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Abstract

In very deep-submicron VLSI, manufacturing steps involving chemical-mechanical polishing
(CMP) have varying e�ects on device and interconnect features, depending on local characteris-
tics of the layout. To reduce manufacturing variation due to CMP and to improve performance
predictability and yield, layout must be made uniform with respect to certain density criteria, by
inserting \�ll" geometries into the layout. To date, only foundries and special mask data process-
ing tools perform layout post-processing for density control. In the future, better convergence of
performance veri�cation ows will depend on such layout manipulations being embedded within
the layout synthesis (place-and-route) ow. In this paper, we give the �rst realistic formulation of
the �lling problem that arises in layout optimization for manufacturability. Our formulation seeks
to add features to a given process layer, such that (i) feature area densities satisfy prescribed upper
and lower bounds in all windows of given size, and (ii) the maximum variation of such densities
over all possible window positions in the layout is minimized. We present e�cient algorithms for
density analysis, notably a multilevel approach that a�ords user-tunable accuracy. We also develop
exact solutions to the problem of �ll synthesis, based on a linear programming approach. These
include an LP formulation for the �xed-dissection regime (where density bounds are imposed on a
predetermined set of in the layout) and an LP formulation that is automatically generated by our
multilevel density analysis. We briey review criteria for �ll pattern synthesis, and the paper then
concludes with computational results and directions for future research.

Keywords: Layout veri�cation, manufacturability, chemical-mechanical polishing (CMP), density
control, metal �ll, physical design, yield enhancement

1 Introduction

As CMOS technology advances according to the Semiconductor Industry Association National Tech-
nology Roadmap for Semiconductors [24] and moves into the 180nm generation and beyond, foundry
amortization becomes a dominant business concern, and manufacturing cost increasingly drives design
[17]. To maximize yield, process engineers must achieve predictability and uniformity of manufactured
device and interconnect attributes, e.g., dopant concentrations, channel lengths, interconnect dimen-
sions, contact shapes and parasitics, and interlayer dielectric thicknesses. A total variability budget for
the design is distributed among such attributes. In very deep submicron technologies, large process
windows and uniform manufacturing is di�cult [5] [10] [22] [15] [17] [7], and the manufacturing process
has an increasingly constraining e�ect on physical layout design and veri�cation. Many physical de-
sign methods have been proposed to address various manufacturing issues such as registration errors,
photolithographic random e�ects, etc.; see such works as [16] [7] for reviews.

�Research at UCLA was supported by a grant from Cadence Design Systems, Inc. Professor Robins was supported
by a Packard Foundation Fellowship and by NSF Young Investigator Award MIP-9457412. This paper has appeared
in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 18, No. 4, April 1999, pp.
445-462.
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In this paper, we address the problem of controlling the manufacturing variation that is due to
chemical-mechanical polishing (CMP) [15] [19] [29]. CMP is the procedure by which wafers are polished
using a rotating pad and slurry to achieve the planarized surfaces on which succeeding processing steps
can build. The key observations are:

� The polishing environment involves large pad downforce1 and a signi�cant variability due to pad
wear. Hence, control of polish depth (i.e., �nal thickness of the layer being polished) is extremely
di�cult.

� The elasticity of the polishing pad compounds the variability problem. Notably, in oxide polishing
of interlayer dielectrics (oxide CMP), the pad conforms to local topography and overpolishes
empty oxide areas that have no underlying metal features (a phenomenon called dishing); on the
other hand, areas with dense underlying metal features are underpolished.

� A large fraction of the die's variability budget is used up by the oxide thickness variation [8] [26].
Interlayer dielectric thickness variation of 4000 angstroms is common, and this can severely a�ect
estimates of electrical performance [13] [26] [27].

� The problem of CMP variation is rapidly worsening today, as industry moves to shallow-trench
isolation (STI) sub-0:25� processes, where CMP is used to planarize glass [6] [18] [25]. For such
processes, as well as for new inlaid-metal (e.g., damascene copper) processes [4], CMP variation
must be even more tightly controlled.

Recent work in the �eld of statistical metrology shows that fundamentally, CMP variation is con-
trolled if the local feature density is controlled [20] [28]. Figure 1 illustrates the local dependency
of oxide thickness on feature density, which is roughly monotone. By reducing the variation of local
feature density over the die, the variation of oxide thickness can be reduced.
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Figure 1: Relationship between oxide thickness and local feature density.

The de�nition of \local" is determined by the length scale at which feature density impacts oxide
thickness, and corresponds to the \window size" within which feature density must be controlled. For
oxide CMP, this length scale has been estimated to be on the order of 1-3mm, depending on CMP pad
material, slurry composition, etc. [9] [20] [28].

To minimize the impact of CMP variation on device yield, foundries have imposed density rules
for features on active and metal layers, typically starting with mature 0.35�m process generations.

1Typical polish downforces in oxide CMP range from 4 to 10 psi, depending on slurry / oxidizer concentration and
process considerations. For 200mm substrates, this results in a total wafer downforce of up to 500 pounds [4].
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The purpose of the density rules is, of course, to make the layout more uniform. Many process layers,
including di�usion and thin-ox, can have associated density rules. As examples, in 0.35�m and below,
one major foundry requires overall feature area density on di�usion layers to be between 0.25 and 0.40,
and overall density on any metal layer to be between 0.40 and 0.70; another major foundry requires
overall metal layer area density to be at least 0.35. Density rules and layout post-processing approaches
may di�er in various contexts (e.g., ASIC vs. high-end microprocessor design) due to tradeo�s between
device performance and predictability [1] [30].

To satisfy density rules, a post-processing step adds �ll geometries into the original layout. Tradi-
tionally, only foundries or specialized mask data processing tools have performed the post-processing
of layout needed to achieve this uniformity. Today, with more customer-owned tool ows, and with
the need for early and accurate performance veri�cation, physical veri�cation tools at the back end of
the IC design ow are becoming aware of density-driven layout rules.2

We observe that the state of the art in density control for CMP leaves much to be desired.

� Many foundry density rules still constrain only the average overall feature density on a given
layer; the issue of local variation in feature density is ignored.

� Current approaches to analysis of layout density do not actually �nd the true extremal window
densities in the layout. Rather, they �nd the extremal window densities over a �xed set of
window positions using the \�xed r-dissection" approach that we discuss below. This can result
in substantial error.

� Current methods for inserting �ll geometries into the layout do not actually minimize the max-
imum variation in layout density between windows of the layout. Rather, simple Boolean layer
processing techniques are applied to insert �ll patterns into any empty region that is su�ciently
large.

These weaknesses can perhaps be attributed to the genealogy of today's software tools for density
control. Such tools are typically evolved from physical veri�cation tools and mask processing tools,
where the mindset is chiey concerned with veri�cation rather than data modi�cation, with local rules
rather than global rules, and with Boolean rules rather than context-dependent rules. By contrast, our
work addresses all of the above weaknesses: (i) our formulation of the �lling problem seeks to minimize
density variation over all possible windows, (ii) we develop a multilevel density analysis approach
that is more accurate and faster than the \�xed-dissection" approach, and (iii) we develop a linear
programming approach that considers and optimizes globally the amounts of �ll to be added into each
region of the layout.

Notation and Problem Formulation

The following notation and de�nitions are used.

� The input is a layout consisting of rectangular geometries, with all sides having length a multiple
of c (the minimum feature width or spacing).3 The value of c is typically 25 to 50 times the
manufacturing unit.

2Note that without an accurate estimate of the �lling that will be added later at the foundry, all the RC extraction,
delay calculation, timing, noise and reliability analyses done during physical design performance veri�cation can be highly
suspect. The Appendix presents analyses showing the extent to which metal �lling can a�ect the results of capacitance
extraction and performance analysis. A broken design ow can result if the e�ects of �lling are not properly modeled in
earlier design stages.

3Without loss of generality, we will assume that rectilinear geometries have been fractured into, say, horizontally
maximal rectangles. It is also possible to generalize these analyses and algorithms from rectangles to trapezoids. Standard
industry tools, such as Cadence Dracula, will fracture geometries into horizontal trapezoids [3].
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� n � side of the layout region. If the layout region is the entire die, n might typically be about
50; 000 � c. Note that c does not imply that n

c
is \the size of the grid": the only grid that is

guaranteed is the manufacturing grid, which is typically 25 to 50 times smaller than c.

� w � �xed window size. The window is the moving square area over which the layout density
rules apply. A typical window size would be w = 10; 000 � c.

� k � the complexity of the original layout, i.e., the total number of rectangles in the input.

� U � area (or perimeter) density upper bound4, expressed as a real number 0 < U < 1. Each
w � w region of the layout must contain total area of features � U � w2.

� L � area (or perimeter) density lower bound, expressed as a real number 0 < L < U < 1. Each
w � w region of the layout must contain total area of features � L � w2.

� B � bu�er distance. Fill geometries cannot be introduced within distance B of any layout feature.

