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Abstract
In recent years biology has become an information science, where
an avalanche of newly sequenced genomic data has overwhelmed
our existing analysis and mining tools. This paper addresses this
challenge by developing a systematic way of speeding up a broad
class of bioinformatics algorithms using commodity graphics pro-
cessing hardware. Using the example problem of analyzing DNA
structural variations, we demonstrate how such computations can
be significantly accelerated in various parallel architectures, yield-
ing over two orders of magnitude speedups at low cost and with rel-
atively modest programming effort. Our implementation of a slid-
ing window -based technique on the GPU and Cell architectures
seems promising in its generality and extensibility to other prob-
lems and domains.

1. Introduction
While it has been long recognized that DNA sequence analysis is
ripe for parallelization [4], most such work has concentrated on
multiple alignment (e.g., Smith-Waterman [? ] [? ]) and sequence
comparison (e.g., BLAST [? ] [? ]) algorithms. This progression is
perhaps natural since these tasks are basic core steps in many exper-
imental applications, and thus any speedup gains is these will tend
to benefit the broader community. However, bioinformatics anal-
ysis is far from complete even after sequences have been aligned
and compared, and parallelizing the full analysis tool chain has
received considerably less attention. Improving the overall perfor-
mance of common classes of bioinformatics analyses is becoming
essential given the massive data volumes generated by experiments.
Only with improved and faster techniques will researchers be able
to fully utilize and leverage the available data.

Ultra-high throughput sequencing techniques opened the pos-
sibility of scaling previously small-scale experiments to whole
genomes. While wet labs are essential to biology, the scope of any
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Figure 1. The sliding window algorithm considering chromosome
(chrom) j; where the window length is |d| − |a|, and the step size
is |b|− |a|. Each window is offset from the previous window by the
same step size.

single experiment is limited by constraints such as cost, manpower,
time, noise, etc. Bioinformatics analysis can augment and stream-
line the traditional experimental process by predicting the locations
of particular properties throughout the genome. A typical experi-
ment begins with a sequenced DNA sample; the sequences are
mapped back to a reference genome, an analysis tool uses the map-
ping data to make predictions, and those predictions are then tested
in the lab. The accuracy and granularity of the tool have a direct
impact on the biologist’s ability to verify the results. Sequencing
data are large and complex, and attempts to tame this intractability
often discard substantial portions of the data, and moreover make
simplifying assumptions which paradoxically reduce prediction ac-
curacy.

In this paper we focus on parallelizing the sliding window algo-
rithm, a general bioinformatics approach used in a number of ge-
nomic analyses [14] [17] [5] [15]. In this scenario, some property
(e.g., sequence density) is computed for the portion of the genome
within the bounds of a fixed window. As shown in Figure 1, the
window slides by a fixed amount across the genome, and the prop-
erty is recomputed relative to the new window bounds. There are
many different applications and variations of the sliding window
approach, but they all follow this same general template.

The sliding window technique is a widely used algorithmic
primitive. For example, the sliding window approach has been used
to improve the spatial resolution of predicted binding sites using
ChIP-Seq data [17], as well as to analyze sequence polymorphisms
that can aid in understanding evolutionary forces and chromosomal
functional significance [15]. In this paper we focus on its use in
two structural variation detection techniques described by Shibata
et al. [14] and Xie et al. [? ]. DNA structural variations are anoma-
lies in a genome where portions of chromosomes have either been
added, deleted, or otherwise rearranged. Certain variations of this
type have been linked to particular types of cancers. The Philadel-
phia chromosome [7], for example, is such a variation. In normal
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human cells, the BCR and ABL genes exist in different chromo-
somes (22 and 9, respectively). However, in many patients with the
chronic illness myelogenous leukemia, a structural variation exists
where the BCR and ABL genes have fused. This discovery eventu-
ally led to a therapy that reduced tumor growth rate [13].

The sliding window algorithm has two main parameters, win-
dows size and step size (i.e., the distance between successive win-
dows). While window size is generally determined by experimental
factors (e.g., sequence read length), step size is a tunable parameter
and has a direct impact on accuracy and performance. Each win-
dow calculates a local statistic, as the step size increases the gap
between these statistics increases, which in turn decreases the res-
olution of any prediction (e.g., inflection points). As the step size
decreases, more windows are required to analyze the genome, and
the computational complexity becomes correspondingly larger.

