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ABSTRACT
Control of variability in the back end of the line, and hence in
interconnect performance as well, has become extremely difficult
with the introduction of new materials such as copper and low-k di-
electrics. Uniformity of chemical-mechanical planarization (CMP)
requires the addition of area fill geometries into the layout, in order
to smoothenthe variation of feature densities across the die. Our
work addresses the followingsmoothness gapin the recent litera-
ture on area fill synthesis. (1) The very first paper on the filling
problem (Kahng et al., ISPD98 [7]) noted that there is potentially
a large difference between the optimum window densities in fixed
dissections vs. when all possible windows in the layout are consid-
ered. (2) Despite this observation, all filling methods since 1998
minimize and evaluate density variation only with respect to afixed
dissection. This paper gives the first evaluation of existing filling al-
gorithms with respect to “gridless” (“floating-window”) mode, ac-
cording to both theeffectiveandspatialdensity models. Our exper-
iments indicate surprising advantages of Monte-Carlo and greedy
strategies over “optimal” linear programming (LP) based methods.
Second, we suggest new, more relevant methods of measuring a
local uniformity based on Lipschitz conditions, and empirically
demonstrate that Monte-Carlo methods are inherently better than
LP with respect to the new criteria. Finally, we propose new LP-
based filling methods that are directly driven by the new criteria,
and show that these methods indeed help close the “smoothness
gap”.
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1. INTRODUCTION
Chemical-mechanical planarization(CMP) and other manufac-

turing steps in nanometer-scale VLSI processes have varying ef-
fects on device and interconnect features, depending on the local
characteristics of the layout. To improve manufacturability and
performance predictability, foundry rules require that a layout be
made uniform with respect to prescribed density criteria, through
insertion ofarea fill (dummy fill) geometries.

All existing methods for synthesis of area fill are based on dis-
cretization: the layout is partitioned intotiles, and filling constraints
or objectives (e.g., minimizing the maximum density variation) are
enforced for squarewindowsthat each consists ofr�r tiles. Thus,
to practically control layout density inarbitrary windows, den-
sity bounds are enforced in only afinite set of windows. More
precisely, both foundry rules and EDA physical verification and
layout tools attempt to enforce density bounds withinr2 overlap-
ping fixed dissections, wherer determines the “phase shift”w=r
by which the dissections are offset from each other. The result-
ing fixed r-dissection(see Figure 1) partitions then � n layout
into tiles Tij , then covers the layout byw � w-windowsWij ,
i; j = 1; : : : ; nr

w
� 1, such that each windowWij consists ofr2

tilesTkl, k = i; : : : ; i+ r � 1, l = j; : : : ; j + r � 1.
Two main filling objectives are considered in the recent litera-

ture:

� (Min-Var Objective)the variation in window density (i.e.,
maximum window density minus minimum window density)
is minimized while the window density does not exceed the
given upper boundU ;

� (Min-Fill Objective)the number of inserted fill geometries is
minimized while the density of any window remains in the
given range(L; U).

Recent methods on area fill synthesis also focused exclusively
on the fixed-dissection context, including:

� Linear Programming (LP) methods based on rounding relax-
ation of the corresponding integer linear program formula-
tions. The LP formulations for filling were first proposed by
Kahng et al. in [6] and adapted to other objectives and CMP
models in [12, 13]);
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Figure 1: In the fixed r-dissection framework, then-by-n lay-
out is partitioned by r2 (here, r = 3) distinct overlapping dis-
sections with window sizew�w. The layout is partitioned into
nr
w
� nr

w
tiles. Each dark-borderedw � w window consists of

r2 tiles.

� Greedy methods which iteratively find the best tile for the
next filling geometry to be added into the layout. These
methods were first used in [3] for ILD thickness control, and
also used for shallow-trench isolation (STI) CMP model in
[13]);

� Monte-Carlo (MC) methods, which are similar to greedy meth-
ods but insert the next filling geometry randomly. Due to its
efficiency and accuracy, these were used for both flat [3, 4]
and hierarchical [2] layout density control; and

� Iterated Greedy (IGreedy) and Iterated Monte-Carlo (IMC)
methods, which improve the solution quality by iterating the
insertions and deletions of dummy fill features with respect
to the density variation ([3]).