� slack(W ) � slack of a given w�w window W , i.e. the maximum amount of �ll area that can be
introduced into W .5

� An extremal-density window is a window with either maximum density or minimum density over
all windows in the layout. If an algorithm applies to either maximum-density or minimum-density
analysis, we generically refer to extremal-density analysis.

Given the parameters above, we de�ne the Filling Problem as follows:6

The Filling Problem. Given a design rule-correct layout geometry of k disjoint
rectilinear rectangles in an n�n layout region, minimum feature size c, window size
w < n, bu�er distance B, and area (or perimeter) density lower bound L and upper
bound U , add �ll geometries to create a �lled layout that satis�es the following
conditions:

(1) circuit function and design rule-correctness are preserved;

(2) no �ll geometry is within distance B of any layout feature;

(3) no �ll is added into any window that has density � U in the original layout;

(4) for any window that has density < U in the original layout, the �lled layout
density is � L and � U ; and

(5) the minimum window density in the �lled layout is maximized.

Condition (5) corresponds to what we call the Min-Variation Formulation, since it minimizes
the di�erence between minimum and maximum window density in the �lled layout. Condition (3)
implies that, without loss of generality, no window in the original layout has density > U (otherwise,
such a window would have its contents �xed, so that it could not be changed by the �lling process).

4It turns out that most of the results and algorithms of this paper easily apply to either the area density or perimeter
density regimes. Thus, we will generically indicate both the area and perimeter density upper bounds with U , and lower
bounds with L. In practice, the maximum density is attained in memory cores, and the bound U is set with respect to
this maximum density. To our understanding, no foundry yet imposes both area density and perimeter density bounds
simultaneously on a given layer [30]. However, such simultaneous constraints may be required in the future (e.g., for
reverse-active area masks), and we analyze �ll pattern synthesis for such a situation in Section 4.

5The value of slack(W ) will depend on the maximum possible �ll pattern density. That is, total empty area outside
the bu�er distance B from any feature should be scaled by the maximum possible �ll density to yield the slack of the
window.

6 Note that this is not merely a satis�cing formulation where we seek only a feasible solution, but rather an optimization

formulation where we seek a best solution, as dictated by the particular underlying VLSI technology.
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Organization

Our paper is organized to reect three major functions in density control for CMP: (1) window density
analysis, (2) determining the optimal �ll amount to be inserted in various regions of the layout, and
(3) actual insertion of the appropriate �ll pattern.

Section 2 describes several ways of �nding extremal window density within the layout. We �rst
describe the �xed-dissection approach, where a dissection partitions the layout into disjoint windows,
and windows of only a �nite number of (overlapping) �xed dissections are taken into account. To
our understanding, this is the type of analysis a�orded by today's physical veri�cation tools. We
give a tight analysis of the error inherent in �xed-dissection extremal-density analysis, i.e., it yields
only an approximation of the global extremal window density. We then describe and analyze an exact
method for �nding the extremal global window density. Finally, we develop a multilevel density analysis
approach with user-tunable accuracy; this method is more accurate, and faster, than the �xed-dissection
approach.

Section 3 gives new linear programming based methods for determining the optimal �ll area to be
inserted in the layout. We �rst address the �xed-dissection regime. We then incorporate results of
the multilevel density analysis into a variant LP formulation. Finally, an LP formulation is proposed
which minimizes an estimate of global window density variation.

Section 4 describes several approaches to �lling pattern synthesis. For example, we note the possi-
bilities of rectangle-based and basket-weave patterns on given pitches, explore the regime where both
area and perimeter density bounds must be satis�ed, and suggest appropriate �lling patterns for such
situations. Section 5 describes implementation and computational experience, and Section 6 concludes
with directions for future research.

2 Extremal Density Analysis

We �rst develop algorithms for density analysis (with respect to either area or perimeter). Given a
�xed layout and window size, we seek to determine a maximum-density and a minimum-density window
(i.e., the algorithms will return extremal-density window(s)).7 The density analysis problem is stated
as follows:

Extremal-Density Window Analysis: Given a �xed window size w and a set
of k disjoint rectangles in an n � n layout region, �nd an extremal-density w � w
window in the layout.

This section presents a series of algorithms for the Extremal-Density Window Analysis problem.
We �rst consider a �xed-dissection approach when windows from several �xed dissections of the layout
are taken into account. To our understanding, this approximate method is the type of analysis provided
by commercial veri�cation tools. Several algorithms are then proposed for optimal solution (i.e., over
all possible windows) of the Extremal-Density Window Analysis problem.

2.1 Fixed-Dissection Density Analyses

In practice, feature density bounds are enforced only within a �xed set of w�w windows corresponding
to a dissection of the layout region into ( n

w
)2 non-overlapping w � w windows. Since bounding the

density in windows of a dissection can incur error (i.e., other windows not in the dissection could
violate the density bound), a common practice is to enforce density bounds in r2 dissections, where r

7These density analysis methods can, if desired, report all violations of density bounds in the layout within the same
time complexity needed to report a single extremal-density window.
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determines the \phase shift" w=r by which the dissections are o�set from each other. In other words,
density bounds are enforced only for windows from the �xed r-dissection de�ned below.

De�nition: A �xed r-dissection of the layout is the set of w�w windows having bottom-left corners
at points (i � w

r
; j � w

r
), for i; j = 0; 1; : : : ; r( n

w
� 1), where r is an integer divisor of w.

tile

windows

n

w w/r

X

Y

Figure 2: The layout is partitioned by r2 (r = 4) distinct dissections, each dis-
section having window size w � w, into nr

w
� nr

w
tiles. Each w � w window (dark)

consists of r2 tiles. A pair of windows from di�erent dissections may overlap.

A �xed r-dissection divides the layout into nr
w
� nr

w
tiles, each of size w

r
� w

r
(see Figure 2). In other

words, each w�w window in a �xed r-dissection consists of r2 non-overlapping tiles. For instance, the
bottom-left w�w-window corresponds to an r�r grid of tiles whose origins are at grid node coordinates
(iw

r
; j w

r
), i; j = 0; : : : ; r. Only, nodes (iw

r
; j w

r
), i; j = 0; : : : ; r � 1 determine di�erent dissections e.g.,

the node (w
r
; rw

r
) determines the same dissection as the node (0; rw

r
) (see Figure 2). In practice, a

density upper bound for arbitrarily located windows is sought by enforcing density upper bounds on
all windows in a �xed r-dissection. 8

Unfortunately, it turns out that a �xed-dissection scheme for small r cannot guarantee any nontrivial
density bounds over all w�w windows (as opposed to only the �xed tiles in the dissection). For r = 1,
even if the area density of each tile in the �xed r-dissection is guaranteed to be at least 75%, a

8To the best of our knowledge, commercial tools (Avant! Hercules, Mentor Calibre, Cadence Dracula/Vampire) provide
only layout density checking with respect to �xed r-dissections. E.g., the Cadence Dracula COVERAGE command [3]
allows checking of feature area density upper and lower bounds in w�w windows that occur at a �xed o�set from each
other (e.g., an o�set of 100�m with w = 500�m corresponds to r = 5).
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completely empty w � w tile can exist. Conversely, if the area density of each window in the �xed
r-dissection is guaranteed to be at most 25%, a completely full w � w window can exist.

On the other hand, we believe that the analysis of �xed r-dissections can be done much faster than
the analysis of all eligible w � w windows. First we initialize an array of n

w
� n

w
counters associated

with all of the �xed r-dissection windows, and then for each rectangle R, we increment the counters
of the windows intersecting R by the area of the intersection. In case of r > 1, the above procedure is
repeated r2 times in order to check all (r � n

w
)2 windows.

The rest of this subsection seeks ways in which density bounds for arbitrarily located windows can
be enforced by density bounds on �xed r-dissection windows. We compare two ways of applying simple
local rules to windows having bottom-left corners at points (i � w

r
; j � w

r
), i; j = 0; 1; : : : ; n

w
for some

r > 1 such that w
r
is an integer. First, we consider what happens when the upper and lower density

bounds are enforced in each individual w
r
� w

r
tile of the �xed r-dissection (Theorem 1), and then we

derive upper/lower bounds in the case when we enforce density bounds for standard w � w windows
(Theorem 2). For example, if the area density is enforced to be at least 25% (i.e. L = 0:25), then (for
r = 5) the �rst rule guarantees 16% area density while the standard method can guarantee only 6%.
The bounds from Theorems 1 and 2 can help to choose appropriate combinations of �xed r-dissections
and design rules corresponding to speci�ed area density lower/upper bounds.

