
Generalized “Yoking-Proofs” for a Group of RFID Tags ∗

Leonid Bolotnyy and Gabriel Robins
Department of Computer Science

University of Virginia, Charlottesville, VA 22904
{lb9xk, robins}@cs.virginia.edu

Abstract

Recently Ari Juels suggested a “yoking-proof” where a
pair of radio-frequency identification (RFID) tags are both
read within a specified time bound, and left open for fu-
ture research the problem of generating a proof for larger
groups of tags. We generalize his protocol by developing a
proof which ensures that a group of tags is read within a cer-
tain time period. The tags generate such a proof even if the
reader is untrusted. The proof is improbable to forge, and
is verifiable off-line by a trusted verifier. Juels’s problem
formulation does not take privacy into account and the re-
sulting protocol offers no privacy to the tags. We modify the
problem statement to require the “yoking-proof” to main-
tain privacy, and we give a protocol for this newanonymous
yokingproblem, along with suggestions for speed ups.

Keywords: RFID, Security, Yoking-Proofs.

1 Introduction

Some radio-frequency identification (RFID) scenarios
require a proof of action (e.g., that a group of objects tagged
with RFID tags were identified simultaneously). For exam-
ple, pharmaceutical distributors may want to prove that a
bottle of medicine was sold together with its instructions
leaflet [5]; manufacturers may want to prove that safety
devices were sold together with a tool or that a number
of matching parts were delivered simultaneously; banking
centers or security stations may want to prove that several
forms of ID were read simultaneously; meeting organizers
may want to prove that a group of people were present to-
gether at a meeting, etc. Third-parties can verify the validity
of the proofs. For the examples given above, the verifying
third parties can be regulatory agencies, company headquar-
ters, etc.

We seek to ensure that if a group of tags is not read si-
multaneously, an entity will not be able to forge reality by
constructing such a proof. Inspired by this problem, Ari

∗This research was supported by a Packard Foundation Fellowship
and by NSF grant CCF-0429737. For a full version of this papersee
http://www.cs.virginia.edu/robins.

Juels developed a protocol that creates such a proof for a
pair of RFID tags [5]. He left open for future research the
problem of generalizing his protocol to three or more tags.
In this paper, we generalize his protocol to arbitrarily large
groups of tags, give an algorithm foranonymous yoking,
and show how these yoking protocols can be sped up.

2 Assumptions

We assume that RFID tags are passive and have limited
computational capabilities. We require that they can exe-
cute keyed hash functions and maintain some state infor-
mation such as a key, a counter, and some data computed
during the protocol. These requirements can be satisfied in
practice by Class-2 Generation-2 EPC tags [4]. Since tags
are passive, they cannot communicate directly with each
other, but they can communicate with each other indirectly
through the reader. For now, we also assume that the adver-
sary cannot physically steal tags’ secret information. Later
we discuss how this requirement can be relaxed.

Our verifier is assumed to be a trusted and computation-
ally powerful machine. The verifier is considered to be off-
line in the sense that it does not have to verify the proof
immediately after it is created, and does not need to com-
municate with the tags. A reader is assumed to be adversar-
ial, and we want the protocol to be secure against a reader
that attempts to create the proof without reading all the tags
simultaneously.

Replay attacks may or may not be considered a threat,
depending on the application. In the protocol, we consider
replays by an adversarial reader of previously seen proofs to
be a viable threat, and thus we design the protocol accord-
ingly. To avoid replay attacks, the verifier stores some in-
formation about previous correct proofs. The verifier is not
required to store this information, if replays of valid proofs
are not considered to be attacks. This will be elaborated
upon in the discussion following the protocol specification.

We require that the tag accessed first by the reader be
able to implement a timeout after a specific time periodt has
elapsed. Timeouts can be implemented on clock-less RFID
tags. FCC regulations require the termination of tag-reading



protocols within 400ms. However, if the reader is malicious
and violates these regulations, a capacitor discharge rateon-
board a tag can be used for timing [5].

3 The Group Yoking Protocol

The idea of a ’yoking-proof’1 for a group of tags is to
construct a circular chain of mutually dependent message
authentication code (MAC) computations. The purpose of
the construction is to ensure that if an untrusted reader
‘breaks the chain’ (i.e. does not read all the tags withint

time units), it will not be able to mount a replay attack nor
create a proof that will be accepted by the verifier.

