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Abstract

We give a computationally-efficient solution to a discrete version of the “Plateau problem”
on minimal surfaces. Our approach is based on a novel transformation using network flows to
find minimum-cost slabs, which correspond to minimal “surfaces” of prescribed thickness. An
implementation confirmed that this approach is viable for computing minimal surface solutions for
a variety of problem instances.
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1 Introduction

Given a contour in three dimensions, the “Plateau problem” is to find the surface of minimum area
that spans that contour. The Plateau problem is part of the field of minimal surfaces, which originated
with the development of the multidimensional calculus of variations [Cou50] [Fom90a] [Fom90b]. While
the study of minimal surfaces can be traced to Lagrange (1768), it was J. Plateau (1801-1883) who
conducted the first extensive investigations, using wire loops and soap films to physically model min-
imal spanning surfaces [Pla73]. Subsequently, many mathematicians of the nineteenth and twentieth
centuries, including Riemann, Weierstrass, and Schwarz, contributed to the theory of minimal surfaces
[Str89], culminating with the discovery of general analytic solutions by Douglas [Dou31] and Radé
[Rad33] in the 1930’s.

Practical applications of the Plateau problem abound. In orthopedic surgery or dentistry, the
shaping of prostheses involves a minimum surface computation to improve contact and to reduce the

risk of rejection or infection. Minimum surface computations also arise in the design of packaging for
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consumer goods; the analogous formulation in two dimensions corresponds to optimum path planning

for robotics, or rapid deployment in military applications [HKR93].

A surface has minimal area if and only if it has zero mean curvature at each point, but this
characterization is non-constructive. The problem is subtle: (i) a minimal surface may self-intersect,
(ii) a given contour can bound a multitude of different surfaces all having distinct topologies, and (iii)
a very slight modification to the bounding contour can cause an enormous change in the corresponding
minimal surface topology [Cou50] [Dou38]. Finding a minimal surface spanned by a given contour
typically entails solution of a system of partial differential equations. In many instances, analytic
solutions are known to exist but remain virtually impossible to find; thus, solutions to specific cases

have been individually discovered and proved over the years [Fom90a] [Oss69] [TF91].

This paper gives a new, constructive approach which solves a class of discrete Plateau problem
instances using network flow techniques. We generalize previous formulations in that we do not search
for a minimal (zero-thickness) surface; rather, we seek a minimal slab having some prescribed positive
thickness d (this informal terminology should evoke the picture of, e.g., a thick orange peel). Our
algorithm computes a minimum-cost slab having thickness everywhere of at least d, where cost is
defined to be the total weighted volume of the slab with respect to an arbitrary weight function defined

over 12 (previous formulations assume that the space is uniformly weighted).

Our solution diverges from the usual finite-element based approach, and instead employs a more
direct combinatorial technique involving network flows [FF62] [FF56] [FF57]. The crucial observation
is that a minimum-cost slab which spans a set of locations (e.g., the set of locations on the given
contour) is also a minimum-cost cut-set which separates two other locations. Given this observation,
we efficiently obtain optimal minimum surface solutions by computing maximum flows to exploit this
duality between spanning sets and separating sets [HKR92]. The salient features of our method are

summarized as follows:

1. First, we depart from traditional methods in allowing the minimum surface to possess a positive

thickness; this yields added realism in that physical objects all have such a “dimension” [Cou36].

2. Second, whereas all previous methods define the cost of the surface to be its area, we generalize the
minimum surface computation within an arbitrarily weighted space (as opposed to a uniformly-

weighted volume). This allows our method to produce solutions which trade off surface area in



favor of occupying “cheaper” regions of the space (e.g., in medical surgical applications this may
correspond to stronger / healthier regions within a bone). Again, this adds practicality to the

approach.

3. Third, our approach guarantees a globally optimal solution to the discrete Plateau problem that
we formally define below. In contrast, previous methods involve variational techniques which can
only guarantee to converge to locally optimal solutions. Our algorithm can be implemented to
run in O(|N|?) time where |N| is the number of nodes in a discrete mesh representation of the

space, and experimental results confirm that we can efficiently find minimal surface solutions.

4. Finally, other advantages include: (i) the restriction of our method to two dimensions provides
the first efficient, optimal solution for the minimum-width path planning problem in arbitrar-
ily weighted terrains [HKR93|, and thus our approach extends such methods as [Mit90]; (ii)
the method extends to address Plateau’s minimum-surface formulation in dimensions higher
than three; and (iii) the intrinsic regularity and geometry of the underlying space yields a lay-
ered, bounded-degree network representation, resulting in possible added efficiency using faster

network-flow approaches as they become available.