Theorem 1 Suppose all w
r
� w

r
�xed r-dissection tiles with bottom-left corners at points (i � w

r
; j � w

r
),

i; j = 0; 1; : : : ; r( n
w
� 1), have area density at least L and at most U . Then the exact lower bound on

the area density of w � w windows equals

(r � 1)2

r2
� L+

4(r � 1)

r2
maxfL� 0:5; 0g+ 4

r2
maxfL� 0:75; 0g

and the exact upper bound equals

(r + 1)2

r2
� U � 4(r � 1)

r2
maxfU � 0:5; 0g � 4

r2
maxfU � 0:25; 0g

Proof: Let the bottom-left corner of a w � w window W have coordinates (a; b). Then W is cov-
ered by (r + 1)2 �xed r-dissection tiles of size w

r
� w

r
which form a square with diagonal corners

(ba=w
r
cw
r
; bb=w

r
cw
r
) and (b(a + w)=w

r
cw
r
; b(b + w)=w

r
cw
r
). In general, all these (r + 1)2 tiles can be

classi�ed into three groups: (r�1)2 tiles which are completely covered by the windowW ; 4(r�1) tiles
which intersect the boundary of W but do not contain the corners of W ; and 4 tiles each containing a
corner of W (see Figure 3(a)). Separately compute the contribution of each group to the lower bound
on area density of the window W . The �rst group contributes (r � 1)2 tiles with density at least L. If
the area density L > 0:5, then the second group contributes 4(r�1) tiles with density at least (L�0:5);
and if L > 0:75, then the third group contributes 4 tiles with density at least (L� 0:75). The total of
these contributions yields the claimed lower bound on area density.

We now compute the upper bound on �lled area in the window W . Without loss of generality, we
assume that each �xed r-dissection tile is U -�lled. Clearly, the �lled area in W cannot be more than

the total �lled area in all (r + 1)2 tiles; this is at most (r+1)2

r2
�U . We then subtract the �lled area not

covered by W that is possibly contained in tiles from the second and third groups. If U > 0:5, each
tile in the second group contains area not covered by W with the density at least U � 0:5. If U > 0:25,
each of the 4 tiles from the third group contains area not covered by W with the area density at least
U � 0:25. We thus obtain the claimed upper bound on area density.

To prove that the upper and lower bounds are tight we need to present an instance for which these
bounds hold. It is easy to check that this happens when the bottom-left corner of W is at the center
of a �xed-dissection tile.
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Figure 3: Worst-case analysis of two design rules when density bounds are enforced
(a) in all w

r
� w

r
-sized tiles of a �xed r-dissection, and (b) in all w � w-sized tiles

with bottom-left corners at points (i � w
r
; j � w

r
), i; j = 0; 1; : : : ; n

w
(this corresponds to

r2 dissections into w�w-sized windows). For the �rst rule (a), the windowW with
dashed boundary contains (r � 1)2 tiles with thick boundary (the �rst group) and
the highlighted area (the second and third groups) can be completely or partially
�lled. For the second rule (b), the window W with dashed boundary can contain a
square region R (the empty area in the center of W ) that overlaps with any �xed r-
dissection w�w window F (square with thick boundary) having largest intersection
with W .

Theorem 2 Suppose all w � w-sized windows with bottom-left corners at points (i � w
r
; j � w

r
), for

i; j = 0; 1; : : : ; r( n
w
� 1), have area density at least L and at most U . Then any w � w window has

density at least L� 1
r
+ 1

4r2 and at most U + 1
r
� 1

4r2 , and these bounds are tight.

Proof: Let the bottom-left corner of a w � w window W have coordinates (a; b). The four �xed r-
dissection w�w windows with the bottom-left corners in the four corners of the w

r
� w

r
tile containing

(a; b) have the largest overlap with W . At least one of these four windows, say F , and the window

W overlap by a square with size at least (
r� 1

2

r
) � w2 (see Figure 3(b)). The upper density constraint

implies that the total empty area inside F is at least (1�U) �w2. Therefore, even if the region F �W

of the total area
�
1�

�
r� 1

2

r

��
� w2 is empty, the window W must still contain an empty area of size

(1� U) � w2 �
 
1�

�
r � 1

2

r

�2
!
� w2 =

 
�U +

�
1� 1

2 � r
�2
!
� w2

Therefore, even if the rest of the window W is completely �lled, the total �lled area cannot be more
than

w2 �
 
�U +

�
1� 1

2 � r
�2
!
� w2 =

�
U +

1

r
� 1

4r2

�
� w2

The proof of the lower bound is similar.

The worst case occurs when the bottom-left corner of the windowW is at the center of a w
r
� w

r
-tile.

Then the empty region R of area (U + 1� (1� 1
2�r )

2) � w2 can be placed in the center of W , and the
rest of W can be �lled. This way, all of the four �xed r-dissection windows with the largest overlap
with W have the common region R. On the other hand, any �xed r-dissection w � w window which
has smaller intersection with W can have a larger empty part outside of W (see Figure 3(b)).
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2.2 Optimal Extremal-Density Window Analysis

This subsection is devoted to optimal extremal density analysis, i.e., covering all possible w�w windows
in the layout region. We �rst present a density analysis algorithm with time complexity O(n2) that
is strictly a function of the layout size. We then develop a di�erent algorithm with time complexity
O(k2) that is strictly a function of the number of rectangles. Finally, we propose an algorithm with
even faster expected runtime. Note that the O(n2) and O(k2) time complexities are incomparable,
since k2 can sometimes be much smaller than n2 (e.g., k = 100 and n = 104) and at other times
much larger (e.g., k = 105 and n = 104). Therefore, the choice of algorithm for density analysis would
depend on the exact values of n and k, with overall time complexity of the \hybrid" approach being
O(min(k2; n2)).

2.2.1 ALG1: O(n2) Density Analysis

A simple algorithm for density analysis has time complexity O(n2).

1. Initialize an n �n boolean array B to all 0's, and then put 1's in array positions corresponding to
areas in the layout that are covered by the k rectangles. This takes time O(n2).

2. Create another n �n array S and initialize each S[i; j] to be equal to the number of 1's appearing
in the southwest quadrant of array B with respect to coordinate [i; j] (i.e., S[i; j] counts the
number of 1's in the subarray B[1::i; 1::j]). This can be done by scanning B one row at a time
from left to right, maintaining a running sum of the 1's encountered on all the rows, and storing
all these partial sums into the array S. All this preprocessing requires a total of O(n2) time.

3. After this preprocessing phase, the density of an arbitrary-sizew�h rectangle with its bottom-left
corner located at an arbitrary position (i; j) can be found in constant time, as follows:

density(w � h rectangle at (i; j)) = S[i+ w; j + h]� S[i+ w; j]� S[i; j + h] + S[i; j]

This formula uses the principle of inclusion-exclusion: the fourth term is added in the formula
above since it is implicitly subtracted twice by the middle two terms. The technique is analogous
to e�cient range tally queries in computational geometry [21].

The density of all O(n2) windows of �xed size w�w can be determined in O(1) time per window, i.e.,
a total of O(n2) time.

2.2.2 Properties of Extremal-Density Windows

To obtain an algorithm with time complexity that is strictly a function of k (as opposed to a function
of n), we �rst prove a result that is analogous to Hanan's Theorem for the rectilinear Steiner minimal
tree problem [12]. The Hanan grid over a given layout is formed by creating vertical and horizontal
lines that pass through all the sides of all the rectangles (Figure 4).9

Theorem 3 Given a layout of k rectilinearly-oriented rectangles in the n� n grid and a �xed window
size w, there exists a w�w maximum-density window having at least one of its corners at a vertex of
the Hanan grid.

9Here and elsewhere in what follows we state the results for maximum-density windows, explaining the extensions to
minimum-density windows only if there is a possibility of confusion.
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Figure 4: A layout (left) and its corresponding Hanan grid (right).

Proof: If neither the left nor right edge of a maximum-density window W touches the boundary of
any of the k rectangles, then we can continuously slideW horizontally either to the left or to the right
without decreasing its density, until it touches one of the rectangles on either its left or right side (see
Figure 5). Similarly, if neither the top nor the bottom edge of W touches the boundary of any of the
rectangles, then W can be slid vertically either up or down until it touches one of the rectangles with
either its top or bottom edge, without decreasing W 's density.

Note that the same arguments hold even if some of the rectangles intersect W 's boundary before
the sliding operations commence. Since we assumed that W was a maximum-density window, W
must remain a maximum-density window after these two sliding operations have been performed. It
follows that there exists a maximum-density window (i.e., W in its new position after the two sliding
operations) that abuts one or more rectangles of the layout on two of its adjacent sides. Thus, there
exists a maximum-density window with one of its corners coinciding with a Hanan grid point.

(a) (b) (c)

Figure 5: A maximum-density window may be slid horizontally (a) until it touches
one of the rectangles; the window may then be slid vertically (b) until it touches
one of the rectangles. After the sliding operations have been performed, the window
will abut one or more rectangles of the layout on two adjacent sides (c).

Theorem 3 actually establishes a stronger result than coinciding a vertex of the maximum window
with a Hanan grid point: it shows that there always exists a maximum-density window that touches
rectangles of the layout with at least two of its sides (these sides might touch the same layout rectangle).

10



This observation helps us to design an e�cient algorithm for density analysis, since it limits the feasible
locations of a maximum-density window (i.e., as abutting either one or two of the layout rectangles).
The argument used to prove Theorem 3 can also be used to establish an analogous result for minimum-
density windows.