The motivation for our present work is a “smoothness gap” in
the fill literature. All existing filling methods fail to consider the
potentially large difference between extremal densities in fixed-
dissection windows and extremal densities when all possible win-
dows are considered. On the other hand, the very first paper in the
fill synthesis literature (Kahng et al., ISPD98 [7]) already pointed
out the gap between fixed-dissection and “gridless” analyses, for
both tile density and window density.1 The potential consequence
of the smoothness gap is that the fill result will not satisfy either
given upper bounds on post-fill window density, or given bounds on
density variation between windows. As post-CMP variation for ox-
ide ILD polishing is essentially monotone in window density vari-
ation [11], this smoothness gap can compromise manufacturability
of the layout, particularly given the small values ofr in recent de-
sign rules.

We first address the discretization gap in existing analyses (i.e.,
evaluations) methods. Previous works compare density control meth-
ods only with respect to a given fixed grid, which underestimates
the actual “gridless” density variation, but has been justified on
grounds that gridless analysis is impractical. In this paper, we show
for the first time the viability of gridless orfloating windowanal-
yses, originally developed for the spatial density model [6], and
extend it for the more accurate effective density model [9]. Sec-
ond, previous research in layout density control concentrated on
theglobal uniformity achieved by minimizing the window density

1Bounding the spatial density in a fixed set ofw�w windows can
incur substantial error, since other windows may still violate the
density bounds [6].

variation over the entire layout. However, the density variation be-
tween locations which are far from each other is actually not so
critical, in that the pressure/speed of the polishing pad can be (self-
)adjusted during CMP. Thus, we propose and analyze criteria for
“local uniformity” as a measure of smoothness in filling solutions.
We evaluate existing methods with respect to the new criteria, and
we suggest LP-based methods that directly optimize filling solu-
tions with respect to smoothness.

The rest of the paper is organized as follows. In Section 2 we
show how to apply floating window density analysis methods (such
as extremal-density window and multilevel density analyses) to spa-
tial and effective density models. We then give the first “gridless”
evaluation of existing filling algorithms, under theeffectiveas well
asspatialdensity models. Our experiments indicate surprising ad-
vantages of Monte-Carlo and greedy methods over “optimal” linear
programming (LP) based methods. In Section 3 we introduce new
Lipschitz-like measures for layout smoothness and describe new
LP-based filling methods driven by such measures. We also com-
pare the results of existing and new filling approaches, with respect
to the new smoothness criteria. Section 4 concludes with directions
for future work.

2. LAYOUT DENSITY ANALYSES
As noted above, for the sake of tractability, previous works have

used fixed dissections to decide the amount and positions of dummy
fill features[6]. A smoothness gap thus exists because a filling so-
lution based on a fixed-dissection does not address the true post-
filling density variation. Here we first summarize the two main
density models used in the current literature. We then introduce two
extremal-density analysis algorithms (for spatial and effective den-
sity, respectively) which we use to compute post-fill layout density.
Finally, we evaluate existing filling methods according to (near-
)gridless density variation.

2.1 Density Models for Oxide CMP
We focus on layout density control for (oxide) interlevel dielec-

tric CMP.2 Several models have been proposed in [8], including the
model of [10], where the interlevel dielectric thicknessz at location
(x; y) is calculated as:

z =

�
z0 � ( Kit

�(x;y)
) t < (�0z1)=Ki

z0 � z1 �Kit+ �0(x; y)z1 t > (�0z1)=Ki

(1)

The crucial element of this model is the determination of the effec-
tive initial pattern density,�(x; y). The simplest model for�(x; y)
is the local areal feature density, i.e., the window density is simply
equal to the sum:

�(Wij) =
i+r�1X
k=i

j+r�1X
l=j

area(Tkl) (2)

wherearea(Tkl) denotes the original layout area of the tileTkl.
This spatial densitymodel is due to [6], which solved the resulting
filling problem using linear programming.

