simultaneous cost/radius bounds: its radius is

9The radius of a graph is defined as the maximum length of any shortest source-sink path. Note that the radius of
d-stars is implicitly bounded by d times the optimal radius.
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(1+¢) times the optimal radius, and its total cost is (1+ 2)-2d- (2+1In(2k))?~* - ¥k times the optimal
cost, for any fixed user-specified parameter € > 0. This scheme provides a provably-good smooth

tradeoff between tree cost and tree radius for the group Steiner problem.

9 An Empirical Study

We used Java to implement our main heuristic for the group Steiner problem (our implementation is
executable on the Web at http://www.cs.virginia.edu/robins/groupSteiner). We also implemented a
variant of our basic heuristic where the solutions are post-processed with a minimum spanning tree
algorithm (i.e., we output the minimum spanning tree over the nodes selected by our main heuristic).
We compared our heuristics with the heuristic proposed by Reich & Widmayer [19], denoted by RW.
The RW heuristic begins by first finding the minimum spanning tree T for the entire set of nodes of all
the groups. If a leaf node is not the last member of its group in the tree T', then it may be removed.
The RW heuristic then repeatedly deletes such a leaf node incident to the longest edge among all such

nodes, as detailed in Figure 13.

The RW heuristic for the Group Steiner Problem [19]
Input: A graph G = (V, E), k disjoint groups Ny,..., Ny CV
Output: A low-cost tree T' spanning at least one node from each N;
M + Ué::lNi
Find minimum spanning tree T over M, i.e. T + M ST (M)
Repeat forever
For each leaf [ of T do
Find the group N(!) containing !
If N(()NT = [ then mark [
If all leaves of T' are marked then exit repeat
Find an unmarked leaf [ incident to the longest edge
Remove [ from T, ie. T T —1
Output the tree T

Figure 13: The heuristic of Reich & Widmayer [19] for the Group Steiner Problem

Figure 14 gives a comparison between our heuristic and the RW algorithm [19] (Figure 13). We
generated instances of the Group Steiner Problem by uniformly and independently distributing the
nodes of each group inside a randomly-placed square area of predetermined size. We varied the group
areas among 10%, 50%, and 100% of the overall region. All chart data represent the average relative

improvement over 100 trials, given as a percent improvement over the tree cost of the RW algorithm.

We implemented two versions of our group Steiner heuristic. The first variant embodies the following
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three modifications over the basic version described in previous sections: (1) Intermediate nodes are
selected strictly from among the groups (i.e., all of the constructions benchmarked are spanning trees
since they do not use Steiner nodes other than group nodes); (2) the root of the d-star is selected
from a single randomly-chosen group; and (3) after accepting an intermediate node in the inner loop

of Figure 9, it is removed from further consideration in subsequent iterations.

Our second heuristic variant adds a minimum spanning tree post-processing step to the first version
above (i.e., we output the minimum spanning tree over the nodes selected by our heuristic modified
as described above). The data in Figure 14 labeled “2-star” shows the average percent improvements
of our modified heuristic for d = 2 over the RW algorithm, while data for the MST-postprocessed
variant is given by the data labeled “2-star + MST”. As can be seen from the data, the second variant

significantly outperforms the RW algorithm with increasing group sizes and areas.

Areaof the group in % of the routing area

10% 50% 100%

130
=
o 120 q
Q 2-star < RW
()
> 110
ks RW
: 100 < mmm | — o-gtar
> \
[
= % ~
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o & N | A 2star+MST
® 2-star +MST \
I: 70 \
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3 5 8 3 5 8 3 5 8

Group size

Figure 14: Empirical data: average tree cost produced by our main heuristic (rect-
angles) and our MST post-processing heuristic (triangles), normalized with respect
to the RW heuristic [19] (diamonds), for various group sizes.

10 Conclusion

In this paper we addressed a generalization of the classical Steiner problem, with the goal of finding

a minimum-cost tree spanning k groups of nodes. Our main result is a series of polynomial-time ap-
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proximation algorithms with performance ratio O(k€) for any fixed € > 0. This result improves the
previously known O(k)-approximation and also applies to the Steiner problem in directed graphs. Em-

pirical results produced by our implementation indicate that our approach is also effective in practice.
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