Assume that the system containsn tags, which are de-
noted byT1, T2, . . . , Tn. Each tagTi is assigned a unique
key xi that consists ofd bits and a counterci. A tag has
the ability to compute a keyed hash function and a standard
message authentication code, which can be implemented as
a keyed hash function, such as HMAC, in order to simplify
the circuit. A reader will readk tags and produce a proof
P that the tags were read near-simultaneously, i.e. withint

time units. The verifierV knows all key assignments to tags
and will verify that the proofP was indeed not forged.

Let f : {0, 1}d × {0, 1}∗ → {0, 1}d be a keyed hash
function, and letMAC : {0, 1}d × {0, 1}∗ → {0, 1}d de-
note a standardmessage authentication code. Letfx[m] and
MACx[m] denote the computation off andMAC with a
secretx on inputm, respectively.

In our protocol, we assume that the reader generates
a proof for T1, T2, . . . , Tk (k ≤ n) and queries them in
that order. (Tags are queried based on their IDs or the
random numbers that they generate.) The first tag will
computer1 = fx1

[c1] and senda1 = (1, c1, r1) to the
reader. The reader will then senda1 to the second tag. The
second tag will computer2 = MACx2

[c2, a1] and send
a2 = (2, c2, r2) to the reader. The reader will then send
a2 to the third tag, which will perform the same computa-
tion as the second tag, i.e.r3 = MACx3

[c3, a2] and send
a3 = (3, c3, r3) to the reader. The reader will then senda3

to the fourth tag and so on, until the last tagk has computed
rk and sentak = (k, ck, rk) to the reader.

The reader then sendsak to the first tag, which com-
putesm = MACx1

[a1, ak] (assuming thatt time units
have not yet passed since the initial tag access), and
sends m to the reader. The reader creates a proof
P1,2,...,k = (1, 2, . . . , k, c1, c2, . . . , ck, m). To verify the
proofP1,2,...,k, the verifier performs the same computations
as the tags1, 2, . . . , k, maintaining the order, and compares
its generated proofP to the reader-provided proofP1,2,...,k.
If the proofs match, the verifier outputssuccess; otherwise,
it outputsfailure. The algorithms for tag initialization, the
reader, a tag, and the verifier are shown below.

1The term “yoking” suggests thejoining together, or the simultaneous
presence of all the tags.

Algorithm 1 : Tag Initialization

for i = 1 to n do
ci = 0
xi← chooserandomlyfrom {0, 1}d

end

Algorithm 2 : Reader

send(first, 0) to T1

receive(a1 = (T1, c1, r1)) from T1

for i = 2 to k do
send(not first, ai−1) to Ti

receive(ai = (Ti, ci, ri)) from Ti

end
send(final, ak) to T1

receive(m) from T1

constructP1,2,...,k = (1, 2, . . . , k, c1, c2, . . . , ck, m)

Notice that each tag computes a MAC of a message that
is a function of a MAC computed by the preceding tag in a
chain. This ensures that the reader has at mostt time units
to create the proof. To avoid replay attacks and allow tem-
poral ordering of the proofs, each tag increments its counter
immediately after it sendsai to the reader.

If the first tag does not update its counter right after it
sends its first message, a possibly malicious reader can cre-
ate a proofP that will successfully pass through the verifier,
without reading all the tags within the specified time bound
t. In such a scenario, a proof can be forged as follows. The
malicious reader can ask the first tag to computea1, then
wait for t time units to elapse in order to causeT1 to timeout,
then senda1 to T2 to obtaina2. Then, the reader will access
T1 for a dummy computation ofa1, and senda2 to T1 to
obtainm, and construct a valid proofP = (1, 2, c1, c2, m).
Juels’ basic yoking protocol [5] suffers from this problem
unless the counter on the first tag is incremented on a time-
out, but this is not specified in his paper.

The security of our scheme hinges on the (exponentially-
small) probabilityδ that an adversaryA is able to construct
a ’yoking-proof’ P1,...,k, which could fool the verifierV
into reporting “success”, without actually reading the IDs
of all the tags involved in the protocol withint time units,
as intended.

Theorem: Given random-oracle assumptions forf and
MAC [1], the success probabilityδ of an adversaryA for a
grouping protocol is bounded above by2−d whered is the
message length.

The statement of the security property of our group pro-
tocol is similar to the one presented in [5]. A detailed proof
can be found in the full version of our paper [3].