Corollary 4 Given a layout of k rectilinearly-oriented rectangles in the n�n grid and a �xed window
size w, there exists a w�w window with extremal area density that abuts layout rectangles with at least
two of its sides.

Notice that a type of geometric symmetry/duality exists here, in that layout rectangles abut the
interior of maximum-density windows, and abut the exterior of minimum-density windows. Finally, a
similar argument establishes analogous results for windows having maximum or minimum perimeter
density.

Corollary 5 Given a layout of k rectilinearly-oriented rectangles in the n�n grid and a �xed window
size w, there exists a w � w window with extremal perimeter density that abuts layout rectangles with
at least two of its sides.

2.2.3 ALG2: O(k2) Density Analysis

Recall that Theorem 3 establishes that an extremal-density window must touch rectangles of the layout
with at least two of its sides. Since there are only O(k) sides of rectangles, the extremal density analysis
can be achieved by (i) de�ning a window for each of these O(k) rectangle sides, and (ii) computing in
O(k) time the window's intersections with all rectangles as it slides along the rectangle side. A careful
implementation of this scheme yields an algorithm with overall worst-case time complexity of O(k2) as
follows (see Figure 7).

We preprocess the rectangles by sorting all left and right edges of the k rectangles by their x
coordinates into a single sorted list L (having up to 2k elements), within O(k log k) time. In the main
loop (line (2) in Figure 7), for each \pivot" rectangle R, we create a w � w window W that abuts R
on the top and right (i.e., so that their top-right corners coincide - see Figure 6(a)). We then compute
the density of W in O(k) time by intersectingW with all k rectangles of the layout (line (3) in Figure
7).

In the inner loop (4), we slide the windowW horizontally to the right (Figure 6(a-f)) until it leaves
R, updating the density of W each time its left or right edge intersects an edge in the list L. Note
that the perimeter and area density of the windowW increase or decrease monotonically between such
intersection events.10 We update the value of area density, or the two values of perimeter density, forW
in constant time per intersection event by keeping track of the total \cross section" length of the current
intersections between the rectangles and the left and right edges of W . We add new intersections that
enter the windowW as it advances horizontally, and we subtract from the total the areas of rectangles
that exit the window W on the left during the sliding process. Finally, we repeat lines 3 through 5
of algorithm ALG3 (Figure 7) for all other O(1) starting orientations of W with respect to the pivot
rectangle R (Figure 6(g-i)). The overall time complexity of this algorithm is dominated by the O(k)
scans which require O(k) time each, to a total of O(k2) time.

2.2.4 ALG3: Fast Expected Time Density Analysis

Charging O(k) time for each scan in the ALG2 analysis is pessimistic, since each sliding window is
expected to intersect only a small fraction of the total number of rectangles (the window size is typically

10The area density is a continuous function and all its minima or maxima occur only at such intersections. The
perimeter density has discontinuities when a window edge crosses a vertical feature edge. Therefore, at such intersection
events we maintain both possible values of perimeter density (i.e., with and without the vertical feature edge).
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pivot

(a)

pivot

(b)

pivot

(c)

pivot

(d)

pivot

(e)

pivot

(f)

pivot

(g)

pivot

(h)

pivot

(i)

Figure 6: ALG2 starts a window abutting a pivot rectangle (a) and slides the window
to the right, stopping at each edge that intersects its perimeter (b), until the pivot
abuts the opposite side of the window, on the outside (f). Other combinations of
the pivot-window orientations are then explored (g-i). This process is repeated for
every rectangle, using each as a pivot in turn.

small compared with the overall layout area). For each pivot rectangle, it would be advantageous to
scan through only the few rectangles that actually intersect its associated sliding window (as opposed
to scanning all k rectangles).

We implement this speedup via a new �xed-dissection preprocessing step, modifying the algorithm
from Figure 7. The layout area is �rst partitioned into n

w
� n

w
squares of size w � w each. Then, for

each such square we create a list of rectangles intersecting it; doing this for all squares requires a single
pass through all rectangles. The main loop of the algorithm checks the rectangle intersections for a
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ALG2: O(k2) Density Analysis
Input: n� n layout with k rectangles
Output: all extremal-density w � w windows
(1) Sort all the left and right edges of all k rectangles by

x coordinates into a sorted list L
(2) For each \pivot" rectangle R do
(3) Find the density of a w � w window W

that abuts R on the top and right
(4) While W intersects R do
(5) Slide W to the right to the next point of intersection

with one of the edges on the list L
Record changes in density

(6) Repeat lines (3)-(5) for all other starting orientations for W
Output all extremal-density windows

Figure 7: ALG2: O(k2) density analysis.

given w�w query window W by examining four lists of rectangles (corresponding to the four squares
that together cover W ).

Theorem 6 Given k non-overlapping rectangles with positions uniformly distributed in the n�n grid,
the algorithm in Figure 7 �nds the maximum-density w�w window in time O(k �E), after applying a
�xed-dissection preprocessing phase with runtime O(k �E + ( n

w
)2+ ( n

w
)2 �E � log(( n

w
)2 �E)), where E is

the expected number of rectangles that intersect an arbitrary w � w window.

Proof: Let E be the expected number of rectangles that intersect an arbitrary w � w window, under
a uniform random distribution model. Although we will use E as an indeterminate variable here, the
actual value of E (as a function of k, w, and n) will be determined later in Theorem 7 below.

To prove the present theorem, we follow the same overall strategy as in the O(k2) algorithm de-
scribed in Section 2.2.3: for each of the k rectangles, we slide a w�w windowW over the pivot rectangle
and compute the intersections of the various rectangles with that sliding window. These sliding phases
can be performed in time linear in the number of intersecting rectangles, assuming that we can compute
this set e�ciently. The time for each one of these O(k) scanning phases is therefore dominated by the
time to obtain and scan a sorted list of the left and right coordinates of the E rectangles that are
expected to intersect each sliding window; as we will see below, this can be accomplished within time
O(E) per window, given appropriate preprocessing.

The remaining issue here is how to e�ciently �nd all rectangles that intersect a given �xed-size
window as it slides over a pivot rectangle. This is accomplished as follows.

1. Partition the layout area into n
w
� n

w
squares of size w � w each, and create and initialize an

n
w
� n

w
array corresponding to this tiling.

2. Iterate over all rectangles and mark all the tiles that intersect with each rectangle, thus creating
for each tile a list of rectangles that intersect it. Then, sort these lists and put into each array
position a pointer to the sorted list containing all rectangles that intersect with the corresponding
tile. The sum S of the lengths of all these lists is equal to the number of tiles ( n

w
)2 times the

expected number E of rectangles that intersect each tile, so S = ( n
w
)2 �E. The time to create the

preprocessed data structure is therefore the sum of the array creation time plus the total time to
sort all the lists, which brings the total to O(( n

w
)2 + S logS). The total space required by this

data structure is O(( n
w
)2 + S).
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3. Given the preprocessing above, we can �nd all rectangles that intersect a given w � (2w) query
window as follows. First, �nd all the tiles that intersect the query window: there can be at most
6 of these. Then, merge the corresponding � 6 (presorted) rectangle lists into a single sorted
list of rectangles that intersects the query window. The size of each of the sublists is O(E), and
there are O(1) of them , so the overall work involved in this step is O(E).

The overall time complexity of the algorithm is therefore the preprocessing time of O(( n
w
)2+( n

w
)2 �

E � log(( n
w
)2 �E)) plus the time to process each of the O(k) pivots and its associated list of intersected

rectangles, i.e., O(k � E), where E is the expected number of rectangles that intersect an arbitrary
w � w window.

We call this improved-preprocessing algorithm ALG3, and now show that the expected number of
rectangles that intersect a given �xed-size window is indeed quite small. We de�ne a \random rectangle"
as a rectangle uniquly determined by a pair of opposite corners chosen independently at random from
a uniform distribution.

Theorem 7 Given k random pairwise-disjoint rectangles distributed uniformly in the n � n layout
region, the expected number E of rectangles that intersect a given w � w window is bounded by E �
3k � w2

n2
+ 3.

Proof: Consider the following two types of rectangles that can intersect a given window:

1. Rectangles having at least one of their corners contained inside the window; and

2. Rectangles having none of their corners contained inside the window (yet who still intersect it).

In order to simplify the probabilistic analysis which follows, we allow overlaps to occur among the
rectangles. Note that this can only increase the expected number of rectangles that intersect a window,
because if the non-overlap constraint is enforced, rectangles which intersect a window preclude some
other rectangles from intersecting it due to the non-overlap requirement, thereby reducing the expected
number of rectangles that may intersect a given window. We analyze separately the expected number
of rectangles of each type.

Type 1: rectangles having at least one of their corners contained inside the window. The probability
that a type-1 random rectangle11 will have at least one of its corners inside a �xed w � w window is
equal to 1 minus the probablity that neither of the rectangle's two opposite corners are inside the

window, i.e., 1� (n
2
�w2

n2
)2 = 2 � w2

n2
� w4

n4
� 2 � w2

n2
. Thus the expected number of type-1 rectangles that

intersect a window is E1 � 2k � w2

n2
.

