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Abstract

Detecting spatial regularity in images arises in computer vision, scene analysis, military appli-

cations, and other areas. In this paper we present an O(n
5

2 ) algorithm that reports all maximal
equally-spaced collinear subsets. The algorithm is robust in that it can tolerate noise or impreci-
sion that may be inherent in the measuring process, where the error threshold is a user-speci�ed
parameter. Our method also generalizes to higher dimensions.
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1 Introduction

Spatial regularity detection is an important problem in a number of domains such as computer vision,

scene analysis, and landmine detection from infrared terrain images [5]. This paper addresses the prob-

lem of recognizing equally-spaced collinear subsets of a given pointset, where there may be imprecision

in the input data. Kahng and Robins [5] gave an optimal O(n2)-time algorithm for the exact version of

this problem (i.e., where no noise is allowed in the input data); their algorithm was later parallelized

in [2]. However, inaccuracies inherent in the imaging technology may corrupt the data and eliminate

exact collinearity and equally-spaced relationships. Thus, methods which do not compensate for these

phenomena (e.g., those of [2] and [5]) are inadequate in practice.

To address this issue, we develop a robust algorithm for spatial regularity detection that can tolerate

inaccuracies in the data relative to a user-speci�ed error threshold. For an input pointset, our algorithm

will report all equally-spaced collinear subsets, where points are allowed to drift from their ideal

locations by up to a given amount. Our algorithm runs within O(n
5

2 ) time in the worst case, and we

prove a lower bound of 
(n2 logn) on the time complexity for this problem.

2 Problem Formulation

Given a �nite set of distinct points P � E2, a subset P � P is collinear if jP j � 2 and all points of

P lie on the same line. A collinear subset P � P is equally-spaced if jP j � 3 and the points of P are

equally-spaced along their containing line1. We use the term regular to refer to a sequence that is both
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1That is, a sequence P = (p1; p2; : : : ; pn) is equally-spaced if pi � pi�1 = pi+1 � pi for 2 � i � n� 1.
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collinear and equally spaced. A sequence of points is "-regular if each of its points can be displaced by

at most " along each axis to yield a regular sequence (Figure 1); i.e., given a �xed " � 0, a sequence

of points P = (p1; p2; : : : ; pn) � E2 is "-regular if there exists a regular sequence P = (p1; p2; : : : ; pn)

such that jxi � xij � ", jyi � yij � " for all 1 � i � n, where pi = (xi; yi) and pi = (xi; yi). We refer to

points in P as the ideal points, and to points in P as the actual points. Note that a regular sequence

is simply an "-regular sequence with " = 0. Finally, a maximal "-regular sequence is one that is not

properly contained as a contiguous subsequence in any other "-regular sequence.2

2

2

ε

ε

Figure 1: An "-regular sequence (solid dots), whose points are within " of the corre-
sponding (ideal) points of a regular sequence (hollow dots).

Our problem can now be formulated as follows.

Maximal "-regular Sequences Problem: Given " � 0 and a �nite pointset P � E2,
�nd all maximal "-regular sequences contained in P .

Unfortunately, this formulation is intractable since it allows an exponentially large output size. We

therefore propose a modi�cation in order to make possible an e�cient algorithm:

Stipulation: Each interpoint distance in the input data must be greater than 8".

As we will see, this stipulation precludes cases with exponential-sized output. If the input does not

satisfy this condition3, a slight variation on our proposed algorithm will still produce a correct solution

(although a polynomial runtime is no longer guaranteed). Existing methods for detecting collinearity,

such as ones based on Hough transforms [1, 3, 7], are not sensitive to equally-spaced constraints and

are thus not applicable to our problem. Some algorithms for dealing with imprecision in computational

geometry were introduced in [4], but they do not address our problem either. This work builds upon

the approach introduced in Robins and Robinson [8].