This paper discusses our experiences in parallelizing the slid-
ing window approach with the goal of providing researchers the
flexibility to select a step size that is biologically meaningful, and
not simply computationally feasible. Most recent attempts to paral-
lelize high-throughput algorithms have been focused on algorithms
that have large kernels that perform a large amount of computation
per thread. In contrast, the sliding window algorithm has a small
kernel and performs only a small amount of work per thread, mak-
ing it a poor candidate for cluster-based parallelization, yet an ideal
candidate for parallelization on Single Instruction Multiple Data
(SIMD) architectures such as graphics processing units (GPUs) and
highly multicore architectures such as the Cell. We therefore se-
lected NVIDIA’s Compute Unified Device Architecture (CUDA)
and Cell architectures for our implementation and analysis. For
comparison, we also included computational results using OpenMP
(Open Multi-Processing), a popular application programming in-
terface (API) that supports multi-platform shared memory parallel
programming.

Our analysis shows that the speedup under both the CUDA and
Cell architectures are inversely proportional to the step side. For
example, when the step size is reduced to one, a 156x speedup is
realized in CUDA. For the Cell processor, the performance is de-
pendent upon the number of overlapping windows that are com-
bined in DMA requests, the number of threads, and the step size;
the optimal speedup is 30x. This result is encouraging given the
impact that a smaller step size can have on the granularity and ac-
curacy of the analyses. The speedup under the OpenMP architec-
ture depends only on the number of threads, and is independent of
the step size. The OpenMP implementation does not make copies
of the windows to perform the analysis, and therefore cannot take
advantage of the overlap between windows the way the CUDA and
Cell implementations can.

The main contributions of this paper include:

• A parallel sliding window algorithm that improves both perfor-
mance and accuracy.

• An implementation and performance comparison of CUDA and
CELL.

• General strategies for decomposing data requirements to opti-
mizing the performance of the particular architectural aspects
of CUDA and CELL.

The remainder of this paper is organized as follows. Section 2
summarizes previous work on parallelizing biological algorithms.
Section 3 reviews the sliding window algorithmic approach in
bioinformatics. Section 4 describes our OpenMP, CUDA, and Cell
-based parallel implementations of sliding windows, and discusses
our performance benchmarks. Finally, we conclude in Section 5
with directions for future research.

2. Related Work
Commodity high-performance GPUs have become more accessible
and easier to utilize due to the CUDA standard, and programmers
have ported a multitude of applications to this unified parallel
architecture [3]. In bioinformatics, however, the use of CUDA has
been mostly limited to sequence alignment [6] [12] [16].

Similarly, parallelizations on the Cell architecture have been
mostly limited to signal processing applications that have few direct
memory access (DMA) requests [2]. These applications also tend
to use the higher speed “mailbox” mechanism. In contrast, sliding
window algorithms tend to issue a large number of DMA requests.
Indeed, reducing the number of DMA requests was one of the
challenges we faced, as discussed in Section 4.3.2.

In [11], the authors demonstrate that the performance of the
phylogenetic likelihood function – a bioinformatics technique that
uses sequence alignment to construct an evolutionary history for a
group of organisms – can be improved through parallelization on
the GPU and Cell/BE. We similarly follow this approach, though
we are analyzing a sliding window technique common in bioinfor-
matics.

A common bioinformatics algorithmic template for analyzing
genomes is the sliding window [14] [17] [5] [15]. In general, a
sliding window approach computes some property (e.g., sequence
density) for the portion of the genome that lies within the bounds
of a fixed-size window. The window then slides some fixed amount
down the genome, and that same property is recomputed with re-
spect to the new window bounds. Some higher-level properties
(e.g., max/min, average, histograms, or other characterizing statis-
tics) may then be computed across all individual window values.
While there are many different applications and flavors of the slid-
ing window technique, most follow this general form.

This paper discusses our experiences in improving the perfor-
mance of a sliding window approach used in the structural variation
detection technique described by Shibata et al. [14]. In this partic-
ular technique, we read in pair-end tag data, annotate where each
tag occurs in the genome, and then use a sliding window to deter-
mine high density regions for each chromosome, in order to detect
structural variations in the input sequence.

