A New Approach to Primer Selection

in Polymerase Chain Reaction Experiments*

William R. Pearson]L, Gabriel Robins, Dallas E. Wrege and Tongtong Zhang

Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442
TDepartment of Biochemistry, University of Virginia, Charlottesville, VA 22908

Abstract

We address the problem of primer selection in poly-
merase chain reaction (PCR) experiments. We prove
that the problem of minimizing the number of primers
required to amplify a set of DNA sequences is NP-
complete, and show that even approximating solutions
to this problem to within a constant factor times opti-
mal is intractable. On the practical side, we give a sim-
ple branch-and-bound algorithm that solves the primers
minimization problem within reasonable time for typi-
cal instances. We present an efficient approzimation
scheme for this problem, and prove that our heuristic al-
ways produces solutions no worse than a logarithmic fac-
tor times the optimal, this being the best approrimation
possible within polynomial time. Finally, we analyze a
weighted variant, where both the number of primers as
well as the sum of their “costs” is optimized simultane-
ously. We conclude by presenting the empirical perfor-
mance of our methods on biological data.

1 Introduction

The polymerase chain reaction (PCR) has revolu-
tionized the practice of molecular biology, making it
routine to synthesize millions of copies of a single gene
or other portion of a genome (for a recent review, see
[5]). PCR has been used to synthesize nanogram quan-
tities of a gene from a single sperm (and thus a single
DNA molecule) - a 10'-fold amplification [1]. Com-
puter programs [8] [11] [12] are used extensively to de-
sign PCR primers (i.e., short stretches of DNA, 15 to
20 nucleotides long, that are used to establish the ends
of the PCR reaction). In general, these programs have

*This research was supported in part by a National Li-
brary of Medicine grant LM04961 (Pearson) and by a Na-
tional Science Foundation Young Investigator Award MIP—
9457412 (Robins). Corresponding author is Professor
Gabriel Robins, Department of Computer Science, Univer-
sity of Virginia, Charlottesville, VA 22903-2442, USA, Phone:
(804) 982-2207, Email: robins@cs.virginia.edu, WWW URL
http://uvacs.cs.virginia.edu/~robins/.

focused on optimizing the nucleotide sequence for se-
lecting a single primer binding site in a complex mam-
malian genome (which contains up to 3 - 10° such sites)
and avoiding various artifacts that can be encountered
with PCR. Thus, the computer program is given a sin-
gle DNA sequence, which might contain 100 potential
primer sites, and the sites that optimize some relatively
simple sequence composition properties are selected.

In this paper, we describe an approach to the solution
of a related problem - the amplification of previously
undiscovered members of a multigene family by design-
ing primers that will function on the largest possible set
of known members of the family. Large families of re-
lated genes have become surprisingly common over the
past 5 years. Currently one of the larger families con-
tains as many as 1000 related genes that encode proteins
called G-protein-coupled receptors [7]. There are many
other such families that encode a large range of proteins
with essential roles; PCR amplification is often the only
technically feasible method for characterizing members
of such large families of genes. Here the problem is dif-
ferent from the typical primer selection problem. We
are given a set of 5 to 50 (or more) members of a family
of genes, each of which has 20 to 100 potential primer
sites, and we wish to identify a set of primers that would
function on the largest possible number of family mem-
bers, with the hope that such primers will also allow
new members of the family to be amplified.

We offer both theoretical and practical contribu-
tions. On the negative side, we demonstrate that min-
imizing the number of primers needed is computation-
ally intractable; in particular, we use a reduction from
the set cover problem to establish that primer num-
ber minimization is AP-complete, which implies that
no polynomial-time algorithm is likely to exist for this
problem. On the positive side, we give a straight-
forward branch-and-bound algorithm that solves the
primer minimization problem within reasonable time for
practical instances. We also construct an efficient ap-
proximation scheme for this problem, and prove that

our heuristic always produces solutions that are guar-
anteed to have bounded cost with respect to optimal;
moreover we show that our heuristic is the best possible
within polynomial time. Finally, we analyze a weighted
variant, where both the number of primers as well as the
sum of their “costs” must be minimized simultaneously.
We conclude by discussing the empirical performance of
our methods on biological data.