3 Tools and Techniques

Our overall strategy is based on starting with a pair of points and repeatedly extending it into an

"-regular sequence, until it is no longer possible to do so. Each extension involves �nding a new point

2Thus, according to this de�nition, if (a; b; c; d; e) is a "-regular sequence, then so is (a; c; e). Since detecting all
maximal "-regular sequences does not require asymptotically more time than detecting only those not properly contained
in other "-regular sequences, this de�nition su�ces and also results in a streamlined exposition and analysis (note that
any \redundant" subsequences may later be removed in a post-processing step). This approach is also consistent with
the application area of landmine detection, where false positives are preferable to false negatives.

3This assumption is not unrealistic for applications such as landmine detection, since the sizes of mines and their
potential drift are considerably smaller than typical inter-mine separation.
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to convert the last pair of the current "-regular sequence into an "-regular triple, and then verifying

if the current sequence with the new point added is still "-regular. The rest of this section develops

techniques that will perform these operations e�ciently.

Finding "-regular triples

Given a pair of points (p1; p2), a naive algorithm to extend it into an "-regular triple would be to

consider each of the remaining n� 2 points in turn and check if any of them formed an "-regular triple

with the given pair. Each check would take constant time, resulting in a linear-time algorithm. We

now develop a more e�cient way of �nding all possible triples, using the following observation.

Lemma 1 Given the �rst two points of an "-regular triple, (x1; y1) and (x2; y2), the third point (x3; y3)

of the triple must lie in the range ((2x2 � x1)� 4"; (2y2 � y1)� 4").

Proof: Given the �rst two points of the triple, p1 = (x1; y1) and p2 = (x2; y2), let the corresponding

ideal points be (x1; y1) and (x2; y2) (Figure 2). Then we have:

x1 � " � x1 � x1 + " x2 � " � x2 � x2 + "

y1 � " � y1 � y1 + " y2 � " � y2 � y2 + "

Since the ideal points are equally spaced and collinear, we have, x3�x2 = x2�x1 and y3�y2 = y2�y1.

The third ideal point is given by (x3; y3) = (2x2 � x1; 2y2 � y1). Substituting for x1; x2; y1 and y2, we

obtain:

(2x2 � x1)� 3" � x3 � (2x2 � x1) + 3" (2y2 � y1)� 3" � y3 � (2y2 � y1) + 3"

The third actual point, (x3; y3) can be displaced from the third ideal point by as much as " in any

direction. That is, x3 � " � x3 � x3 + " and y3 � " � y3 � y3 + ". Hence, we have:

(2x2 � x1)� 4" � x3 � (2x2 � x1) + 4" (2y2 � y1)� 4" � y3 � (2y2 � y1) + 4"

Our 8" stipulation ensures that for every pair, the range that needs to be searched contains at most

a single point, which can be found out in O(logn) time using range searching techniques.

Linear Programming

Given an "-regular sequence (p1; p2; : : : ; pt) and an "-regular triple containing the last pair, (pt�1; pt; pt+1),

the sequence (p1; p2; : : : ; pt; pt+1) is not necessarily "-regular, since additional constraints need to be

satis�ed. Fortunately, these constraints can be expressed as a low-dimensional linear program (LP).

For simplicity, lets �rst look at the one-dimensional case. If a given sequence P = (p0; p1; : : : ; pn�1)

is to be "-regular, there must exist a corresponding regular sequence of ideal points

P = (p0; p1; : : : ; pn�1) = (p0; p0 + d; p0 + 2d; : : : ; p0 + (n� 1)d)

where d is the distance between successive points in P . Since pi � " � pi � pi + ", we obtain:

p0 + id� " � pi p0 + id+ " � pi
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Figure 2: The dashed square on the right is the region in which p3 must lie if the actual
points (p1; p2; p3) are an "-regular sequence. The large solid square on the right denotes
the region in which the ideal point corresponding to p3 must lie.

Thus to check for "-regularity of a sequence P = (p0; p1; p2; : : : ; pn�1), we create an LP consisting of

the inequalities above for all 0 � i � n � 1, and solve it to determine if feasible values for p0 and d

exist. If so, the sequence is "-regular.

Moving into two-dimensions, we observe that a sequence is regular i� its orthogonal projections

onto the x and y axes are also regular. Recall that in an "-regular sequence, the projection of an actual

point pi onto any axis must be within distance " of the projection of the corresponding ideal point pi.