A more accurate model considers the deformation of the polish-
ing pad during the CMP process [5]: effective local density�(x; y)

2Several recent works, particularly by Wong et al., have studied al-
ternative arenas for dummy fill, including shallow-trench isolation
and dual-damascene copper. For such arenas, density calculations
and physical polish mechanisms are different from those in the ox-
ide context. Consideration of these alternate models is orthogonal
to our contribution; certainly, the concept of a “smoothness gap”
applies to all filling contexts.
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Figure 2: An arbitrary floating w � w-window W always con-
tains ashrunk (r� 1)� (r� 1)-window of a fixedr-dissection,
and is always covered by abloated(r+1)� (r+ 1)-window of
the fixedr-dissection. Astandardr� r fixed-dissection window
is shown with thick border. A floating window is shown in light
gray. The white window is thebloatedfixed-dissection window,
and the dark gray window is the shrunk fixed-dissection win-
dow.

is calculated as the sum ofweightedspatial pattern densities within
the window, relative to an elliptical weighting function:

f(x; y) = c0 exp[c1(x
2 + y2)c2 ] (3)

with experimentally determined constantsc0, c1, andc2 [12]. The
discretizedeffective local pattern density� for a windowWij in the
fixed-dissection regime (henceforth referred to aseffective density)
is:

�(Wij) =

i+r�1X
k=i

j+r�1X
l=j

area(Tkl) � f(k � (i+
r

2
); l � (j +

r

2
))

(4)
where the arguments of the elliptical weighing functionf are the
x- andy-distances of the tileTkl from the center of the window
Wij .

2.2 Window Density Analyses
The authors of [6] proposed optimal extremal-density (i.e., min-

imum or maximum window density in the layout) analysis algo-
rithms. Their ALG1, with complexityO(k2) (k is the number of
rectangles in layout), is proposed as a means of checking the grid-
less post-filling density variation. However, with a large number of
original and dummy fill features, this algorithm may be infeasible
in practice.

Another method of [6] overcomes the intractability of optimal
extremal-density analysis, based on the following fact (see Fig. 2).

LEMMA 1. Given a fixedr-dissection, any arbitraryw � w
window will contain someshrunkw(1� 1=r)� w(1� 1=r) win-
dow of the fixedr-dissection, and will be contained in somebloated
w(1 + 1=r)� w(1 + 1=r) window of the fixedr-dissection.

The authors of [6] implemented the above Lemma within amulti-
leveldensity analysis algorithm (see Fig. 3). Here� > 0 is used to
denote the required user-defined accuracy in finding the maximum
window density. The listsTILESandWINDOWSare byproducts
of the analysis. Since any floatingw � w-windowW is contained
in some bloated window, the filled area inW ranges betweenMax
(maximumw � w-window filled area found so far) andBloatMax
(maximum bloated window filled area found so far). The algorithm
terminates when the relative gap betweenMax andBloatMaxis at
most2��, and then outputs the middle of the range (Max,BloatMax).

We use this algorithm (with accuracy = 1.5%) throughout this
paper to achieve an accurate, efficient post-filling density analy-

Multi-Level Density Analysis Algorithm
Input: n� n layout and accuracy� > 0
Output: maximum density ofw � w window with accuracy�
(1) Make a listActiveTilesof all w=r � w=r-tiles
(2) Accuracy=1, r = 1
(3) While Accuracy> 1 + 2� do

(a) Find all rectangles inw=r �w=r-tiles fromActiveTiles
(b) Find area of each window consisting of tiles from

ActiveTiles, add such window to the listWINDOWS
(c) Max = maximum area of standard window with tiles

from ActiveTiles
(d) BloatMax= maximum area of bloated window

with tiles fromActiveTiles
(e) For each tileT from ActiveTileswhich do not belong to

any bloated window of area more thanMaxdo
if Accuracy> 1 + �, then putT in TILES
removeT from ActiveTiles

(f) Replace inActiveTileseach tile with four of its subtiles
(g) Accuracy= BloatMax/Max, r = 2r

(4) Move all tiles fromActiveTilesto TILES
(5) Output max window density =(Max +BloatMax)=(2 �w2)

Figure 3: Multi-level density analysis algorithm.

sis.3 To handle theeffectivedensity model, the multi-level den-
sity analysis based on bloated and shrunk windows must be refined
somewhat. To obtain more accurate results, the multi-level density
analysis algorithm divides ther-dissection into smaller grids, so
that more windows will be considered. With the effective density
model, the discretized formulation (effective) shows that effective
local pattern density is dependent on the window sizew and the
r-dissection. That is, we have to consider the effect on the formu-
lation of the further division of layout during post-filling density
analysis. We assume here that the effective local pattern density
is still calculated with the value ofr-dissection used in the filling
process. The only difference is that the windows phase-shift will
be smaller. For example, in Figure 4(a) we calculate the effective
density of the window shown in light gray by considering5 � 5
tiles (also called “cells”) during the filling process. In Figure 4(b)
the layout is further partitioned by a factor of4. The effective den-
sity of the light gray window will be still calculated with the5� 5
“cells”. Here each “cell” has the same dimension as a tile in the
filling process and consists of2 � 2 smaller tiles. More windows
(e.g., the window with thick border) with smaller phase-shifts will
be considered in the more gridded layout.