2 Notation and Problem Formulation

Before we formulate the problem of minimizing the
number of primers required to synthesize from a given
set of DNA sequences, we first develop the necessary no-
tation. We use lowercase italic letters (e.g. “a”) to de-
note characters and strings, uppercase letters (e.g. “A”)
to denote sets, and uppercase calligraphic letters (e.g.
“A”) to denote collections of sets.

Let S = {s1,...,8,} be a finite set of strings over
a finite alphabet! ¥. For any finite set of symbols
3., we define X* to be the set of all finite strings of
symbols from X. For example, if ¥ = {a,b}, then
¥* = {¢,a,b,aa,ab ba,bb,aaa,aab,...}, where ¢ de-
notes the unique empty string of length 0. For two
strings u, v € X*, u is a substring of v if u is a contiguous
subsequence of v (i.e., there exist x,y € ¥* such that
zuy = v). The length of a string u is denoted by |ul.
For a collection of sets C, we denote the union of all of
its members as UC = U C.

CeC

A set of strings is said to be a string group of order k
if all the strings have a common substring of length & or
more; in other words, given a string set S = {s1,...,sn},
if there exists a u € X* with |u| > k, such that u is
a substring of s; for all 1 < 7 < n, then S is a string
group of order k, and u is their (not necessarily unique)
common substring of length k. We then say that u
induces the string group S, and that S is the string
group associated with u. The size of S is the number of
strings in S, denoted by |S|. If a subset S’ of S satisfies
the string group definition with order k&, then we say
that S’ C S is a string subgroup of S with order k. A
string subgroup is mazimal if it is not a proper subset
of any other string subgroup of the same order. If for
some collection C of subsets of S we have [JC = S5,
then we say that C is a cover for S of order k£ and size
IC|. An optimal cover of order k is a cover of order k
having minimum size. In Section 6 below we extend
the definition of “optimal” cover to take into account
inexact string matching.

For example, the set S = {cabaca, acabab, bbacaba} C

INote that although above we did not restrict the alphabet
size, in biological applications the alphabet typically consists of
the four nucleotide bases adenine, cytosine, guanine, and thymine.

{a,b,c}” is a string group of order 4 and size 3, since
caba is a common substring of length 4 for each string in
S (we use the underline notation to highlight common
substrings). Note that S = {cabaca, acabab, bbacaba} is
also a string group of size 3 with order 2, since all strings
in S have the common substring ac of length 2. On the
other hand, S is not a string group of order 5, since there
exists no substring of length 5 common to all strings of
S. We observe that S contains a maximal string sub-
group of order 5 and size 2, namely {acabab, bbacaba},
associated with the common substring acaba of length
5. Finally, the two string subgroups contained in C =
{{acabab, bbacaba}, {cabaca}} form an optimal cover for
S of order 5 and size |C| = 2, although the single string
subgroup {cabaca, acabab, bbacaba} (i.e., S itself) forms
an optimal cover for S of order 4 and size 1.

In our formulation, a string corresponds to a DNA
sequence, a substring corresponds to a primer, and a
string (sub)group corresponds to a primer group or a
portion thereof; we shall therefore use these terms in-
terchangeably in what follows, depending on context.

3 The Optimal Primer Cover Problem

Given a set of DNA sequences (strings), there are
many choices as to which primers (i.e., common sub-
strings) one can synthesize (i.e., cover) for different se-
quence subsets (i.e., string subgroups). Moreover, to
keep the problem realistic, we insist that all primers
have length & or more, otherwise we could trivially use
a single primer of length zero (i.e., the empty string)
to cover all of the DNA sequences, which would not be
useful biologically. Yet, even if we set an a priori lower
limit on the primer length (not greater than the short-
est DNA sequence), any set of DNA sequences can be
covered by using a single distinct primer for every DNA
sequence (e.g., the DNA sequence itself). However, such
a solution would be wasteful due to the large number
of primers necessary to carry out the PCR experiment
and would be unlikely to allow us to discover new genes.
With this in mind, we seek to minimize the number of
primers of a given order necessary to cover a given set

of DNA stands:

Optimal Primer Cover (OPC) Problem: Given a
finite set S of DNA sequences and an integer k, find an
optimal cover for S of order k.