We thus formulate the following constraints in our LP, where dx; dy; p0x and p0y are variables:

p0x + idx � " � pix p0x + idx + " � pix
p0y + idy � " � piy p0y + idy + " � piy

Since the constraints along one axis are completely independent of the constraints along the other

axis, this system of constraints can be expressed as a pair of two-dimensional linear programs. Linear

programming in �xed dimension (i.e., the number of variables) can be accomplished in time linear in

the number of constraints [6]. Since the dimension of each of our LPs is �xed at two, the time required

for veri�cation of "-regularity is proportional to the length of the sequence examined.

4 An E�cient Algorithm

Our algorithm repeatedly extends point pairs into maximal "-regular sequences by adding points which

form an "-regular triple with the last pair of the current sequence, and then veri�es the "-regularity

of the complete sequence. We utilize Lemma 1 in conjunction with geometric range searching to �nd

new points to be added, and we rely on linear programming to verify the "-regularity of the sequence.
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Preprocessing

The preprocessing phase involves verifying that the 8" stipulation holds (which can easily be done

in O(n2) time), and then suitably organizing the data. In order to apply Lemma 1, we need to be

able to query e�ciently for the existence of a point in the required 8" region. To accomplish this, we

conceptually partition the plane into a grid of granularity 8". For each point we compute the coordinates

of the grid cell which it occupies4. These coordinates are stored along with the points and used to

index the points in subsequent searching. Finally, we sort all the points by their cell coordinates,

which enables logarithmic-time binary search queries. The preprocessing cost is dominated by the

O(n2) veri�cation step.

Finding all Maximal "-regular sequences

Our approach is to extend a pair of points into a maximal "-regular sequence. At each step of the

algorithm we seek a single additional point which may be included into the current sequence while

preserving the "-regularity of the sequence. We refer to this process as extending the sequence, since

it �nds a point which would form an "-regular triple with the last pair of the current sequence. The

preprocessing ensures that this operation can be performed in O(logn) time. If such a point exists,

verifying the "-regularity of the complete sequence entails solving an LP which takes time proportional

to the length of the sequence. A single extension step in the worst case thus takes time O(logn+ k),

where k is the length of the current sequence. An extension fails if a suitable point cannot be found,

and a maximal "-regular sequence is detected when no further extension is possible in either direction.

All maximal sequences could be enumerated by starting from each of the
�
n

2

�
pairs and repeating

the process above; however, to avoid redundant computations, we exploit two observations. First, we

note that any contiguous subsequence of an "-regular sequence is itself "-regular; thus, we do not need

to reconstruct any subsequence which is a contiguous portion of a previously-found maximal "-regular

sequence. Speci�cally, after extending a so-called seed pair into an initial maximal sequence, we remove

the leftmost5 point of the sequence, leaving an "-regular subsequence which we then extend to the right.

Each time a maximal sequence is found, we remove the leftmost point and extend to the right as

much as possible. When it is no longer possible to continue in this manner (i.e., when the remaining

subsequence contains only a single point), we repeat this entire process starting with the current initial

sequence, except that this time we remove the rightmost point and extend to the left. We refer to this

process of removing and extending as marching. Thus, the process of marching begins by operating

on an initial sequence, and repeatedly (1) removing an endpoint of the current maximal "-regular

sequence, and (2) extending the resulting sequence in the opposite direction until another maximal

"-regular sequence is obtained.

Our second observation is that contiguous pairs in an already-found maximal "-regular sequences

need not be considered as seed pairs in future sequence searches. We thus explicitly mark such pairs

and ignore them from further consideration (all pairs are unmarked when the algorithm starts). The

complete algorithm therefore involves repeated iterations of the marching process described above,

4If " = 0, the cell coordinates are equal to the coordinates of the points themselves and no grid is constructed.
5One end of the sequence is chosen arbitrarily to be leftmost, with the the other end being rightmost. Thus, the terms

\left" and \right" are not related to X or Y coordinates, but rather are used to refer to the two opposite directions along
a sequence, and as such the terms \left" and \right" are symmetric and interchangeable.
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starting with an unmarked pair as the seed each time, until there are no unmarked pairs left. A formal

description of the algorithm is shown in Figure 3.