Next, we account for type-2 rectangles, i.e., those having none of their corners contained inside the
window, yet whose area still intersects the window's area. There are three subcases here:

Type 2a: rectangles of type 2 where one of the rectangle's edges intersect the perimeter of
the window (with the other edge being entirely outside the window's area). Rectangles of this can
occur at most twice per window, on opposite edges (by applying the non-overlapping constraint to
such rectangles). Thus the expected number of type-2a rectangles that intersect a window is E2a � 2.

Type 2b: rectangles of type 2 where two of the rectangle's edges intersect the perimeter of the
window. Rectangles of this type have an occurrence probability less than (w

n
)2, since both opposite

corners of the rectangle in question must independently fall inside the strip of size w�n containing the
window. Note that this is actually an over-estimate, since this probability includes rectangles inside the
w�n strip but strictly outside the window itself; however, this is not a problem since this over-estimate

11Recall that a "random rectangle" has two of its opposite corners uniformly and independently distributed in the
layout region.
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still upper-bounds the actual expectation for case 2b. Thus the expected number of type-2b rectangles
that intersect a window is E2b � k � (w

n
)2.

Type 2c: rectangles of type 2 that completely contain the window. Rectangles of this type can
occur at most once per window (since by applying the non-overlapping constraint, such a rectangle will
preclude any other rectangles from intersecting the window). Thus the expected number of type-2c
rectangles that intersect a window is E2c � 1.

Thus, the expected number E of rectangles intersecting a window of size w � w is upper-bounded by
the sum of the expectations for case 1, 2a, 2b, and 2c:

E � E1 +E2a +E2b +E2c � 2k � w
2

n2
+ 2 + k � (w

n
)2 + 1 = 3k � w

2

n2
+ 3 = O(k � w

2

n2
)

In real layouts where rectangles are disjoint, even fewer intersections are likely than indicated by the
bound above, since some intersections will preclude other intersections by delimiting large areas that
no other rectangles may occupy. By the previous two theorems, substituting E = O(k � (w

n
)2) into the

overall time complexity of O(( n
w
)2 + ( n

w
)2 �E � log(( n

w
)2 � E) + k � E) yields:

Corollary 8 Given k rectangles in the n�n layout region, the maximum-density width-w window can
be found in time O(( n

w
)2 + k log k + k2 � (w

n
)2).

Because a window cannot contain more than O(w2) rectangles, the expected time complexity of
ALG3 is also bounded by O(( n

w
)2 + k log k + k � w2). The same algorithm and expected time bounds

will hold for �nding minimum-density windows, as well as for the extremal-perimeter density criteria.

2.3 Multilevel Density Analysis

The algorithms described in the previous two subsections have two drawbacks: (i) the fast analysis in
the �xed-dissection regime may signi�cantly underestimate the maximum density among all w � w-
windows in the worst case (Theorem 1), while (ii) the optimal density analysis is too slow when the
number of rectangles is large (Corollary 8). We now develop a new multilevel approach that attempts
to overcome both drawbacks simultaneously. It is based on the following simple fact (see Fig. 8).

Lemma 9 Given a �xed r-dissection, any arbitrary w�w window will contain some shrunk w(1�1=r)�
w(1�1=r) window of the �xed r-dissection, and will be contained in some bloated w(1+1=r)�w(1+1=r)
window of the �xed r-dissection.

We suggest the following ideas.

� Lemma 9 suggests that the possible error of the �xed-dissection approximation can be estimated
more accurately than in Theorem 1. Our �rst idea is that if we �nd the area of not only standard
windows (i.e., �xed r-dissection windows consisting of r � r tiles) but also bloated windows (i.e.,
�xed r-dissection windows consisting of (r+1)�(r+1) tiles), then the maximum area of a oating
window (i.e., arbitrary w�w-window) can be bounded by the maximum area of a bloated window
(see Figure 8).

� Our second idea is to use zooming to make �xed-dissection density analysis for any given r = r0
even faster. The main points of this approach are: (i) starting with one �xed r-dissection (r = 1),
omit all tiles which do not belong to any bloated window that can possibly contain high-density
oating windows, and (ii) recursively subdivide the remaining tiles into 4 subtiles (i.e., multiply
r by 2) until the necessary r = r0 is reached.
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dissection window
bloated fixed

floating window W

fixed dissection 
window

tile

shrunk fixed
dissection window

Figure 8: An arbitrary oating w�w-windowW always contains a shrunk (r�1)� (r�1)-window of a
�xed r-dissection, and is always covered by a bloated (r+1)� (r+1)-window of the �xed r-dissection.
In the �gure, a standard r � r �xed-dissection window is shown with thick border. A oating window
is shown in light gray. The white window is the bloated �xed-dissection window, and the dark gray
window is the shrunk �xed-dissection window.

� Our third idea is that the recursive subdivision may be continued until the number of rectangles
left in tiles is su�ciently small to run the optimal density analysis algorithmALG3. Alternatively,
the subdivision can be terminated at the moment when some user-de�ned accuracy, say 2%, is
reached.

The following algorithm is a formal implementation of the above ideas. We use � > 0 to denote
the user-de�ned accuracy that is required in �nding the maximum window density. The lists TILES
and WINDOWS are byproducts of the analysis, which will be used in Section 3.2 below to �nd the
optimal amounts of �ll geometries to add into the corresponding tiles.

Since any oating w � w-window W is contained in some bloated window, the �lled area in W
ranges between Max (maximum w � w-window �lled area found so far) and BloatMax (maximum
bloated window �lled area found so far). The algorithm terminates when the relative gap between
Max and BloatMax is at most 2 � �, and then outputs the middle of the range (Max;BloatMax).

The runtime of multilevel density analysis depends on �. At each iteration of the main loop (3) the
di�erence in area between the bloated and standard window is reduced by half. The loop (3) terminates
when the original area di�erence 3w2 decreases to 2� after t iterations, i.e.,

3w2

2t
= 2�

Thus, the maximum number of iterations T can be estimated as

T = log2(1:5w
2 � ��1) = O(log(w=�))

This formula implies a worst-case runtime of O(( n
w
log w

�
)2). In practice, the layout is unevenly �lled

and the majority of tiles are dropped in early iterations of the main loop (3). This explains the excellent
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Multi-Level Density Analysis Algorithm
Input: n� n layout and accuracy � > 0
Output: maximum area density of w � w window with accuracy �
(1) make a list ActiveT iles of all w=r � w=r-tiles
(2) Accuracy =1, r = 1
(3) While Accuracy > 1 + 2� do

(a) �nd all rectangles in w=r � w=r-tiles from ActiveT iles
(b) �nd area of each standard window consisting of tiles from ActiveT iles and

add such window to the list WINDOWS
(c) Max = maximum area of standard window with tiles from ActiveT iles
(d) BloatMax = maximum area of bloated window with tiles from ActiveT iles
(e) For each tile T from ActiveT iles which do not belong to any bloated window

of area more than Max do
if Accuracy > 1 + �, then put T in TILES
remove T from ActiveT iles

(f) replace in ActiveT iles each tile with four of its subtiles
(g) Accuracy = BloatMax=Max, r = 2r

(4) Move all tiles from ActiveT iles to TILES
(5) Output maximum window density = (Max+BloatMax)=(2 � w2)

Figure 9: Multi-level density analysis algorithm.

performance of multilevel density analysis for actual VLSI layouts (see Subsection 5.2).12

3 Computing the Optimal Fill Amount

To solve the Filling Problem, it is necessary to compute the proper �ll amount that should be added
in each particular tile. In the next subsection, we develop an optimal linear program solution for the
�xed-dissection regime. Then, two modi�cations of the LP formulation are described in the following
subsections. The �rst modi�cation is applied to the output of multilevel density analysis; the sec-
ond modi�cation uses window area bounds from Lemma 9 to minimize an estimate of the maximum
deviation among arbitrary (oating) windows.

3.1 Minimizing Density Variation in the Fixed-Dissection Regime

This subsection develops exact solutions to the Filling Problem in the �xed-dissection regime. Recall
that Theorem 2 indicates that if r = 10 and all windows of a �xed r-dissection have feature area density
at most 75% (i.e., U = 0:75), then the density of any w � w window in the layout is at most 85%.
Theorem 2 thus allows us to consider the Filling Problem for only a �xed r-dissection of the layout,
i.e., we will analyze density with respect to each w�w-windowW that covers exactly r2 tiles. Desired
accuracy of the result is achieved by increasing r.

For any given tile T = Tij ; i; j = 1; : : : ; nr
w
, denote the total feature area inside T as area(T ). We

de�ne the slack of T , slack(T ), as the maximum �ll amount that can be introduced using a given �ll
pattern into T without violating the density upper bound U in any window containing T . In other
words, the total layout feature area inside T can be increased up to any value between area(T ) and
area(T ) + slack(T ), using �ll geometries. The slack of T is determined by the total area of metal
features inside T and its neighbor tiles. The slack of a window W is the sum of the slacks of the tiles

12The multilevel analysis can also be applied in �nding minimum window density. By Lemma 9, the minimum layout
area in shrunk windows (i.e., �xed r-dissection windows consisting of (r � 1) � (r � 1) tiles) is a lower bound for the
layout area in an arbitrary w � w window. Therefore, the multilevel algorithm can be easy modi�ed to �nd minimum
window density with user-de�ned accuracy.
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that form W (e�cient algorithms for slack computation are discussed in Section 3.1.2 below). Using
the concept of slack, the Filling Problem for the �xed-dissection regime can be formulated as follows.