2.3 Accurate Analysis of Existing Methods
Here we compare the performance of existing fill synthesis meth-

ods, using the accurate multilevel floating-window density analysis.
All experiments are performed using part of a metal layer extracted
from an industry standard-cell layout4 (Table 2.3). Benchmark L1
is the M2 layer from an 8,131-cell design and benchmark L2 is the
M3 layer from a 20,577-cell layout.

Table 2 shows that underestimation of the window density varia-
tion as well as violation of the maximum window density in fixed-

3For the test cases used in this paper, the runtimes of the multi-
level analysis withaccuracy = 1:5% appear reasonable. Our (un-
optimized) implementation has the following runtimes for Min-Var
LP solutions and the spatial density model: L1/32 (45 sec), L1/16
(183 sec), L2/28 (99 sec), L2/14 (390 sec), For the effective density
model, the runtimes are: L1/32 (49 sec), L1/16 (194 sec), L2/28
(109 sec), L2/14 (416 sec).
4Our experimental testbed integrates GDSII Stream input, conver-
sion to CIF format, and internally-developed geometric processing
engines, coded in C++ under Solaris. We use CPLEX version 7.0
as the linear programming solver. All runtimes are CPU seconds
on a 300 MHz Sun Ultra-10 with 1GB of RAM.
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Figure 4: Post-filling density analysis for the effective density
model. (a): a fixed-dissection, where each window consists of
5�5 cells (the same size as tiles); (b): a fixed-dissection for post-
filling density analysis, where each window consists of10 � 10
smaller tiles and each cell consists of2 � 2 tiles.

dissection filling can be severe: e.g., for the LP method applied to
the case L2/28/4 for the spatial (resp. effective) density model, the
density variation is underestimated by 210% (resp. 264%) and the
maximum density is violated by 21% (resp. 15%). Even for the
finest grid (L2/28/16), the LP method may still yield considerable
error: 11% (resp. 23%) in density variation and 1.2% (resp. 3.2%)
in maximum density violation. Note that the LP method cannot
easily handle a finer grid since the runtime is proportional tor6.

Our comparisons show that the winning method is IMC and the
runner-up is IGreedy. IMC and IGreedy can be run for much finer
grids since its runtime is proportional tor2 (resp. r2 log r). Al-
though for L2/28/16 errors in density variation and the maximum
density violation are similar, the iterative methods become consid-
erably more accurate.

test case L1 L2
layout sizen 125,000 112,000
# rectanglesk 49,506 76,423

Table 1: Parameters of four industry test cases. Here 40 units
are equivalent to 1 micron.

3. LOCAL DENSITY VARIATION
The main objective of layout filling is to improve CMP and in-

crease yield. Traditionally, layout uniformity has been measured
by global spatial or effective density variation over all windows.
Such a measure does not take in account that the polishing pad
during CMP can change (adjust) the pressure and rotation speed
according to the pattern distribution (see [11]). Boning et al. [1]
further point out that while the effective density model is excellent
for local CMP effect prediction, it fails to take into account global
step heights. The influence of density variation between far-apart
regions can be reduced by a mechanism of pressure adjustment,
which leads to thecontact wear modelproposed in [1]. Within
each local region, the area fill can be used to improve the CMP per-
formance. Therefore, density variation between two windows in
opposite corners of the layout will not cause problems because of
the polishing dynamics. According to the integrated contact wear
and effective density model, only a significant density variation be-
tween neighboring windows will complicate polishing pad control
and may cause either dishing or underpolishing. Thus, it is more
important to measure density variation betweenneighboringwin-
dows.

3.1 Lipschitz Measures of Smoothness
Depending on the CMP process and the polishing pad movement

relative to the wafer, we may consider different window “neighbor-
hoods”. Below we propose three relevant Lipschitz-like definitions
of local density variation which differ only in what windows are
considered to be neighbors.