Algorithm 3 : Tag

Input : Tag’s order in the chain:mode and output
value from the previous tag in the chain:value

switch modedo
case’first’

start timer
r = fx[c]
a = (ID, c, r)
store(a)
send(a)
c = c + 1
break

end
case’not first’

r = MACx[c, value]
c = c + 1
send(a = (ID, c, r))
break

end
case’final’

if timer has not timed outthen
m = MACx[a, value]
send(m)
timer times out

else
abort

end
break

end
end

4 Discussion
Our group-yoking protocol can be adapted to the ’Mini-

malist MAC’ (one-time MAC) protocol proposed by Juels.
However, a one-time proof is not very useful given the pos-
sibility that the reader may be malicious.

To prevent an adversary from replaying old proofs, the
verifier can store counter values of tags from the latest cor-
rect proofs in which the tags participated. A replay attack
will use the counter value that is less than or equal to the last
recorded counter for the tag. Storing counter values also al-
lows for a temporal ordering of the proofs, which may be
desired. If there is more than one verifier in the system, the
verifiers need to be able to share the tags’ counter values.

Having counters on-board tags allows for temporal or-
dering of the proofs and guarantees that a keyed hash func-
tion will never be recomputed on the same input. However,
such counters require tags to maintain a persistent state be-
tween several runs of the protocol. Counters can be substi-
tuted with random numbers generated on-board the tags (the
tags will need to be equipped with pseudo-random num-
ber generators and maintain secret seeds). These random
numbers should have enough bits (e.g., 64+ bits) to prevent

Algorithm 4 : Verifier

Input : ProofP = (1, 2, . . . , k, c1, c2, . . . , ck, m)
r1 = fx1

[c1]
a1 = (1, c1, r1)
for i = 2 to k do

ri = MACxi
[ci, ai−1]

ai = (i, ci, ri)
end
m∗ = MACx1

[a1, ak]
if m == m∗ then

return success

else
return failure

end

“birthday attacks”. However, if random numbers are used
instead of counters, and a replay of previous proofs is a pos-
sible attack, all past proofs need to be stored and compared
against the new proof.

We assumed above that the reader cannot physically steal
secrets from the tags. We can relax this assumption and
allow a malicious reader to physically steal secrets from one
or more tagsafterthe timer of the yoking protocol times out.
In this scenario, possessing the key of the “first” tag will
enable a malicious reader to complete the broken protocol
on its own and thereby construct a forged proof (stealing
any other key will not enable a malicious reader to complete
the proof and is therefore not a threat).

To prevent such an attack, each tag can update its secret
key in a forward-secure manner. For example, a one-way
hash function can be used to update the key. The old key
is then securely discarded. For this scheme to be practi-
cal, tags should maintain counters, rather than use random
numbers as seeds, to allow a verifier to quickly determine
the secret used by each tag during the computation.

5 Anonymous Yoking
Juels’s “yoking-proof” protocol and our generalization

do not hide the identities of tags - each tag sends its identi-
fier and its counter value to the reader. Before the execution
of the protocol, the reader is unaware of the identities of
tags, and running the yoking protocol will reveal them to it.
In practical scenarios, we would like to preserve the privacy
of objects associated with the tags (i.e. not reveal tag IDs to
untrusted readers). We therefore introduce a new problem
formulation, calledanonymous yoking, which in addition to
the requirements of a “yoking-proof”scenario, also requires
tags to preserve their privacy.

The protocol we propose for anonymous yoking is sim-
ilar to the generalized “yoking-proof” protocol discussed
above. Letf : {0, 1}d×{0, 1}∗ → {0, 1}d be a keyed hash
function. Upon the reader’s request, each tag will generate



a random numberr, and computea = fx(r, value), where
x is a secret key stored on a tag andvalue is an output of the
previous tag in the chain, as in our “yoking-proof” scenario
above. The first tag setsvalue equal to0. Each tag will re-
spond to the reader’s request by sending(r, a) to it, and the
first tag will close the chain. The proof of security is very
similar to the one for the generalized protocol. The verifier
will try to determine which secrets were used to compute
eachai givenri andai−1. Sinceai is a function ofai−1 for
all 2 ≤ i ≤ k, the process of determining the secrets and
verifying the proof coincide.

6 Speeding Up the Yoking Protocols

In our generalized “yoking-proof” protocol there is one
tag that starts and closes the chain. This implies that the
time it takes to create the proof is the sum of the reader
communication times with each tag. This is acceptable for
as long as the number of tags participating in the protocol
is small. However, if the number of tags is large, speeding
up the protocol may not be a simple optimization, but a re-
quirement to ensure that all tags remain within the reader(s)
reading range, and that the proof can be created within the
required time limits.