In addressing combinatorial problems, we seek effi-
cient (i.e., polynomial-time) algorithms. Unfortunately,
we can show that the OPC problem is N'P-complete,
which serves as strong evidence of its intractability, and
justifies the use of heuristic solutions (as opposed to
exact ones) [6]. We establish the intractability of the
OPC problem by transforming it to the well-known N P-

complete minimum set cover (MSC) problem, which is
defined as follows: given a collection M of subsets of a
finite set 7', find in M a minimum-size cover for T (i.e.,
find a cover M’ C M with minimum |[M’| such that
UM’ =1T). Our reduction of MSC to OPC is based on
establishing a one-to-one correspondence between the
subsets in M and the maximal string subgroups over S,
using unique substrings to encode subset membership
of the various elements of 7. The full details of this
transformation may be found in [14], and are omitted
here for brevity.

4 Exact Branch-and-Bound Algorithm

In this section we outline a branch-and-bound ex-
act algorithm for the OPC problem (the next section
will outline a provably-good and more efficient heuris-
tic). Since we can transform the OPC problem to the
MSC problem, we are able to apply techniques for the
MSC problem in order to solve the OPC problem. In
particular, given an instance of the OPC problem with
sequence set S and order k, for each string s; € S we
find all length-k substrings s, and for each one of these
s} we form the maximal string subgroup in S associated
with s}; these become the subsets of our corresponding
MSC instance. This implies that a good solution to the
resulting MSC instance would constitute a good solution
to the original OPC instance. With this transformation
in mind, we couch the rest of our discussion using the
terminology of the minimum set cover problem.

One straightforward scheme to solve the OPC prob-
lem optimally is to exhaustively enumerate all 2/
subset combinations, and select the one containing the
smallest number of subsets that covers 7. This algo-
rithm considers all possible solutions, and is therefore
guaranteed to find the optimal one; however, this algo-
rithm runs in time exponential in the number of subsets
M. We can improve the performance of the exhaustive
algorithm in practice by eliminating large portions of
the search space using a branch-and-bound technique.
In particular, we use a tree-structured search scheme
in which we keep information about partial covers dur-
ing our search, so that we may be able to recognize
certain partial covers that cannot possibly lead to so-
lutions better than the best solution seen so far. Us-
ing this information, we prune the search tree and thus
avoid examining large portions of the search space.

The brute-force algorithm can easily be modified to
incorporate a branch-and-bound optimization. First,
we modify the overall structure of our algorithm to look
for a maximal cover containing at most h subsets. By
invoking this modified algorithm with all values of h,
1 < h < | M|, we still consider the entire solution space
as in the naive algorithm. However, during our search,

we keep track of the current best candidate solution and
make use of the following lemma, which enables an ef-
fective branch-and-bound strategy:

Lemma 4.1 Consider an instance < T, M,h > of
OPC, and a “partial cover” M' for T' C T (i.e.,
a collection of subsets M' C M, where M’ covers
T = |JM’'), and let the cardinality of the largest un-
used subset in M be b = max |M;|. Then M’ can

not be “extended” by m additional subsets into a cover
for T of size |IM'| + m, unless |T'|+m-b > |T|.

Proof: (omitted for brevity)

Based on this lemma, we can avoid trying to aug-
ment partial covers if there are no remaining untried
subsets that are large enough to yield a complete cover
competitive with the best cover seen so far during the
search. This obviates the examination of large portions
of the search space, and leads to significant improve-
ments in the running times (see Figure 1 for a formal
description).

Exact Algorithm for Optimal Primer Cover
Input: Set T of sequences, a set M of subsets M; C T,
and integer h.
Output: A collection M’ C M, |M'| = &,
such that | U M| is maximum.
1. Procedure Optimal_Algorithm (T, M, &)
2. SOI‘tM:{Ml,...,M|M|}
by non-increasing cardinality of M;
OPT « 0
Try_Primer(OPT, A, 1)
Return OPT
Procedure Try Primer (M’ left,next)
If || JM'| > |OPT| Then OPT « M’
If left= 0 Then Return
For ¢ =next to |[M| Do
If || M| +left-|M;| > [OPT|
Then Try Primer (M’ U {M;} left—1,7+ 1)

o © 0N oloew

Figure 1: An exact algorithm for the OPC problem, based
on set covering. Branch-and-bound is used to speed up the

search: out of all (lj;:l |) possible covers, the one that covers
the greatest number of elements of T is returned.