� Type I: The maximum density variation of everyr neighbor-
ing windows in each row of the fixed-dissection. The intu-
ition here is that the polishing pad is moving along window
rows and therefore only overlapping windows in the same
row define a neighborhood.

� Type II: The maximum density variation of every cluster of
windows which cover one tile. The idea here is that the pol-
ishing pad can touchall overlapping windows almost simul-
taneously.

� Type III: The maximum density variation of every cluster
of windows which cover one square consisting ofr=2� r=2
tiles. The difference between this and the previous definition
is the assumption that the polishing pad is moving slowly; if
windows overlap but are still too far from each other, then
we can disregard their mutual influence.

We compared the behaviors of existing filling methods with re-
spect to these Lipschitz characteristics. The results in Table 3 show
that there is a gap between the traditional Min-Var objective and
the new “smoothness” objectives: the solution with the best Min-
Var objective value does not always have the best value in terms
of “smoothness” objectives. For the spatial (resp. effective) den-
sity model, though LP yields the best result for the case L2/28/4
with Min-Var objective with fixed-dissection model, it can not ob-
tain the best result with respect to Lipschitz type-I variation. Thus,
“smoothness” objectives may be considered separately for the fill-
ing process. We also notice that Monte-Carlo methods can achieve
better solutions than LP with respect to the “smoothness” objec-
tives (note that although LP is “optimal”, it suffers from rounding
and discreteness issues when converting the LP solution to an ac-
tual filling solution).

3.2 Smoothness Objectives for Filling
Obviously, all Lipschitz conditions are linear and can be im-

plemented as linear programming formulations. We describe four
linear programming formulations for the “smoothness” objectives
with respect to the spatial density model. (The linear programming
formulations for the effective density model are similar.)

The first Linear Programming formulation for the Min-Lip-I ob-
jective is:

Minimize: L
Subject to:

pij � 0 i; j = 0; : : : ;
nr

w
� 1 (5)

pij � slack(Tij) i; j = 0; : : : ;
nr

w
� 1 (6)

i+r�1X
s=i

j+r�1X
t=j

pst � �ij
�
U � w2

� areaij
�
i; j = 0; : : : ;

nr

w
� 1

(7)
Wij �Wik � L; i; j; k = 0; : : : ;

nr

w
� 1 (8)

where�ij = 0 if areaij > U � w2, and = 1 otherwise, and

Wij =
i+r�1X
s=i

j+r�1X
t=j

area(Tst) +
i+r�1X
s=i

j+r�1X
t=j

pst
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LP Greedy MC IGreedy IMC
Test case OrgDen FD Multi-Level FD Multi-Level FD Multi-Level FD Multi-Level FD Multi-Level

T/W/r MaxD MinD DenV MaxD DenV DenV MaxD DenV DenV MaxD DenV DenV MaxD DenV DenV MaxD DenV
Spatial Density Model

L1/16/4 .2572 .0516 .0639 .2653 .0855 .0621 .2706 .0783 .0621 .2679 .0756 .0621 .2653 .0840 .0621 .2653 .0727
L1/16/16 .2643 .0417 .0896 .2653 .0915 .0705 .2696 .0773 .0705 .2676 .0758 .0705 .2653 .0755 .0705 .2653 .0753
L2/28/4 .1887 .0500 .0326 .2288 .1012 .0529 .2244 .0986 .0482 .2236 .0973 .0326 .2202 .0908 .0328 .2181 .0898
L2/28/16 .1887 .0497 .0577 .1911 .0643 .0672 .1941 .0721 .0613 .1932 .0658 .0544 .1921 .0646 .0559 .1919 .0655

Effective Density Model
L1/16/4 .4161 .1073 .0512 .4244 .0703 .0788 .4251 .0904 .0520 .4286 .0713 .0481 .4245 .0693 .0499 .4251 .0724
L1/16/16 .4816 .0000 .2156 .4818 .2283 .2488 .5091 .2787 .1811 .5169 .2215 .1850 .4818 .2167 .1811 .4818 .2086
L2/28/4 .2977 .1008 .0291 .3419 .1060 .0630 .3385 .1097 .0481 .3340 .0974 .0480 .3186 .1013 .0397 .3240 .0926
L2/28/16 .5577 .0000 .2417 .5753 .2987 .2417 .5845 .2946 .2617 .5800 .3161 .2302 .5691 .2916 .2533 .5711 .3097

Table 2: Multi-level density analysis on results from existing fixed-dissection filling methods. Notation:T/W/r: Layout / window
size / r-dissection; LP: linear programming method; Greedy: Greedy method; MC: Monte-Carlo method; IGreedy: iterated
Greedy method; IMC: iterated Monte-Carlo method; OrgDen: density of original layout; FD: fixed-dissection density analysis;
Multi-Level: multi-level density analysis; MaxD: maximum window density; MinD: minimum window density; DenV: density
variation.