The Filling Problem for a �xed r-dissection. Suppose we are given a �xed r-dissection of the
layout into tiles of size w

r
� w

r
, as well as an area(T ) and slack(T ) for each tile in the dissection. Then,

for each tile Tij , the total �ll pattern area pij = p(Tij) to be added to Tij must satisfy

0 � pij � slack(Tij)

and X
Tij2W

pij � maxfU � w2 � area(W ); 0g (1)

for any �xed dissection w � w-window W .

Then, the Min-Variation Formulation seeks to maximize the minimum window density:

maximize

�
min
ij

(area(Tij) + pij)

�

3.1.1 A Linear Programming Approach

Consider the linear program:

Maximize M

subject to:

pij � 0; i; j = 1; : : : ;
nr

w
� 1 (2)

pij � pattern � slack(Tij); i; j = 1; : : : ;
nr

w
� 1 (3)

i+r�1X
s=i

j+r�1X
t=j

pst � �ij
�
U � w2 � areaij

�
; i; j = 1; : : : ;

nr

w
� r + 1 (4)

M � areaij +

i+r�1X
s=i

j+r�1X
t=j

pst; i; j = 1; : : : ;
nr

w
� r + 1 (5)

where

areaij =

i+r�1X
s=i

j+r�1X
t=j

area(Tst)

is the area of the (i; j)-th window, and �ij = 0 if areaij > U � w2 and 1 otherwise. Also, the pattern-
dependent coe�cient pattern denotes the maximum pattern area which can embedded in an empty
unit square.

The constraints (2) imply that features can only be added, and cannot be deleted from any tile.
The slack constraints (3) are computed for each tile. The pattern-dependent coe�cient pattern denotes
the maximum pattern area which can embedded in an empty unit square. If a tile Tij is originally
over�lled, then we set slack(Tij) = 0. From the linear programming solution, the values of pij indicate
the �ll amount to be inserted in each tile Tij . The constraint (4) says that no window can have density
more than U after �lling unless it was over�lled initially, i.e., such a window cannot increase its density.
The number of variables and the number of constraints in the linear program are both O((nr

w
)2). In
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practice, even for a large die and a user requirement of high accuracy, we might have n = 15000,
w = 3000, r = 10, which yields a linear program of tractable size. Equation (5) implies that the
auxiliary variable M is the lower bound on all window densities. The linear programming seeks to
maximizeM , thus achieving the min-variation objective.

Solving the above LP formulation will give the optimal �ll amounts to be added to each tile in the
�xed r-dissection, as dictated by the Min Variation objective. However, as shown in Figure 3, the LP
solution may distribute the �ll unevenly among the tiles of a given window. If this is unsatisfactory,
various simple �xes can be applied (e.g., partial pre-�lling of all tiles, binary search on an upper bound
of �ll added into each individual tile, etc.) so that the result is more balanced while still being optimal.
(Our current implementation sets an upper bound Ut on the tile density in order to achieve a balanced
�ll pattern.)

3.1.2 Slack Computation

This subsection discusses how to e�ciently compute slack values for the linear programming formulation
described in the previous subsection. To compute slack, i.e. to determine the total area of k possibly
overlapping rectangles, we adopt the \measure of union of rectangles" sweep-line -based technique
described in [21]. We begin by sorting all the left and right edges of the k rectilinear rectangles
according to their x coordinates. Next, we sweep horizontally across these 2k edges from left to right,
while using a segment tree [2] to keep track of the total length of the sweep line intersected by any of
the k rectangles (see Figure 10).

��
��
��

I = Total intersection
    with sweep line

Sweep line

  x

Contribution to
total area = I •

Sweep
direction

x

Figure 10: Finding the total area of a union of possibly intersecting rectangles using
a sweep line technique.

The time complexity of the sorting step is O(k log k). Insertions and deletions from the segment
tree require O(log k) time each, and the total time to process all 2k segments is therefore O(k log k).
The total time complexity to determine the area of the union of k possibly overlapping rectangles is
therefore O(k log k).

A simple implementationwhich avoids the usage of segment trees altogether can still have reasonably
fast expected time as follows. We still use the sweep line technique as before, but rather than using
a segment tree to store the intersected rectangle, we instead use a simple linked list to store those
segments, and then apply the one-dimensional \measure of union of intervals" technique of [14]. The
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time complexity of this practical implementation is O(k2) in the worst-case, and the expected time is
O(k � l) where l is the average length of this list (i.e., the expected number of rectangles intersected by
the sweep line). For random uniform distributions, we would expect l = O(

p
k), thus on average this

method will run in time O(k
p
k) in practice.

3.2 Multi-Level Computation of the Fill Amount

If the multilevel density analysis approach has been used, we can use data obtained during that
computation to compute �ll amounts. Recall that during the multilevel density analysis, we keep
track of active tiles (i.e. tiles which can possibly belong to a maximum density window) and check the
area of some windows in order to update the maximum window density if necessary. The multilevel
computation of �ll amounts attempts to decrease the number of tiles and windows, i.e., variables
and constraints participating in the LP formulation. Let rmax = 2lmax be the highest r reached in
the multilevel density analysis algorithm; this corresponds to the user-de�ned accuracy parameter �.
Instead of considering all w

rmax
� w

rmax
-tiles and all w�w-windows consisting of such tiles, we propose

to consider only tiles w
2l
� w

2l
-tiles, l � lmax, and windows consisting of such tiles which were tried

during the multilevel density analysis.

The multilevel �ll amount computation is implemented as follows. During multilevel density anal-
ysis, we save a tile in TILES at the moment when the tile is deactivated (cannot belong to a window
of maximum density) or the size of the tile becomes w

rmax
� w

rmax
. We also record the area and slack

of each such tile. On the other hand, each time when we �nd the area of a w � w-window W , we put
W in the list of windows WINDOWS. In the LP formulation for multilevel �ll amount computation,
for each window W fromWINDOWS there are two constraints: (i) the �rst constraint upper-bounds
the �lled area (i.e., the area after �ll geometries are added to the original layout) of W , and (ii) the
second constraint forces an auxiliary variableM to be less than or equal to the �lled area in W . Each
�lled window area is expressed as a sum of �lled tile areas. In addition, tile �ll amount constraints
ensure that each tile �ll amount is nonnegative, and at most the corresponding tile slack �pattern.

3.3 Minimizing Density Variation of Arbitrary (Floating) w � w-Windows

Finally, we suggest a third LP formulation that may better reect the quality of the �ll amount compu-
tation. Again, this is because the linear program for the �xed-dissection regime will be susceptible to
density deviations in oating windows. Consider two di�erent LP solutions in �xed-dissection regime
with di�erent number of �xed dissections: the �rst has r2 dissections and the second has (2r)2 dis-
sections. It is obvious that the more dissections we take in account the better result we should have.
On the other hand, more dissections imply more constraints in the LP and, therefore, worse (bigger)
deviation achieved (i.e., smaller value of target variableM). A fair comparison of results with di�erent
number of �xed dissections entails �nding the oating deviation, i.e., the di�erence between the min-
imum and maximum oating window density. However, since the number of oating windows is too
large, we suggest comparing worst-case estimates of the oating deviation, which can be derived from
Lemma 9.

Moreover, instead of comparing LP solutions according to the above estimate of oating deviation,
we suggest using such an estimate as an objective in a new LP formulation. Speci�cally, we constrain
the area of each bloated w(1 + 1=r) � w(1 + 1=r)-window by the user-de�ned density upper bound
U , and we maximize the auxiliary variable M which is the lower bound for the area of any w(1 �
1=r)� w(1� 1=r)-window. We refer to this LP formulation as the oating deviation LP. The oating
deviation LP formulation optimally decreases the estimate of the density range between the maximum-
and minimum-density oating windows.
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4 Synthesis of Filling Patterns

Given the layout geometry along with the parameters of the Filling Problem, we apply the methods of
previous sections to analyze density violations, and determine the necessary amounts of �ll to be added
in each region of the layout. We now discuss criteria for, and actual synthesis of, the �ll geometries
added into the layout.

4.1 Uniform Coupling to Long Conductors

Fill patterns should be devised such that all long conductors on adjacent layers have identical coupling
capacitance to the inserted �ll.13 There are several practical ways of achieving this, of which one is
to \basket-weave" the �ll [30]. In other words, the �ll pattern should not consist of a regular grid
geometries, but instead have some internal o�sets that \skew" the pattern. Figure 11 illustrates this
concept.