5 An Efficient Provably-Good Heuristic

Since the OPC problem is A"P-complete, efficient ex-
act algorithms are not likely to exist, and we there-
fore seek efficient heuristics that yield near-optimal so-
lutions. Based on recent results by Lund and Yan-
nakakis [13], we can prove that that no polynomial-
time approximation heuristic is likely to solve the OPC
problem to within less than a factor of 1 log|T| times
optimal in terms of solution quality. Thus, the best
polynomial-time approximation scheme that we can
hope to find would have a theoretical performance

bound of O(log|T'|) times optimal; below we show how
this theoretical optimum can actually be achieved using
a simple heuristic.

A strategy that iteratively selects the best choice
among the available choices is called greedy. Greedy al-
gorithms thus make a locally optimal choice in order to
approximate a globally optimal solution; they are often
simple and can be implemented efficiently. In particu-
lar, one possible greedy algorithm for the OPC problem
will select a subset AM; that covers the most remain-
ing uncovered elements, and iterate until all elements
are covered. This greedy heuristic for set cover is illus-
trated in Figure 2; it can be implemented within time
O(|M|log|M]), or, with slight modifications, it can be

implemented within linear time [4].

Greedy Heuristic for Optimal Primer Cover

Input: A set T of elements and a set M of subsets of T'
Output: A set M’ C M such that M’ covers T

U T

M — @

While U # @ Do
Select an M; € M maximizing |M; NU|
U—U-M,;
M — MU M;

Return M’

SO Ot L

Figure 2: A greedy heuristic for the OPC problem, based
on set covering. At each stage we select a subset M; that
covers the greatest number of the remaining uncovered el-
ements.

The performance of the greedy heuristic has been an-
alyzed extensively in the literature [9] [10] [13]. Johnson
presents an example in which the greedy heuristic yields
a cover of size of (log, |T')-OPT, where OPT is the size
of an optimal set cover [9]. Lovasz and Johnson both
present a (log, |7+ 1)-OPT upper bound on the greedy
heuristic; thus, the greedy heuristic performs as well as
can be expected, given that it matches the lower bound
on the performance of any polynomial-time approxima-
tion scheme for MSC. Although the (log, |T| + 1)-OPT
upper bound on the performance of the greedy heuristic
is already known, we present here an argument that is
considerably simpler and more concise than previously
known proofs.

Theorem 5.1 The greedy heuristic produces a cover of
size at most log, |T'| times optimal.

Proof: Let < T, M,h > be an arbitrary instance of
OPC, and define j < |M| to be the size of the opti-
mum cover. We denote by N; the number of elements
that remain uncovered after ¢ iterations of the greedy
heuristic for OPC, with Ny = |T|. Now focus on some
iteration of the greedy algorithm, where j/ < j of the
subsets contain uncovered elements.

Observe that at least one of the subsets in the op-
timal cover must have size at least N;/j'. Since the
greedy heuristic selects the subset of greatest size, at
most N; — N;/j' elements will be left uncovered af-
ter an additional greedy iteration step. Thus, N;41 <
Ni = Ni/j' = 54 - N;. But j < j implies 151 < 11,
which combined with the previous inequality yields
Niy1 < J];l - N;. Thus, given N; uncovered elements
with an optimal cover of size j, an additional single it-
eration of the greedy heuristic will leave N;41 <]];1 - N;

elements uncovered, and it follows that N; < (]J;l)Z -Np.

Consider Nj g |7|, the number of elements that
remain uncovered after the greedy heuristic selects
Jj - log, |T'| subsets. We know that Njoe 7| < [T -
(L)t Tl = [T - (1 — 1)itegc Tl Using the well
known fact from calculus that (1 —]l)] < %, we see that
Njiog, 17 < |T| - (L)°8ITl = 1. Thus, Njieg 7| < 1,
which means that after j -log, |T'| greedy iterations, all
elements of 7" will be covered. It follows that the greedy
heuristic produces a cover of size at most log, || times
optimal. m

6 The Weighted OPC Problem

The discussion thus far has been restricted to address
the problem of minimizing the cardinality of the cover
- the number of primers that are required to amplify
from a set of DNA sequences. Thus, the algorithms in
Sections 4 and 5 strive to minimize the number of string
subgroups. In practice, however, the requirements for
the length of a PCR primer (15 nucleotides) virtually
ensure that a reasonable number of primers (e.g. 5-
8) cannot be found that match exactly to 20 or more
members of a diverse gene family. Since we wish to
identify new members of a family by finding from known
sequences a modest number of primers, we consider how
to construct inexact primers.