3. Sliding Window Analysis
The linear encoding (i.e., “string of symbols”) nature of DNA
makes the sliding window algorithms a natural template for ge-
nomic analysis. Starting from the beginning of each chromosome
and proceeding to the end, some statistic is computed over the base
pairs within the current bounds of a fixed window. As shown in Fig-
ure 1, the window slides down the chromosome by a fixed amount
and the statistic is recomputed at each step. Beyond being a natural
fit, the sliding window also helps smooth some of the noise inherent
in the DNA sequencing process.

Coverage is a statistic that is important to many different types
of genomic analyses. As described previously, experiments begin
with the preparation of a DNA sample. The sample’s coverage
refers to distribution of mappable sequences within that sample
with respect to a reference genome. In the case of structural vari-
ations, increases or decreases in coverage within particular areas
of the genome can imply variations. Shibata et al. [14] and Xie et
al. [? ] use different sliding window techniques to calculate such
coverage.

The approach proposed by Shibata et al. [14] tracks the cover-
age of each base pair in the genome, then slides a 200 base pair-wide
window using a step size of 50 across each chromosome in or-
der to calculate the average base pair coverage. The integer array
chrm[a][b] represents the coverage of base pair b on chromosome
a. If sequence i maps to location [b, c] on chromosome a, then each
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Figure 2. Speedup as a function of step size for OpenMP, CUDA,
and Cell. As shown, the Cell implementation yields the greatest
speedups for step sizes within Cell’s constraints. CUDA, due to its
flexibility, can handle smaller step sizes and can yield even greater
speedups over the sequential algorithm.

value in the range chrm[a][b]− chrm[a][c] is incremented by one.
The value of window j on chromosome k is therefore the sum the
values in chrm[k][j ∗ 50] − chrm[k][j ∗ 50 + 200]. While this
approach allows for an exact accounting of coverage, it is compu-
tationally expensive, which led the authors to use a large step size.
On the other hand, a smaller step size would give their analysis
a finer granularity and accuracy, and possibly enabled the exact
determination of variation locations.

Xie et al. [? ] go further to improve performance by bypassing
the base pair coverage step, and directly calculate window cov-
erage. In this approach, the integer array chrm[a][b] represents
the coverage of window b, instead of base pair b, on chromo-
some a. Considering a step size of 50, if sequence i maps to lo-
cation [c, e] on chromosome a, then the window covering this re-
gion chrm[a][c/50] is incremented by one. This approach is con-
siderably more efficient than the Shibata et al. approach, although
it sacrifices some generality and accuracy.

For this analysis we chose to parallelize the approach used by
Shibata et al. [14]. While the technique used by Xie et al. apparently
serves the needs of their specific analysis, we believe it to be
less useful to the broader community. For example, accounting for
coverage at the base pair level allows for a broader range of statics
(e.g., median, mode, etc.) to be calculated.

4. Parallel Sliding Window
In the Shibata et al. [14] implementation, the sliding window size
is 200 base pairs (bp) with a step size of 50 bp. Since the human
genome contains over 3 billion bp, the algorithm must perform
nearly 150 million sequential windowing operations. During each
operation, the algorithm counts the number of tags within a region
of the genome. Each window operation does not depend on the out-
put of any other window operations, and there are no data depen-

dencies between window operations. Therefore, the algorithm is a
“high throughput” problem.

Performing a single operation independently on many different
inputs is a classic parallelization scenario. However, the memory
bound nature of the problem and the small kernel make it not
“embarrassingly parallel”. The size of the data set is beyond the
memory capacity of most systems, and beyond the local storage of
some architectures. Thus, threads may be forced to stall until fresh
data can be loaded.

We implemented the sliding window stage using OpenMP
for the multicore CPU, CUDA for the GPU, and libspe2 for the
Cell. The OpenMP results were achieved by adding in one simple
pragma statement. The CUDA and Cell results were more compli-
cated, consisting of a simple translation of the code to their respec-
tive languages, with optimizations applied afterward. Speedups
achieved by the OpenMP, CUDA and Cell implementations with
varying step size are shown in Figure 2.