The yoking-proof creation can be sped up by splitting
the circular chain of dependent MACs into a group of arcs,
where each arc consists of a sequence of dependent MACs,
and where the adjacent arcs are inter-dependent. Each arc
has a single element that plays the role of the “first” and the
“last” tag. Let ID1, . . . , IDk be the tags’ identifiers sorted
by the tags ID, or by the random numbers generated on-
board the tags for anonymous yoking. We split the sorted
list of identifiers into the desired,g, number of groups (e.g.,
ID1, . . . , IDi1 , IDi1+1, . . . , IDi2 , . . . , IDig

, . . . , IDk).
For example,ID1 is the “first” and the “last” element of

the first arc. It starts the chain of its group (ID1, . . . , IDi1 ) as
described in the generalized “yoking-proof”protocol, andit
closes the chain of the groupIDig

, . . . , IDk. In other words,
the first element of each arc starts the chain of the arc and
closes the chain of the preceding arc.

Note that the protocol requires multiple readers, or a sin-
gle reader with multiple antennas, as well as a medium ac-
cess control scheme that allows the reader(s) to communi-
cate with more than one tag at a time (so that collisions are
minimized/avoided). The time to create the yoking proof
is the sum of the reader communication times with the tags
belonging to the longest arc. Therefore, the overall speedup
factor resulting from partitioning the tag set into arcs, can
ideally approach the number of arcs.

7 Related Work

The authors of [6] suggest a group protocol which re-
lies on time stamps provided by the back-end database. In
their scheme a reader receives a time stampTS from the

database, which it sends to all the tags. Each tagTi com-
putesmi = MACxi

[TS] and sendsmi back to the reader.
The authors assume the existence of one powerful/leader
tag among those read. The reader sends allmi to this leader
tag, which encrypts them along with the time stampTS us-
ing encryption functionSK keyed with a secret keyx. The
encryption resultCp is sent to the reader and the proof is
Pn = (TS, Cp).

First, the assumption in [6] that one of the tags is more
powerful than the others is not true in many practical scenar-
ios. The second and main weakness of their protocol is that
an untrusted reader can pick the time stampTS as a future
time, and then use it on one tag and later on another, thus vi-
olating the near-simultaneous read requirement. Even if the
time stampTS is encrypted, the reader can still separate
tag accesses arbitrarily far apart in time, since each access
is independent of the others.

8 Conclusion
We designed a protocol that creates a proof that an arbi-

trarily large group of RFID tags are read within a specified
time bound. This “yoking-proof” is improbable to forge
and is verifiable off-line by a trusted verifier. We then mod-
ified the security requirements for the problem, requiring
the system to maintain privacy, and described a protocol for
anonymous yoking, where the tag identities are hidden. We
showed how group yoking protocols can be sped up. Fu-
ture research opportunities include the development of other
“yoking-proofs” for RFID, which utilize the ability of tags
to communicate with each other through the reader [2].

References

[1] M. Bellare and P. Rogaway,Random oracles are practi-
cal: A paradigm for designing efficient protocols, First
ACM Conference on Computer and Communications Secu-
rity, 1993, pp. 62-73.

[2] L. Bolotnyy and G. Robins,Inter-Tag Communication and
Tag Cooperation in RFID Systems, Technical Report CS-
2006-11, Department of Computer Science, University of
Virginia, 2006.

[3] L. Bolotnyy and G. Robins,Generalized “Yoking-Proofs”
for a Group of Radio Frequency Identification Tags, Techni-
cal Report CS-2006-12, Department of Computer Science,
University of Virginia, 2006.

[4] EPCglobal, Specification for RFID Air Interface,EPC
Radio-Frequency Identity Protocols Class-1 Generation-2
UHF RFID - Protocol for Communications at 860MHz-
960MHz, Version 1.0.9.

[5] A. Juels, ‘Yoking-Proofs’ for RFID Tags, IEEE Workshop
on Pervasive Computing and Communication Security (Per-
Sec), 2004, pp. 138-143.

[6] J. Saito and K. Sakurai,Grouping Proof for RFID Tags,
19th International Conference on Advanced Information
Networking and Applications (AINA), 2005, Volume 2, pp.
621-624.