One method is to produce degenerate oligonucleotide
primers. The machines that synthesize primers can be
programmed to incorporate 2, 3, or 4 nucleotides in a
single polymerization step, thus, it is possible to con-
struct a primer that is actually a mixture of many dif-
ferent sequences. The disadvantage of this approach
is that the concentration of each individual sequence
is reduced and the mixture of primers may no longer
be specific for the gene family of interest. Alterna-
tively, one can construct primers that do not match
each sequence exactly, but match all of the members
of a set of sequences with only one or two mismatches.
In general, because of the biochemistry of the PCR re-
action, primers must have an exact match of about 5
nucleotides at one end of the primer; degeneracies or
mismatches are then allowed in the remainder of the

primer molecule. Thus primer selection becomes the
problem of finding an optimal primer covering of order
5, and then a weighted covering, where the weighting
incorporates values for degeneracies or mismatches, for
the 10 adjacent nucleotides.

With this in mind, we introduce a cost function W
that assigns a nonnegative weight to each primer u; and
its string subgroup S;. The cover weight is inversely pro-
portional to the cover “quality”: a cover with low weight
is considered superior to a cover with higher weight. We
define the optimal cover in this new weighted version to
be a cover with minimum total weight. The weighted
version of the OPC (WOPC) problem may be formally

stated as follows:

Weighted Optimal Primer Cover (WOPC) Prob-
lem: Given a finite set S of DNA sequences, a positive
integer k, and a nonnegative cost function that assigns a
weight to each string group S; and its associated primer
ug, find a cover C for S of order k, which minimizes the
total weight Z W(S;, w;).

S;€eC

Given that the OPC problem is A"P-complete, it is not
surprising that the more general WOPC is also NP-
complete. This is established by setting all the subset
costs in the weighted version to 1, which will guarantee
that the weight of a cover will be equal to its size.

We next consider a weighting scheme that is tailored
specifically to the primers selection problem in biol-
ogy. To permit inexact matching, we need to develop a
weighting scheme that quantifies the “accuracy” of the
matches between primers and sequences. Toward this
end, we make the cost function W depend on weight
contributions from inexact matches between the primer
u and the individual strings s; € S’, denoted by w(s;, u),
so that W (S u) = Z w(s;,u). Given a primer u

s;€S!
and a string s;, we thus set w(s;, u) to the number of
positions in which s; differs from u. For example, if
u = abbab and s; = ababb, w(sy,u) = 2, since s; differs
from u in positions 3 and 4.

An exact solution to WOPC can clearly be obtained
by performing an exhaustive search of all subset com-
binations. As we did in Section 4, we can decrease the
computation time of this exponential algorithm by re-
sorting to branch-and-bound techniques: keeping track
of the weights of partial solutions will enable the prun-
ing of numerous branches of the search tree.

Given the analysis in Section b of the greedy heuristic
for the OPC problem, it is not surprising that a greedy
heuristic for the WOPC problem also has a worst-case
performance bound of (log, |[T'|4+ 1)-OPT. The only dif-

ference between the unweighted greedy heuristic (from
Figure 2) and the weighted variant of the heuristic lies
in the selection criteria. At each step, we now select
the subset that covers the maximum number of yet-
uncovered elements in 7" at the lowest cost per element
(i.e. we select the subset M; for which w(M;)/|M;| is
minimum?). The extension of the unweighted approxi-
mation algorithm for OPC to a weighted approximation
algorithm is straightforward.