Test case LP Greedy MC IGreedy IMC
T/W/r LipI LipII LipIII LipI LipII LipIII LipI LipII LipIII LipI LipII LipIII LipI LipII LipIII

Spatial Density Model
L1/16/4 .0832 .0837 .0713 .0712 .0738 .0627 .0678 .0709 .0600 .0818 .0824 .0630 .0673 .0698 .0597
L1/16/16 .0854 .0868 .0711 .0730 .0742 .0644 .0708 .0742 .0643 .0724 .0725 .0617 .0707 .0730 .0610
L2/28/4 .0414 .0989 .0841 .0412 .0960 .0893 .0289 .0947 .0852 .0333 .0883 .0755 .0286 .0873 .0766
L2/28/16 .0330 .0642 .0632 .0388 .0713 .0707 .0248 .0658 .0658 .0272 .0619 .0604 .0265 .0631 .0606

Effective Density Model
L1/16/4 4.048 4.333 3.864 5.332 5.619 5.190 3.631 4.166 3.448 3.994 4.254 3.132 4.245 4.481 3.315
L1/16/16 0.843 0.843 0.835 0.978 1.051 1.051 0.814 0.847 0.847 0.839 0.847 0.847 0.763 0.770 0.770
L2/28/4 2.882 5.782 4.855 2.694 6.587 6.565 1.498 5.579 5.092 2.702 6.317 5.678 2.532 5.640 4.981
L2/28/16 1.000 1.159 1.159 1.061 1.147 1.147 1.115 1.235 1.230 0.936 1.136 1.128 1.112 1.204 1.189

Table 3: Different behaviors of existing filling methods on ”smoothness” objectives. Note: All data for effective density model have
been timed by103. Notation: LipI: Lipschitz condition I; LipII: Lipschitz condition II; LipIII: Lipschitz condition III.

Here,U is the given upper bound of the effective tile densities.
The constraints (5) imply that features can be added but not deleted
from any tile. The slack constraints (6) are computed for each tile.
The pattern-dependent coefficientpattern denotes the maximum
pattern area which can embedded in an empty unit square. If a tile
Tij is originally overfilled, then we setslack(Tij) = 0. In the LP
solution, the values ofpij indicate the fill amount to be inserted
in each tileTij . The constraint (7) says that no window can have
density greater than thanU (unless it was initially overfilled). The
constraints (8) imply that the auxiliary variableL is an upper bound
on all variation between(2r + 1) windows in the same row.

The second Linear Programming formulation for the Min-Lip-II
objective replaces the constraints (8) with the following constraints
(9):

minDen(i; j) �Wlm � maxDen(i; j)

maxDen(i; j)�minDen(i; j) � L

i; j = 1; : : : ;
nr

w
� 1; l(m) = i(j)� r; : : : ; i(j) + r (9)

Here, the auxiliary variablesminDen(i; j) andmaxDen(i; j) are
the minimum and maximum tile effective densities in square(2r+
1� 2r+ 1) centered atTi;j . The constraints above ensure that the
density variations among all windows which coverTi;j is less than
the auxiliary variableL.

The Min-Lip-III objective strives to minimize the maximum den-
sity variation of every cluster of windows which cover one square
consisting ofk tiles. The constraints (9) are changed to the follow-
ing:

i; j = 1; : : : ;
nr

w
� 1; l(m) = i(j)�

r

2
; : : : ; i(j) +

r

2
(10)

The constraints (10) ensure that the density variation between any
two windows which coverr� r tiles is less than the auxiliary vari-
ableL.

Finally, in order to consider the “smoothness” objectives together
with the Min-Var objective, we propose another LP formulation
with thecombinedobjective which is the linear summation of Min-
Var, Lip-I, and Lip-II objectives with specific coefficients.