In our comparisons, we provide the OpenMP benchmarks as a
reference when considering the performance of CUDA and Cell.
To compare the performance between CUDA and Cell, we imple-
mented the sliding window algorithm with similar optimization ef-
fort, instead of similar coding techniques. We recognize that quan-
tifying programming effort is difficult, and we make no attempt to
do so here. Instead, we followed similar strategies on both architec-
tures; first we implemented a straight forward parallel algorithm,
then we implemented the most obvious architectural optimization.
While the code running on each architecture is significantly dif-
ferent, we believe this comparison is more insightful because it
reflects real design choices that must be made when developing
on these architectures and demonstrates the performance impact of
those choices.

Since CUDA and Cell maximize performance in different ways,
running similar code on both architectures would under-utilize at
least one of the architectures and result in an artificial comparison.
We demonstrate this point in Figure 3, where similar strategies are
executed on both architectures. In Figure 3(a), each thread com-
putes one window. Under this strategy, CUDA performs best be-
cause it contains a high-bandwidth shared memory space that can
be concurrently accessed by threads within a thread block. Cell,
on the other hand, uses a relatively low-bandwidth Direct Mem-
ory Access (DMA) channel to share data between threads. When
the step size is small, there is a significant overlap between win-
dows. CUDA shared memory allows overlapping windows to be
computed in parallel, while Cell must waste cycles retransmitting
data to threads. In Figure 3(b), each thread computes 120 windows.
This improves performance in Cell because it reduces redundant
DMA calls, and degrades CUDA performance because 120 win-
dows that could be computed in parallel must be computed serially.

As Figure 2 shows, the CUDA and Cell architectures signif-
icantly outperform OpenMP. This is likely due to the memory-
bound nature of the problem: the innermost loop has a small
body and traverses a large amount of data in RAM, with a sig-
nificant amount of overlap in those requests. Such algorithms are
better suited to nonuniform memory access (NUMA) architec-
tures. The Cell processor has some constraints on memory align-
ment; although these constraints were addressed to some degree by
padding, it was still necessary to use powers of 2 for the step size,
unlike in CUDA or OpenMP, where step sizes of powers of 2 were
not strictly required. This suggests a trade-off between flexibility
and performance that is dependent on the parameters of the sliding
window, a factor that should be considered when acquiring and
configuring computer systems.

Runtimes for the OpenMP implementation were measured on a
3.16 GHz, 8-way Intel Xeon CPU X5460 running Fedora 9. Run-
times for CUDA were measured on a 2.67 GHz, 4-way Intel Xeon
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Figure 3. Comparison of CUDA and Cell implementations where similar strategies are executed on both architectures. 3(a): CUDA performs
well with fewer windows per thread, while Cell performs poorly in this setup. 3(b): Cell performs well with more windows per thread,
compared to CUDA.

CPU X5550 with a Tesla C1060 GPU and NVIDIA driver version
185.18.14. Runtimes for the Cell implementation were measured
on a system with four 3.2 GHz Cell processors running Fedora 12,
and a Playstation 3. The C code was compiled using gcc version
4.3.0 for the OpenMP implementation, and gcc version 4.2.4 for
the CUDA implementation. The CUDA code was compiled using
NVCC version 0.2.1221 and CUDA toolkit release 2.2. The Cell
code was compiled using spu-gcc version 4.1.1 and gcc 4.3.0.

4.1 OpenMP
A popular option for parallelizing applications is the OpenMP
standard. Converting a sequential program into a parallel program
can be as simple as adding a single compiler directive, as was
the case for the sliding window algorithm. We report performance
benchmarks using OpenMP in Figure 4 as a comparison reference
when considering alternate parallel architectures. While it did not
provide the most speedup, OpenMP was the easiest to implement,
with only a single pragma statement needed to be added around the
iteration loop that creates windows.

4.2 CUDA
NVIDIA’s Compute Unified Device Architecture (CUDA) is a
SIMD architecture that provides programmers a general interface
to a large number of parallel graphics processing units (GPUs) [8].
CUDA attempts to maximize resource utilization by handling large
numbers of threads. Ideally, if a large enough set of threads is gen-
erated, a sizable subset of them will always be ready to execute.
When the current threads are forced to stall (e.g., due to memory
accesses), other threads can swap in and hide most of the latency.