(a) (b)

Figure 11: \Basket-weaving" of the �ll pattern so that long conductors on adjacent
layers will have identical coupling to the �ll. With the pattern in (a), each vertical
or horizontal crossover line will have the same overlap capacitance to �ll. On the
other hand, with the �ll pattern in (b) two crossovers can have di�erent coupling
to �ll.

4.2 Grounded vs. Floating Fill

Grounded �ll can be required for predictable extracted parasitic values. Structured-custom (micropro-
cessor) designs have strong requirements for predictability, due to aggressive timing tolerances. For
such designs, it is better to have larger, but exactly known, coupling capacitances to grounded �ll ge-
ometries, rather than indeterminate capacitances to oating �ll. On the other hand, for ASIC designs
where timing is not being pushed too hard, designers seek the simplest �ll construction that meets fea-
ture density requirements. A secondary reason for studying grounded-�ll constructions is that modern
parasitic extraction tools do not handle oating capacitors well. If �ll synthesis should be performed
earlier so as to achieve an accurate performance veri�cation ow during the layout phase, it may be
necessary to use grounded �ll.

13Coupling to same-layer conductors is not a concern, because the bu�er distance B is usually quite large, on the order
of 10 �m or more.
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We seek a grounded �ll pattern that requires relatively few edges to specify. For example, a metal
�ll pattern consisting mostly of long parallel stripes is preferable to a checker-board pattern, since the
number of lines required to fully specify the latter is considerably smaller than the former. Thus, we
propose a grounded metal �ll pattern that spans the area to be �lled as follows. We start by striping the
empty areas in the layout using horizontal lines (see Figure 12b). Then, we span the horizontal stripes
using vertical lines (see Figure 12c). The width and pitch of the horizontal stripes, and the number of
vertical segments, can be easily determined in terms of the required pattern density. Connections to
an existing ground distribution network can be made using standard special-net routers.14
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Figure 12: Given a layout (a), we create a grounded �ll pattern by �rst (b) creating
horizontal stripes, and then (c) spanning these stripes using a small number of
vertical lines.

4.3 Simultaneous Area and Perimeter Constraints

In this subsection we characterize combinations of area and perimeter densities (Da; Dp) that can be
simultaneously satis�ed by the same �lling pattern. As discussed in Section 1, all geometries must
satisfy minimum length and minimum separation rules. In particular, no �ll feature dimensions, nor
any distance between features, can be less than c. In practice, the distance between �lling geometries
and nearest layout feature is constrained to be greater than c0 > c. However we can still view regions
eligible for �lling as c-polyominoes, i.e., polyominoes [11] with sides a multiple of c that are in distance
c0 from the layout features. The �ll pattern should also consist of polyominoes in the c-grid, i.e., the
minimum separation rule implies that a pair of �lled cells which share exactly one corner should have
one common �lled neighboring cell.

First, we will describe �lling patterns for a rectangular region R which have maximum perimeter,
and either the minimum or maximum allowable area density. The pattern Pmin with the minimum
area density �lls all cells which have top-left corner coordinates (a + 2ci; b+ 2cj), where (a; b) is one
of the corners of R (see Figure 13(a)). This pattern has area slightly more than 1

4 � area(R), because
it �lls approximately every fourth cell of R. The pattern Pmax with maximum area density �lls R
completely, leaving empty only cells with coordinates (a+ c+2ci; b+ c+2cj) (see Figure 13(b)). The
area of this pattern is slightly larger than 3

4 � area(R) because it leaves empty approximately every
fourth cell of R.

Two more patterns are necessary for completing the description of all possible patterns. These

14An interesting possibility arises if separate ground planes of metalization are used in between signal layers (as
in printed-circuit board construction), in which case grounded �ll patterns can look similar to oating �ll patterns
(connections to ground are achieved by vias down to the adjacent layer).

22



are simply the empty pattern P0 with zero perimeter and area, and the completely-�lled pattern P1
having both perimeter and area equal to those of R. In Figure 14, the x-axis represents area and the
y-axis represents perimeter. The highlighted region with vertices P0, Pmin, Pmax, and P1 represents
the combinations of area and perimeter densities for which there exist �lling patterns. Notice that a
square has the minimum perimeter with a given area. Let S be the area of a maximum square which
can be embedded in R. Before the pattern area reaches S, the minimum perimeter grows quadratically;
past S, the minimum perimeter grows linearly.

The algorithm for �nding a pattern with a given area and perimeter is straightforward: it starts
with the minimum area pattern that has the given perimeter, and sequentially adds square cells with
side c until the necessary area is achieved.
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Figure 13: Two patterns with maximum perimeter. (a) The pattern Pmin with
minimum possible area, and (b) the pattern Pmax with maximum area.
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perimeter

the region

0.750.25 1S
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P
0

Figure 14: The x-axis represents the area and the y-axis represents the perimeter
of the �lling pattern. The highlighted region with vertices P0, Pmin, Pmax, and
P1 represents the combinations of area and perimeter for which there exist �lling
patterns. The pattern with the area S minimum perimeter is the largest square
which can be embedded in R. Before the pattern area reaches S, the minimum
perimeter grows quadratically; when the area exceeds S, the minimum perimeter
grows linearly.
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5 Implementation and Computational Results

5.1 Implementation

Our current experimental testbed integrates GDSII Stream input, conversion to CIF format, and
internally-developed geometric processing engines. For density analysis, the user speci�es the param-
eters w, r, B, U , L, etc., and receives output indicating extremal window densities, average window
density, and lists of violating windows. For density improvement, the user speci�es additional param-
eters such as the maximum possible �ll pattern density (used to compute available slacks in each tile).
The program outputs whether the density lower bound L can be achieved (and if so, the maximum
achievable density lower bound L0), and the amounts of �ll pij that should be introduced into each tile.
Finally, for pattern insertion the user speci�es further parameters, including the type of �ll pattern
desired (rectangular grid or basket-weave oating �ll), and a parametric speci�cation of the pattern.
The program outputs the �nal layout, including the added �ll geometries, in CIF format.

5.2 Computational Experience

Industry Test Cases
Benchmark N = layout size k = # rectangles w = window size

L1 125,000 49,506 31,250
L2 112,000 76,423 28,000
L3 112,000 133,201 28,000

Table 1: Parameters of three industry test cases.

Our experiments have been run using three metal layers extracted from industry standard-cell
layouts. Benchmark L1 is the M2 layer from an 8131-cell design; Benchmark L2 is the M3 layer from
a 20577-cell design; and Benchmark L3 is the M2 layer from the same 20577-cell design. The layout
dimension, number of rectangles, and window size (w always chosen to equal 1.5mm) for each test case
are shown in Table 1.

Table 2 reports the maximumwindow density found by the multilevel density analysis with accuracy
parameter � set to either 2% or 3%. We report the maximum density of a standard window, rather
than the midpoint between the maximum density standard and bloated windows, in order to enable
comparison with the �xed-dissection analysis results below. CPU time corresponds to seconds on a
140MHz Sun Ultra-1 with 256MB RAM. In practice, we �nd that the multilevel analysis is preferable
to the exact method of ALG3, since the latter has runtimes on the order of tens of CPU minutes for
the same test cases (see [13] for ALG3 runtimes on slightly variant layouts of the same standard-cell
designs). Table 3 shows the analogous results for the �xed-dissection approach, which we understand to
be used in industry. The two tables show that large values of r, and correspondingly large runtimes, will
be required for the �xed-dissection approach to �nd the window densities that the multilevel analysis
can �nd in only a few seconds.

Last, Table 4 depicts the performance of our software for LP generation and solution to obtain
optimal �ll amounts, along with �ll insertion into the output CIF �le. The �xed-dissection LP achieves
lower boundsM on density that are reasonably close to the best possible values.15 Larger r values may
be used to reduce the potential variation from uniform density. For the multilevel density analysis, LP
and �ll generation, we observe somewhat lower values ofM , and one large runtime for the L2 benchmark
with r = 8. The oating deviation LP, which allows the user to bound the density variation between

15In all reported experiments, we use U = maximum window density found during multilevel density analysis. Exper-
iments with larger values of U , e.g., U = 0:50, yield similar results.
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Multilevel Density Analysis
Benchmark Accuracy Max Std Density CPU time

L1 2% .2184 2.8
L1 3% .2184 2.8
L2 2% .1830 6.9
L2 3% .1829 3.8
L3 2% .2925 7.1
L3 3% .2911 6.6

Table 2: Multilevel density analysis results. We report the maximum density of
a standard window, rather than the midpoint between the maximum density stan-
dard and bloated windows, in order to enable comparison with the �xed-dissection
analysis results below.

Fixed-Dissection Density Analysis
Benchmark r Max Density CPU Time

L1 2 .2021 1.3
L1 4 .2125 2.9
L1 8 .2170 9.2
L2 2 .1610 2.1
L2 4 .1791 4.5
L2 8 .1791 14.5
L3 2 .2883 3.6
L3 4 .2895 8.0
L3 8 .2910 25.1

Table 3: Fixed-dissection density analysis results.

minimum- and maximum-density oating windows, shows steady improvement in solution quality with
increasing r, just as we expect. In practice, we believe that the oating deviation LP is attractive for
its control over arbitrary windows; the multilevel LP is also attractive for its data ow directly from
multilevel density analysis.