Minimize: C0 �M + C1 � LI + C2 � LII

Lip-I Constraints (8), Lip-II (9) and Min-Var constraints (11) are
added for the combined objective:

M �Wi;j ; i; j = 0; : : : ;
nr

w
� 1 (11)

Here, the auxiliary variablesLI andLII are the maximum Lips-
chitz condition type-I and type-II, and the auxiliary variableM is
a lower bound on all tile densities.

3.3 Computational Experience
We tested the smoothness of filling solutions generated using the

same test cases, with smoothness evaluated using finest-r density
analysis withr = 64. Runtimes of the new methods are substan-
tially longer than for the original Min-Var LP formulation, because
many more constraints are added for each layout window due to
the Lipschitz condition objectives. For example, for L2/28/8 and
the spatial density model, the runtime of Min-Var LP is 6.9 sec-
onds, while the Lip-I LP runtime is 3.41 seconds, the Lip-II LP
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Test case Min-Var LP LipI LP LipII LP LipIII LP Comb LP
T/W/r DenV Lip1 Lip2 Lip3 DenV Lip1 Lip2 Lip3 DenV Lip1 Lip2 Lip3 DenV Lip1 Lip2 Lip3 DenV Lip1 Lip2 Lip3

Spatial Density Model
L1/16/4 .0855 .0832.0837.0713 .1725 .0553.1670.1268 .1265 .0649.0663.0434 .1273 .0733.0734.0433 .1143 .0574.0619.0409
L1/16/8 .0814 .0734.0777.0670 .1972 .0938.1932.1428 .1702 .1016.1027.0756 .1835 .1158.1224.0664 .1707 .0937.1005.0766
L2/28/4 .1012 .0414.0989.0841 .0724 .0251.0720.0693 .0888 .0467.0871.0836 .0943 .0462.0928.0895 .0825 .0242.0809.0758
L2/28/8 .0666 .0340.0658.0654 .0871 .0264.0825.0744 .0700 .0331.0697.0661 .1188 .0594.1033.0714 .0747 .0255.0708.0656

Effective Density Model
L1/16/4 .0703 .0045.0043.0039 .2662 .0040.0154.0100 .1594 .0039.0047.0033 .1792 .0043.0051.0030 .1753 .0040.0045.0034
L1/16/8 .1709 .0025.0025.0023 .3939 .0020.0060.0052 .2902 .0025.0025.0018 .2906 .0028.0029.0018 .2680 .0021.0022.0019
L2/28/4 .1060 .0029.0058.0049 .1051 .0013.0061.0061 .1022 .0029.0064.0054 .1039 .0026.0064.0052 .0953 .0015.0057.0049
L2/28/8 .1483 .0015.0023.0022 .1527 .0007.0024.0024 .1559 .0015.0023.0022 .2063 .0018.0032.0022 .1382 .0007.0021.0021

Table 4: Comparison among the LP methods on Min-Var and Lipschitz condition objectives. Notation:Min-Var LP: LP with Min-
Var objective; LipI LP: LP with Min-Lip-I objective; LipII LP: LP with Min-Lip-II objective; LipIII LP: LP with Min-Lip-III
objective; Com LP: LP with combined objective.

runtime is 994 seconds and the Lip-III LP runtime is 71.4 seconds.
For L2/28/8 and the effective density model, the runtime of Min-
Var LP is 2.3 seconds, while the Lip-I LP runtime is 708 seconds,
the Lip-II LP runtime is 5084 seconds and the Lip-III LP runtime is
2495 seconds. Since fill generation is a post-processing step (cur-
rently performed in PV tools), we do not believe that these runtimes
are prohibitive. Our major win is that LP is tractable with Lipschitz
objectives (as opposed to intractable with large values ofr). Of
course, finding smoothness objectives that result in smaller LPs is
a direction for future work.

The performances of the new LP formulations with “smooth-
ness” objectives are studied in Table 4. We use the coefficients
(0.4/0.4/0.2) in the combined objective; these values were derived
from the greedy testing of all coefficient combinations. Because of
LP’s rounding error,5 some new LPs do not achieve the best value
on certain test cases. From the comparison between the new LPs
and Min-Var LP, it appears that neither Min-Var LP nor the Lips-
chitz condition-derived LPs are dominant. At the same time, when
compared against existing filling methods in Table (3), the new LP
with combined objective normally achieves the best comprehen-
sive solutions in terms of trading off among the Min-Den, Lipschitz
conditions I and II. Another interesting observation is that the LP
with combined objective can achieve even smaller density varia-
tions than the Min-Var LP. This shows that the solution qualities of
LP methods can be significantly damaged by rounding effects, and
that a better non-LP method may be possible.