Understanding how the architecture and programming con-
structs relate is an important part in achieving this improved re-
source utilization. Each CUDA processor handles a single thread.
Processors and threads are grouped into multiprocessors and thread
blocks, respectively. A multiprocessor executes a number of thread
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Figure 4. Speedup for the OpenMP approach over the sequential
approach where the step size is equal to 32. The greatest speedup
of 6.23x over the sequential version is achieved when employing 8
threads.
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blocks and each thread block executes on exactly one multiproces-
sor. Every thread in a thread block executes the same instruction on
different data in each clock cycle. Thread blocks are further sub-
divided into smaller groups called warps. The scheduler can easily
rotate execution between warps that are stalled and warps that are
ready to execute.

This scheme depends on the programmer’s ability to design
an algorithm that can create enough threads. In the University of
Illinois CUDA lecture series [9], it was suggested that, in order to
fully utilize the hardware, CUDA programs should have 32 thread
blocks and each thread block should have 192 threads. For this
analysis, the thread count is equal to the window count, which is in
turn equal to the chromosome size divided by the step size. Since
window size and chromosome size can be assumed to be fixed, the
step size is the critical factor in performance. In our naive approach,
we see that simply creating a large number of threads can greatly
improve the performance, and that performance decreases at certain
step sizes where thread blocks contain less than 192 threads.

Shared memory is a major source of optimization. Each multi-
processor has a small amount of on-chip, high-bandwidth memory
(about 16K) that can be accessed only by thread blocks executing
on that multiprocessor. The access time of shared memory is orders
of magnitude less than global memory access, and as we demon-
strate, can yield significant speedups. However these speedups are
not free. Since this space can only be accessed by threads on the
multiprocessor, and not the host thread, threads are responsible for
loading the data from global memory into shared memory, and writ-
ing the results back to global memory. Considering the fact that the
size of shared memory is limited, and that threads cannot access
the shared memory of different blocks, large problems must be de-
composed into small chunks. It is up to the programmer to strike a
balance between the overhead associated with this decomposition
and the speedup gained from using shared memory.

Figure 5 demonstrates the close relationship that can exist be-
tween shared memory and thread count. In the sliding window,
when the step size is eight or greater the hardware is underutilized
and performance is relatively low. A larger step size results in fewer
windows and less window overlap, which in turn results in fewer
threads per block and less shared data between threads. Step sizes
of four and less fully utilize the hardware in both thread count and
shared memory. However, simply increasing the number of threads
does not necessarily translate into better performance. The peaks
in step sizes of four, two, and one are the points where the shared
memory is fully utilized with the minimum number of threads.

When using CUDA, it is important to consider that the GPUs
exist on a card that is physically separate from the CPU. To execute
code on the GPU all data must be shipped from CPU memory
to GPU memory where the data is processed. Results must then
be shipped back to the CPU on the same relatively slow channel.
Specifically, the programmer must: allocate space on the GPU,
copy data from the CPU to the GPU, process the data on the
GPU, copy the data from the GPU to the CPU, and free the space
previously allocated on the GPU. All of these steps take a non-
trivial amount of time and must be considered when calculating
any speedup. To make this point clear, we have divided the CUDA
runtime analysis into these stages in Figure 6.

4.2.1 Naive Approach–Global Memory
Every thread in CUDA has full access to global memory. Therefore,
the most straightforward method to parallelize the sliding window
using CUDA is to load a coverage array and a result array into
global memory and spawn enough threads such that each window
is handled by a unique thread. Since each window operation is inde-
pendent, threads can safely read from the coverage array and write
to the result array without synchronization. While global memory
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Figure 7. Speedup for the CUDA global memory approach over
the sequential approach. The greatest speedup of 39.9x is found
using a step size of 1. As the step size increases, the speedup
decreases due to the decrease of the number of threads in a thread
block.

requests are high latency (400–600 cycles) and non-caching, and
each thread makes over 200 memory requests, this approach has a
non-trivial speedup over the sequential version as shown in Figure
7.

The achieved speedup, despite obvious inefficiencies, is a result
of having an abundance of threads. When the executing threads
read or write to global memory they must stall for hundreds of
cycles. Instead of leaving the hardware idle during those cycles,
the scheduler rotates in a different batch of threads that is ready
to execute. Once the reads or writes have been completed, the
stalled threads will be ready to execute and can be rotated back
in. If the thread count is high, then it is more likely that some
group of threads will always be ready to execute. We can see this
phenomenon in Figure 7. Larger step sizes perform poorly because
the thread count is low, while smaller step sizes perform much
better due to the high thread count.