Maximal "-regular Sequences Algorithm
Input: A pointset P � E2

Output: LIST of all maximal "-regular sequences
1:LIST = ;
2:For all unmarked pairs S = fpi; pjg
3: Call Procedure Initialize S
4: Let INIT = S, AUXLIST = fSg

/* INIT is now the initial sequence */
5: Call Procedure March(right)
6: Let S = INIT
7: Call Procedure March(left)
8: Mark all pairs in all elements of AUXLIST
9: Let LIST = LIST [AUXLIST

Procedure Initialize S
1:Mark S
2:While S can be extended to the left Do Extend S to the left
3:While S can be extended to the right Do Extend S to the right
Procedure March(direction)
/* <opposite direction> is 'right' if <direction> is 'left' and vice-versa */
1:Remove the <opposite direction>-most point from S
2:While jSj > 1
3: If S is extendable to the <direction> Then

/* Extendable means there exists an point such that extended
* sequence is "-regular and has no marked pair */

4: Repeat (Extend S to the <direction>)
Until S cannot be extended to the <direction>

5: Let AUXLIST = AUXLIST [ fSg
6: Remove the <opposite direction>-most point from S

Figure 3: An algorithm for enumerating all maximal "-regular sequences.

5 Lower Bound on Output Size

Consider a pointset distributed along an arc in such a way that although every contiguous subsequence

of n
2
points is "-regular, there is no "-regular sequence of length greater than n

2
(Figure 4). Such a

pointset has n
2
"-regular sequences of length n

2
, n
2
"-regular sequences of length n

4
, n
2
"-regular sequences

each of length n
6
, etc. In general, n

2
"-regular sequences of length n

2k
are determined by starting from

any of the �rst n
2
points and selecting every kth point on the arc. Thus, the sum of the lengths of the

maximal "-regular sequences in the example of Figure 4 is given by n
2
(n
2
+ n

4
+ n

6
+ : : : 3) = �(n2 logn),

and the output size for this pointset is 
(n2 logn).

6 Time Complexity

Each extension in the marching process results in the insertion of a new point (if the extension succeeds),

or the removal of a point (if the extension fails). In the worst case, each extension requires a search

time of O(logn), and a veri�cation time of O(k) where k is the length of the "-regular sequence under

consideration; we assign this cost of extension to the point being added or deleted.
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Figure 4: In this example, the maximal "-regular sequences are (p1; p2; : : : ; p7),
(p2; p3; : : : ; p8), ..., (p8; p9; : : : ; p14).

De�ne a p-initiated sequence as an "-regular sequence beginning with point p. Each time a point p

is encountered and added during the extension process, the resulting sequence is a p-initiated sequence.

Similarly, when a point p is removed while marching, the sequence before deletion is also a p-initiated

sequence. Moreover, the sequence in question is maximal among all p-initiated sequences. Each time

the point p incurs a cost, the associated maximal p-initiated sequence is unique. The search time

is bounded by O(logn), while the veri�cation time is proportional to the length of the associated

p-initiated sequence. If the maximum number of maximal p-initiated sequences is m, the total cost

incurred by all searches is bounded by O(m logn), while the time for all veri�cations is bounded by

the sum of the lengths of all the maximal p-initiated sequences.

Because of the 8" stipulation, each of the other n � 1 points can occur in the second position in

at most one maximal p-initiated sequence. Thus, the number of p-initiated sequences is always less

than n. Hence m < n, and the total search time for all maximal p-initiated sequences is bounded by

O(n logn). We now prove an upper bound on the cost to verify each new point.

Lemma 2 There exists a total order on the points such that all p-initiated sequences are subsequences

in this order.