6 Conclusions and Future Directions

In conclusion, we have addressed an increasingly critical problem in the interface between process,
physical layout design and performance veri�cation. We have given the �rst statement of the �lling
problem (with min-variation objective), which arises in layout post-processing for CMP uniformity. We
have developed e�ective algorithms for density analysis as well as for �lling synthesis. Our current ex-
perimental testbed integrates GDSII Stream input, conversion to CIF format, and internally-developed
geometric processing engines. Runtimes show that the proposed techniques are practically useful.

We are currently seeking more test cases and density rules from industry to further re�ne the
proposed approaches and implementations.16 Ongoing work addresses such issues as:

� developing even more e�cient, general and provably-good �lling algorithms (e.g., for simultaneous

16Interesting test cases for �lling will not simply be place-and-route test cases: the vast majority of P&R instances are
for cell-based implementation of random (control or glue) logic. The majority of the chip { embedded memory cores,
high-performance datapaths, global clock and power distribution, analog or mixed-signal blocks, etc. { is what makes
the �lling problem challenging, but at the same time such layouts are not typically seen by a place-and-route tool. As a
result, test cases for the problem that we address are currently quite di�cult to obtain.
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Fixed-Dissection LP for Fill Amount and Fill Generation
Benchmark r LP generation LP solution M Fill CPU time Total CPU time

CPU time CPU time
L1 2 4.3 0.0 .2192 3.3 7.6
L1 4 4.0 0.4 .2192 3.2 7.6
L1 8 10.3 18.3 .2189 3.3 31.9
L2 2 2.8 0.0 .1816 5.2 8.0
L2 4 5.2 1.7 .1704 5.0 11.9
L2 8 15.8 41.5 .1631 5.2 62.5
L3 2 5.2 0.0 .2640 8.3 13.5
L3 4 9.4 0.8 .2606 8.0 18.2
L3 8 27.2 24.4 .2553 8.1 59.7

Multilevel LP for Fill Amount and Fill Generation
Benchmark rmax LP generation LP solution M Fill CPU time Total CPU time

CPU time CPU time
L1 4 2.8 0.4 .2192 4.2 7.4
L1 8 2.7 20.3 .2192 4.1 27.1
L2 4 3.1 5.9 .1834 6.8 15.8
L2 8 3.8 376.5 .1834 6.6 386.9
L3 4 9.4 1.0 .1761 9.6 20.0
L3 8 10.0 51.5 .1745 10.3 71.8

Floating Deviation LP for Fill Amount and Fill Generation
Benchmark r LP generation LP solution M Fill CPU time Total CPU time

CPU time CPU time
L1 2 4.3 0.0 .0546 3.2 7.5
L1 4 4.0 0.4 .1218 3.3 7.7
L1 8 10.3 5.8 .1615 3.2 19.3
L2 2 2.8 0.0 .0437 5.2 8.0
L2 4 5.2 0.4 .0827 5.2 10.8
L2 8 15.8 43.8 .1037 5.3 64.9
L3 2 5.2 0.0 .0677 9.1 14.3
L3 4 9.4 0.8 .1451 10.0 20.2
L3 8 27.2 18.4 .1875 8.5 54.1

Table 4: Experimental results showing CPU times for three variant LP approaches
to computing optimal �ll amounts; CPU times for �ll generation are also shown.

perimeter- and area-density based criteria);

� �nding improved heuristics or exact algorithms for the min-variation formulation;

� maintaining knowledge of min/max density/perimeter windows under dynamic feature inser-
tion/deletion in time o(n) or o(k);

� calibrating our proposed methods against data and density control requirements from industry
partners; and

� extending the present infrastructure to address, in a uni�ed way, requirements for both slotting
(metal stress relief) and �lling at other length scales (micro-loading, iso-dense) in combination
with the current requirements.
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Appendix: Fill Impact on Extraction

Table 5 shows capacitance extraction results obtained with the Raphael 3-D �eld solver from TMA /
Avant!, for an isolated conductor (i) with or without �ll insertion in empty regions of adjacent layers,
and (ii) with or without same-layer neighbor conductors.17 The simulation shows that ignoring the
possibility of metal �ll can result in underestimation of total line capacitance by more than 50%. This
can in turn lead to inaccurate RCX, delay calculation, and timing analysis results. We conclude that the
presence or absence of �ll geometries must be modeled during performance-driven layout optimization.
Such modeling must be e�cient and \transparent"; since there are many iterations through the layout
optimization loop, we must be careful with the time complexity of �ll insertion and the increases in
data volume.

Victim Layer Total Capacitance (10�15F)
Same layer-i Fill layers
neighbors? i� 1, i+ 1? � = 3:9 � = 2:7

N N 2.43(1.00) 1.68(1.00)
N Y 3.73(1.54) 2.58(1.54)
Y N 4.47(1.84) 3.09(1.84)
Y Y 5.29(2.18) 3.66(2.18)

Table 5: Raphael 3-D �eld solver results for total capacitance extraction of a single
victim conductor. The conductor on layer i is 20 � 1. Line-to-line spacing is 1,
line width is 1, line thickness is 1.5, and dielectric height is 1.5. Metal �ll features
on layers i � 1 and i + 1 are 10 � 1 with side-to-side spacing of 1 and end-to-end
spacing of 4 (see Figure 15(b)). The dielectric permittivity was set to both 3.9 (for
SiO2) and 2.7 (cf. recent announcements by Sematech [23] of new low-permittivity
dielectric technologies). Layers i� 2 and i+2 are set to be 40� 40 ground planes.

Victim B Total Capacitance (10�15F)
Fill layer o�set Fill geometry � = 3:9 � = 2:7

N 10� 1 3.776(1.00) 2.614(1.00)
N 1� 1 3.750(0.99) 2.596(0.99)
Y 10� 1 3.777(1.00) 2.615(1.00)
Y 1� 1 3.745(0.99) 2.593(0.99)

Table 6: TMA/Avant! Raphael capacitance extraction results: total capacitance
for the middle victim conductor B.

Tables 6 and 7 give TMA/Avant! Raphael capacitance extraction results for multi-layer interconnect
structures involving �ll geometries, as follows.

� Three 20 � 1 victim conductors A, B, and C (with B in the middle), with spacing 1 between
them, are placed on a victim layer i. All conductor thicknesses = 1.5; dielectric height between
layers = 1.5. Dielectric permittivity was set at either 3.9 or 2.7.

� A 40� 40 bottom ground plane is placed at layer i� 2.

17The use of the Raphael �eld solver correctly models oating geometries according to the abilities of the tool. However,
typical use of the capacitance extraction in Raphael is for grounded features, and the tool may not be optimized for
accuracy on oating features.
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Victim A, C Total Capacitance (10�15F)
Fill layer o�set Fill geometry � = 3:9 � = 2:7

N 10� 1 3.009(1.00) 2.083(1.00)
N 1� 1 2.984(0.99) 2.066(0.99)
Y 10� 1 3.004(1.00) 2.080(1.00)
Y 1� 1 2.980(0.99) 2.063(0.99)

Table 7: TMA/Avant! Raphael capacitance extraction results: total capacitance
for the outside victim conductor A or C.

(a) (b)

Figure 15: The two �ll patterns considered in Raphael simulations: 1 � 1 squares
separated 1 unit apart (a), and 10�1 rectangles separated 1 unit apart horizontally
and 4 units apart vertically (b). The �ll pattern (b) was used for the simulations
reported in Table 5.

� Two types of �ll geometry patterns were considered for layer i � 1 (see Figure 15): (a) 1 � 1
squares with (x; y) origins of form (2i; 2j), i and j integers, resulting in an overall pattern area
density (for an in�nite layout region) of 0.25 (see Figure 15(a)), and (b) 10 � 1 (tall and thin)
rectangles with (x; y) origins of form (4i; 14j) or (4i � 2; 14j � 7), i and j integers, resulting in
an overall pattern area density (for an in�nite layout region) of 0.357 (see Figure 15(b)).

� An o�set is optionally introduced. When the �ll geometries are o�set, they lie directly under the
spaces between the victim conductors. When there is no o�set, the �ll geometries lie directly
under the victim conductors.

Table 6 shows that the total capacitance values for the middle conductor (B) uctuate by less than
1 percent over all four combinations of �ll pattern and o�set. The critical factor is that the �ll is
present in the �rst place. Similarly, Table 7 shows that the total capacitance values for each of the
outside conductors (A and C) also uctuate by less than one percent. We conclude that the �lling
can, subject to constraints involving feature dependencies between layers, be viewed as a \single-layer
problem".18

18There are several notable conditions under which the single-layer assumption is not quite correct. For example, poly
�ll geometry in regions with underlying active di�usion can create spurious transistors, and such regions must be marked
as inviolate on the poly layer. This is a simple preprocessing step before slack calculation and �ll insertion.
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