4.2.2 Shared Memory Optimization
An obvious optimization to our naive approach is to use shared
memory. Given a window size of 200 and a step size of 16, one
element in the coverage array is shared across 12 different windows
(threads). Since global memory is non-caching, our naive approach
incurs the 400− 600 cycle latency on all 12 accesses. If we use the
low-latency (4 cycle) shared memory space, then we only incur the
global memory latency once, when the value is loaded from global
memory into shared memory.

There are several complexities when using shared memory re-
lated to its size and limited accessibility. The shared memory space
is divided into 16K segments, and threads can only access their
block’s shared memory space. In our case the amount of data being
analyzed is much larger than 16K, so the data must be divided into
independent chunks where each chunk is handled by one thread
block. Given the shared memory space access restrictions, each
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Figure 8. Speedup for the CUDA shared memory approach over
the sequential approach. As the step size increases, speedup de-
creases because of a decrease in threads in a thread block and,
therefore, a corresponding decrease in shared data between threads.
The greatest speedup of 213.2 times the sequential algorithm is
achieved with a step size of 1.

chunk of data must be loaded by the threads as a block from global
memory to shared memory before it can be analyzed. A barrier syn-
chronization is required after this step. Once the chunk is loaded,
each window in that chunk is handled by a thread. Since the sliding
window is continuous and uniform across the genome, several win-
dows will span chunks. To ensure that every window is calculated,
we must overlap these chunks.

The speedup when using shared memory (Figure 8) is signifi-
cant, especially when the parameters allow for many threads in a
thread block. The number of windows needed to analyze the chunk
depends on the step size. Smaller step size means more windows
and more threads, leading to a higher utilization of the hardware.
Smaller step sizes also increase the amount of data shared between
threads, which in turn increases the impact of shared memory.

While shared memory is faster than global memory, using it is
not as straightforward. As previously discussed, the size of shared
memory requires us to analyze the data in chucks. In many applica-
tions, including ours, there are boundary issues, and blocks must be
overlapped to ensure that no data is skipped. Special care must then
be taken to prevent race conditions between threads in overlapped
regions.

Furthermore, each shared memory segment can only be ac-
cessed by the threads in one block, and host code cannot directly
access shared memory. Threads within a block are responsible for
transferring data from global memory to shared memory. In our
analysis each thread loads the first s elements of their window,
where s is the step size. In this approach, the last windowsize −
stepsize elements of each array will not be loaded, and therefore
the next block must overlap by that amount to ensure that the cor-
responding portion of the chromosome is still analyzed.

Once the data is loaded into shared memory, execution pro-
ceeds as normal. Each thread finds the sum of the elements in its
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range, and the result is written to global memory. In Figure 8 we
can see the performance impact of blocks without enough threads.
When the step size is 32, the number of windows needed to an-
alyze the portion of the array loaded into global memory is only
110. Therefore each thread block contains only 110 threads, which
is fewer than the suggested 192 threads. A smaller step size also re-
sults in more shared values, which also contributes to the increased
speedup for the shared memory approach.

4.3 Cell
The STI Cell architecture is a heterogeneous multicore architecture
that features a PowerPC core and 8 simplified Synergistic Process-
ing Elements (SPEs). This architecture is designed for very high
throughput, particularly for floating point operations. It seeks to
avoid the memory bandwidth issues that are typical of shared mem-
ory architectures by giving each SPE a special local storage, which
is as fast as a cache but is treated as RAM by the program. An SPE
may also access the system RAM through a special direct memory
access (DMA) functionality that copies ranges from RAM to the
local storage.

DMA functions in the Cell are performed over a relatively low
bandwidth shared channel, and thus constitute a major bottleneck.
Effective Cell programming requires a minimization of the number
of DMA calls that are made. Ideally, each SPE should load all
the data upon which it will operate into its local storage once,
operate on that data, and send only the final results back to RAM. A
significant loss in performance can be expected when the data size
exceeds the local storage capacity, because the data must be loaded
and returned multiple times. An implementation quirk of the Cell
requires all DMA requests to be 16 byte aligned, and padding is
necessary for data which cannot be aligned to such a boundary,
resulting in further losses in efficiency.