Although the weighted version of OPC is more gen-
eral than the unweighted version, the following trivial
solution must be avoided: for each string s; € S, con-
sider an exact-match primer being the string itself, and
thus we obtain a trivial solution with |S| string sub-
groups having total weight 0. Although under our for-
mulation above this solution would be considered “op-
timal” (since it has 0 weight), this is not particularly
useful. It would therefore be interesting to pursue an al-
gorithm that simultaneously minimizes both the weight
and the number of string subgroups in a cover. Un-
fortunately, we can show that there does not exist an
algorithm that can simultaneously minimize both the
weight and cardinality of a cover with provable non-
trivial bounds; this is proved by exhibiting an instance
of WOPC where any cover will either have the worst
possible weight or else the worst possible cardinality
[14].

Despite this negative result, in practice we can nev-
ertheless still construct algorithms that will simultane-
ously optimize both cover size and weight, and indeed
even achieve a smooth tradeoff between these two ob-
jectives for typical instances (this does not contradict
our result that no simultaneous theoretical performance
bounds can be guaranteed in the worst case). For exam-
ple, we can easily construct a new cost function W’ that
considers both the cardinality and weight of a string
subgroup S; by setting W'(S;,u;) = t « W(S;,u;) +
(1 —t) * K, for some constant K and a real param-
eter 0 < t < 1. If we set ¢t = 0, this cost function
will consider only cardinality, while setting ¢ = 1 will
make the cost function consider weight only. As ¢ varies
in the interval [0, 1], a reasonably smooth tradeoff will
be observed in practice, as we show in Section 7 (i.e.,
this algorithm simultaneously minimizes both cardinal-
ity and weight empirically, but not within any provable
simultaneous bounds).

7 Experimental Results

We implemented the exact algorithm and the approx-
imation algorithms discussed above using the C pro-

2This weighting criterion and its performance with respect to
the weighted MSC problem are discussed in [2]; a heuristic for the
unweighted MSC problem is analyzed in [3].

gramming language in the UNIX environment (code is
available from the authors upon request). In this sec-
tion we compare the performance and running-times of
three algorithms: the efficient branch-and-bound op-
timal (BBOPT) algorithm (see Figure 1), the greedy
(GREEDY1) heuristic (see Figure 2), and a greedy vari-
ant (GREEDY2) that differs from GREEDY1 in that
it selects, at each iteration, the pair of subsets that to-
gether constitute the best choice. These algorithms were
implemented for both the weighted and the unweighted
cases. We also implemented the scheme mentioned in
Section 6 that simultaneously minimizes both cardinal-
ity and weight.

We evaluated the performance of these algorithms on
biological data consisting of 56 DNA sequences, each 75
nucleotides long, from one of the transmembrane do-
mains (TM3) from 56 G-protein coupled receptors [7].
We have also created 30 random permutations of the
codons (i.e., 3-base triplet substrings) of each sequence
of the data, and tested our method on all of the resulting
instances. For each input instance, both GREEDY1 and
GREEDY?2 executed within a few milliseconds, while
BBOPT required anywhere from an hour to several
days, dependent upon the size of the optimal cover.

Both GREEDY1 and GREEDY?2 produced an opti-
mal cover for 21 out of the 30 random permutations,
and for the remaining permutations the solutions pro-
duced by GREEDY1 and GREEDY?2 are at most 1
primer off of optimal. We conclude that the heuris-
tics are thus quite effective in primer number minimiza-
tion. For the unweighted case GREEDY?2 often did not
perform as well as GREEDY1, so the additional com-
plexity of GREEDY?2 is not justified. In the weighted
case, GREEDY2 does outperform GREEDY1 on many
instances.

Though we saw in Section 6 that it is impossible to
achieve provably-good simultaneous bounds on both the
cardinality and weight of a cover, in practice we can
still design algorithms which exhibit a smooth trade-
off between these two objectives. We implemented a
greedy heuristic with objective function W'(u;, M;) =
t* W(us, M;) + (1 —t) » K mentioned in Section 6 for
various values of ¢ in the interval [0, 1]. The results are
presented in Figure 3. Each data point represents the
average values over the 30 runs on the random permu-
tation for selected values of t. As expected, we observe
a smooth tradeoff between cover cardinality and weight.