Proof: We order the points by their distance to p, with ties broken arbitrarily. Since every p-initiated

sequence starts with p and every successive point is at least as far from p as the previous one, a

p-initiated sequence is a subsequence of this total order.6

Each maximal p-initiated sequence can then be expressed as a series of numbers (a1; a2; : : : ; aq),

where ai is the rank of the ith point of the sequence in the total order with respect to p and q is the

sequence length. Since the sequence is a subsequence of the total order, ai < ai+1 for all 1 � i < q,

and since the sequence is p-initiated, a1 is always 1.

We represent a sequence (a1; a2; : : : ; aq) as a series of \hops" (a2�a1; a3�a2; a4�a3; : : : ; aq�aq�1).

Since a1 is always 1, the points in the sequence can be regenerated from this sequence of hops. For

a maximal p-initiated sequences stored as a series of hops (b1; b2; : : : ; br), the length of the sequence

is r + 1. Since the last point has an rank less than n + 1 in the total order, the sum of the hops

b1 + b2 + : : :+ br < n.

Consider a multiset S containing all the hops of all maximal p-initiated sequences. Since there are

no more than n such sequences and the sum of hops in each is less than n, the sum of all the hops in

6Note that this Lemma does not actually require explicit sorting inside the algorithm; rather, we use the implicit
ordering established by the Lemma as an aid in deriving an upper bound on the time complexity of the algorithm.
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S cannot exceed n2. Since the number of hops in each sequence is one less than the sequence length,

the size of S is at most n less than the sum of the lengths of all maximal p-initiated sequences. Since

a contiguous pair can occur in only one of the maximal p-initiated sequence, there are no more than

n� 1 possible hops of size 1 in the total order, no more than n� 2 possible hops of size 2, etc. Under

these constraints, we seek to maximize the size of S, in order to determine an upper bound on the sum

of lengths of all maximal p-initiated sequences.

Let S contain hi hops of size i, for 1 � i � n � 1. The constraints above can then be expressed

as (1) hi � n � i for all 1 � i < n (2)
Pn�1

i=1 ihi � n2, and we seek the maximum possible value of

h1 + h2 + : : : + hn�1. In the interest of simplicity we relax the �rst constraint to (1') hi � n, for

1 � i < n, which is permissible since it can only increase the value of the upper bound.

Lemma 3 There is a solution to the maximization problem above having the form hi = n for 0 � i � l,

and hi = 0 for l < i < n.

Proof: Consider an optimal solution (h1; h2; : : : ; hn) not having the above form. If there exist i; j with

i < j, such that hi < n and hj > 0, then, hi can be incremented by one and hj can be decremented

by one, while satisfying both the constraints of the problem and not decreasing the function to be

maximized. This can be done repeatedly until there exists t such that hi = n for i � t. For n =
�
l

2

�
,

t = l and hi = 0 for i > t, there exists a new optimal solution having the required form. The second

constraint becomes an equality and no more increment-decrement operations are possible.

Without loss of generality, let n =
�
l
2

�
for some l. Thus l = O(

p
n) and

Pn�1

i=1 hi =
Pl�1

i=1 hi =Pl�1

i=1 n = O(n
p
n). Thus, the sum of all maximal p-initiated sequences cannot exceed O(n

p
n). Since

the total cost incurred by a single point is bounded by O(n logn + n
p
n) = O(n

p
n), the overall cost

for all points is bounded by O(n
5

2 ), which is the time complexity of the algorithm.

Although the above analysis holds for only speci�c values of n =
�
l
2

�
, we can always add dummy

points to the input pointset in order to ensure that n =
�
r

2

�
for some r; in such a case a maximal

sequence is listed in the output i� it does not contain any dummy point. Since
�
r+1

2

� � �
r

2

�
= r, we

never have to add more than n dummy points, and the overall time complexity remains unchanged.

Finally, note that even if the input does not satisfy the 8" stipulation, a slight variation on our

main algorithm will still produce a correct solution, although a polynomial time bound is no longer

guaranteed. In such a case, a pair of points may participate in more than two distinct triples; more

than one point may therefore be a suitable candidate for extension of an "-regular sequence under con-

sideration. All the possibilities would then have to be explored, which may result in a non-polynomial

runtime. However, for typical inputs, such pathological behavior is very unlikely.
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