In addition to using DMA, it is possible for the individual SPEs
to communicate using message passing. Each SPE features a high
speed, hardware-assisted message passing mechanism referred to
as a mailbox. Mailboxes are queues of 32 bit messages that SPEs
can send to each other and to the PowerPC core. The mailbox
mechanism is very fast, and libspe provides both blocking and non-
blocking mailbox functions.

Cell processors range from lower end Sony Playstation 3 con-
soles, to high end IBM blade serve systems. The Playstation 3 Cell
processor makes 6 SPEs available, and has lower performance char-
acteristics than a server system. The higher end IBM Cell systems
feature multiple Cell processors per motherboard, higher memory
access speeds, and a larger amount of memory. There is a mea-
surable difference in performance between the Playstation 3 and
the Cell servers, which appears to be primarily related to the dif-
ferent memory bandwidths of the systems. Midway through our
experiments, our IBM blades broke down, and we switched to a
Sony Playstation 3. Although the speedup on this system follows
the same trend as the blades, the results quantitatively different,
likely due to the lower performance memory. Additionally, the PS3
features fewer SPEs, and thus reduced parallelism. A comparison
of the results on the two systems is found in Table 1, where a very
significant difference in performance is plainly evident.

When available, utilizing multiple Cell processors requires ad-
ditional programming effort, especially in memory bound problems
such as the sliding window algorithm. Many multiprocessor Cell
systems, including one of the test systems, are based on a nonuni-
form memory access (NUMA) architecture, with some memory
banks being accessed faster than others depending on which CPU
is performing the access. Making effective use of more than one
Cell processor thus requires memory to be allocated in such a way
that requests for slower memory banks are minimized. In this ex-
periment, no such effort was made, and so utilizing more than 8
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Figure 9. Speedup for Cell as the number of SPEs in use is in-
creased; note that a maximum speedup of 6.67x is reached when
8 SPEs are in use. These results were collected using the blades
system.

Step size Blade Playstation 3
16 30.1 2.5
32 13.9 1.3
64 6.67 0.6

Table 1. Speedup results on the blades server vs. the Playstation
3, for step sizes of 16, 32, and 64, with a chunking factor of 60.
Note that the blade servers perform significantly better than the
Playstation 3, due to the faster memory on those systems.

SPEs results in degraded performance; this can be seen in Figure 9,
with the performance beginning to drop off for 9 and 10 SPEs. For
the full complement of 32 SPEs, we found that performance was
no better than the sequential algorithm.

4.3.1 Naive Approach: One Window per SPE
The simplest method of programming the Cell processor for a high
throughput problem is to load the data for each thread into the local
store, and then have the thread execute. In the case of the sliding
window algorithm, this means loading a single window into the
local store, operating on it, and returning the result using a mailbox.
Although this method is simple to understand and implement, it is
suboptimal. In testing, it was found that even with all the SPEs in
use, the execution time was close to the sequential runtime.

4.3.2 Optimizing Cell Performance
The fact that so many windows overlap with each other can be
used to reduce the number of DMA calls. Although more data is
transferred per DMA request, the total number of requests will be
reduced by a greater factor than the increase in data transfer per
request, and thus an overall improvement can be expected. This
was found to be the case, as shown in Figure 10. This improve-
ment becomes increasingly pronounced as the step size parameter
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Figure 10. Speedup for Cell as overlapping windows are com-
bined in DMA requests; a step size of 64 was used for this test,
thus allowing a maximum number of combined windows of 60. As
the number of preloaded windows increases, the speedup increases
as well, with a maximum of speedup of 6.67x as compared to the
sequential algorithm. These results were collected using the blades
system.

Step Size Optimal Chunking Maximum Chunking
1 480 3840
2 480 1920
4 240 960
8 240 480
16 240 240
32 120 120
64 60 60

Table 2. The optimal chunking amount for each step size. This
is the number of windows that will be loaded for each DMA
transfer, and thus determines the amount of work that each SPE
will perform between transfers. This amount decreases, because
the amount of data transferred increases with the step size. For
the largest step sizes, the chunking factor becomes limited by the
amount of memory in the local store.
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Figure 11. Speedup for Cell versus step size, with some padding
added for step sizes that do not meet the alignment constraints. This
graph reflects the results for the optimal chunking factor for each
step size. As with CUDA, as step size decreases, speedup increases,
the maximum speedup of 30.1x was observed on the blades for a
step size of 16 (the smallest size tested on the blades; see Table 1),
and a speedup of 38.8x was observed for a step size of 1 on the
Playstation 3.

decreases, as shown in Figure 11. This result is similar to the result
observed for CUDA.