8 Conclusions and Future Directions

We investigated the problem of minimizing the num-
ber of primers in polymerase chain reaction experi-
ments. We proved that minimizing the number of
primers necessary is intractable, as is approximating

550 4

500 +

300 T T T
6 8 10 12

cardinality

Figure 3. Average cardinality and weight over 30 data
sets using GREEDY1 in a simultaneous optimization of
both weight and cardinality. Different parameters are
used in the cost function to achieve a smooth tradeoff be-
tween the two objectives (e.g., the two points (7,430) and
(11,315) indicate that improved cardinality is achieved at
the expense of higher cover weight).

optimal solutions to within a constant factor. On the
positive side, we gave a practical branch-and-bound ex-
act algorithm, and an efficient approximation scheme
for primer number minimization. We proved that our
heuristic is guaranteed to produce solutions with cost
no worse than a logarithmic factor off of the optimal
cost, and that this is the best possible within poly-
nomial time. Finally, we analyzed a weighted variant,
where both the number of primers as well as the sum of
their “costs” are to be optimized simultaneously. Our
algorithms are easy to implement and produce modest
numbers of primers on biological data.

For the approach to work even more effectively on
biological data, more sophisticated weighting schemes
are required. Future research directions include: (1) in-
vestigating alternative heuristics for both the weighted
and the unweighted versions of the OPC problem; (2)
experimenting with various weighting schemes and cri-
teria for primer selection; and (3) exploring additional
heuristics for simultaneous tradeoffs between subgroup
cardinality and weight.

References
[1] N. ArNHEIM, H. L1, aND X. Cul, PCR Analysis
of DNA Sequences in Single Cells: Single Sperm

Gene Mapping and Genetic Disease Diagnosis, Ge-
nomics, 8 (1990), pp. 415-419.

[2]

R. BAR-YEHUDA AND S. EVEN, A Linear-Time
Approzimation Algorithm for the Weighted Vertex
Cover Problem, J. Algorithms, 2 (1981), pp. 199-
203.

V. CHVATAL, A Greedy Heuristic for the Set-
Covering Problem, Mathematics of Operations Re-
search, 4 (1972), pp. 233-235.

T. H. CorMEN, C. E. LEISERSON, AND
R. RIVEST, Introduction to Algorithms, MIT Press,
1990.

H. A. ErricH, D. GELFAND, AND J. J. SNINSKY,
Recent Advances in the Polymerase Chain Reac-

tion, Science, 252 (1991), pp. 1643-1651.

M. R. GAREY aAND D. S. JoHNSON, Comput-
ers and Intractability: a Guide to the Theory of
NP Completeness, W. H. Freeman, San Francisco,

1979.

J. K. Harrison, W. R. PEARrRsoN, aND K. R.
LyNcH, Molecular Characterization of Alpha-1 and
Alpha-2 Adrenoceptors, Trends Pharm. Sci., 12
(1991), pp. 62-67.

L. HicLier AND P. GREEN, OSP: a Computer
Program for Choosing PCR and DNA Sequencing
Primers, PCR Methods and Applications, 1 (1991),
pp. 124-128.

D. S. JOHNSON, On the Ratio of Optimal Integral
and Fractional Covers, J. Comput. System Sci., 9
(1974), pp. 256-278.

L. Lovasz, On the Ratio of Optimal Integral
and Fractional Covers, Discrete Mathematics, 13

(1975), pp. 383-390.

T. Lowe, J. SHAREFKIN, S. Q. YANG, AND
C. W. DIEFFENBACH, A Computer Program for
Selection of Oligonucleotide Primers for Poly-
merase Chain Reactions, Nuc. Acids Res., 18

(1990), pp. 1757-1761.

K. Lucas, M. BuscH, S. MOSSINGER, AND J. A.
THOMPSON, An Improved Microcomputer Pro-
gram for Finding Gene- or Gene Family-Specific
Oligonucleotides Suitable as Primers for Poly-
merase Chain Reactions or as Probes, Comp. Appl.

Biosci., 7 (1991), pp. 525-9.

C. LunD AND M. YANNAKAKIS, On the Hardness
of Approrimating Minimization Problems, Proc.
ACM Symp. the Theory of Computing, 25 (1993),
pp- 286-293.

G. Rosins, D. E. WREGE, T. ZHANG, AND
W. R. PEARSON, On the Primer Selection Problem
in Polymerase Chain Reaction Ezperiments, Tech.
Rep. CS-93-68, Department of Computer Science,
University of Virginia, November 1993.