4. CONCLUSIONS & FUTURE RESEARCH
To improve manufacturability and performance predictability, it

is necessary to “smoothen” a layout by the insertion of “filling
(dummy) geometries”. In this paper, we pointed out the poten-
tially large difference between fixed-dissection filling results and
the actual maximum or minimum window density in optimal den-
sity analyses. We compared existing filling algorithms in grid-
less mode using the effective as well as the spatial density models.
We also suggested new methods of measuring local uniformity of
the layout based on Lipschitz conditions and proposed new filling
methods based on these properties. Our experimental results high-
light the advantages of Monte-Carlo and greedy -based methods
over previous linear program based approaches.

Ongoing work addresses extensions of multi-level density anal-
yses to measuring local uniformity (“smoothness”) with respect to

5The desired fill area specified for each tile in the LP solution must
be rounded to an area that corresponds to an an integer number of
dummy fill features.

other CMP physical models. We also seek improved methods for
optimizing fill synthesis with respect to our new (and possibly other
alternative) local uniformity objectives.

5. REFERENCES
[1] D. Boning, B. Lee, T. Tubawa, and T. Park, “Models for

Pattern Dependencies: Capturing Effects in Oxide, STI, and
Copper CMP”,Semicon/West Tech. Symp.: CMP Tech. for
ULSI Manuf., July 2001.

[2] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky,
“Hierarchical Dummy Fill for Process Uniformity”,Proc.
ASP-DAC, Jan. 2001, pp.139-144.

[3] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky,
“Practical Iterated Fill Synthesis for CMP Uniformity”,
Proc. Design Automation Conf., Los Angeles, June 2000, pp.
671-674.

[4] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky, “New
Monte-Carlo Algorithms for Layout Density Control”,Proc.
ASP-DAC, 2000, pp. 523-528.

[5] R. R. Divecha, B. E. Stine, D. O. Ouma, J. U. Yoon, D. S.
Boning, et al., “Effect of Fine-line Density and Pitch on
Interconnect ILD Thickness Variation in Oxide CMP
Process”,Proc. CMP-MIC, 1998.

[6] A. B. Kahng, G. Robins, A. Singh, H. Wang and A.
Zelikovsky, “Filling Algorithms and Analyses for Layout
Density Control”,IEEE Trans. Computer-Aided Design
18(4) (1999), pp. 445-462.

[7] A. B. Kahng, G. Robins, A. Singh, H. Wang and A.
Zelikovsky, “Filling and Slotting: Analysis and Algorithms”,
Proc. ACM/IEEE Intl. Symp. on Physical Design, April
1998, pp. 95-102.

[8] G. Nanz and L. E. Camilletti, “Modeling of
Chemical-Mechanical Polishing: A Review”,IEEE Trans. on
Semiconductor Manuf.8(4) (1995), pp. 382-389.

[9] D. Ouma, D. Boning, J. Chung, G. Shinn, L. Olsen, and J.
Clark, “An Integrated Characterization and Modeling
Methodology for CMP Dielectric Planarization”,Intl.
Interconnect Technology Conference, San Francisco, CA,
June 1998.

[10] B. Stine, “A Closed-Form Analytical Model for ILD
Thickness Variation in CMP Processes”,Proc. CMP-MIC,
1997.

[11] B. Stine, D. Ouma, R. Divecha, D. Boning and J. Chung,
“Rapid Characterization and Modeling of Pattern Dependent
Variation in Chemical Mechanical Polishing”,IEEE Trans.
Semi. Manuf., Feb. 1998.

[12] R. Tian, D. Wong, and R. Boone, “Model-Based Dummy
Feature Placement for Oxide Chemical Mechanical Polishing
Manufacturability”,Proc. Design Automation Conf., June
2000, pp. 667-670.

[13] R. Tian, X. Tang and D. F. Wong, “Dummy feature
placement for chemical-mechanical polishing uniformity in a
shallow trench isolation process ”,International Symposium
on Physical Design, April 2001, pp. 118-123.

142