However, such improvements are not reaped for free. By com-
bining requests like this, load balancing becomes worse because
of a reduction in the granularity of the subproblems, and in the
extreme case the maximum number of useful parallel threads be-
comes unreasonably limited. This effect is mitigated somewhat by
the small size of the local store, but on a system with multiple Cell
processors, it is possible that some SPEs will be unused.

The SPE local store is of size 256K, but some of this memory
is used to store the executable code. For a window size of 256 and
a step size of 64, this only leaves room for a maximum of 60 over-
lapping windows which can be loaded into the local store. How-
ever, the maximum number of chunked windows is not necessarily
optimal, as shown in Table 2. For smaller step sizes, the optimal
chunking amount is less than the maximum chunking amount. In
Figure 10, as the number of preloaded windows increases, a clear
trend of continuous improvement is observed.

5. Conclusion and Future Work
Our analysis shows that the step size is a critical performance pa-
rameter in the sliding window algorithm. In [14], a step size of 50
base pairs is used. While a smaller step size would increase the
granularity of results, it was deemed computationally infeasible at
the time. We have demonstrated that smaller step sizes are feasi-
ble in parallel architectures and that a smaller step size actually
improves performance on these parallel architectures. Researchers
now have the flexibility to select a step size with biological signifi-

8 2010/11/16



cance in mind, rather than being limited only by what is computa-
tionally feasible.

While both parallel architectures resulted in a significant perfor-
mance increase over the sequential version of the sliding window
algorithm, differences between the CUDA and Cell architectures
have a dramatic impact on the programming strategies. As shown
in Figure 3, an implementation optimized for CUDA runs poorly on
CELL, and vice versa. This demonstrates that while general paral-
lel algorithms can be a guide for programmers, major optimizations
require a deep understanding and utilization of particular architec-
tural features. Furthermore, without good abstractions the portabil-
ity of parallel code will remain questionable.

For example, the amount of work that each thread should be
asked to perform is drastically different between CUDA and CELL.
CUDA performance depend on the programmer’s ability to create
a multitude of threads. The CUDA scheduler masks memory la-
tency by rapidly cycling threads in and out of execution. If enough
threads are spawned, then chances are good that a thread will be
ready to execute while another stalls. CELL, on the other hand per-
forms best when each of a fewer number of threads computes as
much as possible. Each SPE has local storage that is a fast as a
cache, but the channel between SPEs is relatively low bandwidth.
Therefore the ideal scenario for the CELL is where each SPE can
load all the data upon which it will operate into its local storage
once, operate on that data, and send only the final results back to
RAM.

It may be possible to further optimize our CUDA implemen-
tation by addressing bank conflicts. In CUDA, shared memory is
divided into banks which can be accessed simultaneously [8]. How-
ever, simultaneous accesses to the same bank are serialized. Since
each memory element in our coverage array is accessed by a num-
ber of threads, our implementation could incur some bank conflict.
However, we expect that any speedup resulting from this optimiza-
tion would be minor when compared to the speedup we observed
when moving from global memory to shared memory. Given a win-
dow size of 200, and a step size of one, the maximum number of
simultaneous accesses to one memory location would be 200. Even
if those 200 shared memory accesses occur simultaneously, and all
200 access are serialized, the time required to complete the access
is on the order of one global memory access.

The Cell implementation may be further improved by develop-
ing a scheme to take better advantage of multiple Cell processors,
for systems with such hardware. The drop-off in performance when
employing more than 8 SPEs may be a result of how memory is al-
located and accessed in the current implementation, which is not
ideal for systems with more than one Cell processor [1]. Using the
libnuma library for allocation and access, and possibly allocating
multiple copies of the data set, may allow more SPEs to be used in
an efficient manner.

More generally, it would be interesting to test our methodology
on other sliding window algorithms, and even on different bioinfor-
matics algorithms altogether, such as multiple sequence alignment,
and the highly parallelizable phylogenetic tree reconstruction as de-
scribed in [10]. The highly parallel nature of DNA chemistry, com-
bined with the availability of thousands of independent genomes,
strongly suggests that bioinformatics is a very ripe area for the con-
fluence of hardware and software based parallel techniques.
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