2 Problem Formulation

In its simplest form, the Plateau problem is as follows: given a Jordan curve I'* in R3, find a surface
D* of minimum area having boundary I'*. This formulation is difficult to address due to its generality,
and thus in the remainder of the paper we consider the well-studied class of instances first described by
Radé [Rad33], for which (1) the orthogonal projection I' of the given boundary I'* onto the zy-plane is
simple (i.e., non self-intersecting), and (2) the solution admits a functional representation z = f(z,y),
where f is continuous and has domain equal to the subset of the zy-plane bounded by I'. The first
condition specifies that the planar projection of the boundary curve forms a simple closed loop, while
the second condition stipulates that the minimal surface solution can be projected onto the interior of

this planar loop without any “overlap”.

Radd’s two conditions give us the “restricted Plateau Problem” [Rad33]: given a Jordan curve I'* in
3 whose projection I" onto the zy-plane is a deformed (i.e., homeomorphic to a) circle, find a surface

D* (having functional representation z = f(z,y)) of minimal area with boundary I'* (Figure 1). Our



discussion adopts the notational convention of using starred letters to denote three-dimensional objects
(e.g., a contour T'*, a surface D*), and unstarred letters to denote their corresponding projections (e.g.,

a boundary T, a region D).

Figure 1: A surface D* and its bounding contour T'*, as well as the corresponding
projected region D and its boundary T'.

An emerging trend has been to solve instances of the Plateau problem empirically via numerical
methods. Wilson [Wil61] discretized the problem by approximating the minimal surface using triangu-
lations. Other methods for the numerical solution of a restricted version of the Plateau problem were
given by Greenspan [Gre65] [Gre67], who used a combination of difference and variational methods,
and by Concus [Con67], who used a finite difference approach. A more general numerical method is the
finite element scheme given by Hinata et al. [HSK74]. More recent efforts include those of Tsuchiya,
who gave methods for approximating minimal surfaces in parametric form, again using a finite ele-
ment approach [Tsu86]. Tsuchiya’s work is noteworthy for demonstrating convergence under certain
conditions [Tsu87] [Tsu90], but this guaranteed convergence is not necessarily to the global optimum
solution. Most of these previous works do not address the issue of computational efficiency, and those
methods which are “efficient” in the size of the discretized problem representation cannot guarantee

convergence to the global optimum solution.

For non-parametric cases of the Plateau problem (i.e., when the surface is representable as a function
f(z,y) over a domain in the zy plane), some numerical methods can approximate the minimal surface
by numerically solving the induced differential equations. However, such techniques typically do not
make any algorithmic running-time guarantees with respect to convergence, whereas our method is
guaranteed to terminate within low-order polynomial time. Also, our techniques apply to non-uniform

costed spaces (i.e., when occupying certain regions of space by the minimal surface is more expensive



than other regions). This is an important practical consideration (e.g., in architecture, engineering,
or design) which is not addressed by previous methods. Finally, our methods generalize to certain
parametric cases, where the minimal surface does not necessarily admit a functional representation

(this issue will be elaborated in Section 6).

We now develop a discrete version of the Plateau problem which satisfies Radd’s conditions, and
which we solve in Section 3 below. Our development will focus on the duality between connection and

separation which motivates our network flow based approach.
Definition: A region is a simply connected, compact subset of R2.

Given any three-dimensional point set P* C R2, its projection is the set of all points in the zy-plane with
z and y coordinates equal to those of some point in P*; i.e., proj(P*) = {(z,y) | 3z > (=,y,2) € P*}.
We naturally extend this idea of projection to apply to any function f(z,y) of two variables, by
considering the function f to be the set/relation {(z,y, f(z,y)) | z,y € R, where f(z,y) is defined};
thus, proj(f) is simply the domain of the function f. With this in mind, we capture Radé’s class of
minimum-surface instances by defining a boundary to be a Jordan curve I' in the plane, and by defining
a contour I'* to be a three-dimensional embedding of a Jordan curve which has the required functional

representation:

Definition: A contour I'* is the set of points {(z,y, f(z,y)) € R® | (z,y) € T'} where f is a continuous

real function f : I' = R over some boundary T

By the Jordan curve theorem [CR41], any boundary I' partitions the plane into three mutually disjoint
sets: I itself; its interior int(T"); and its exterior ext(I'). Thus, a contour I'* is a three-dimensional
embedding of a (deformed) circle, and the orthogonal projection of I'* onto the zy-plane is the boundary
T of some region D =int(l') UT'. In view of this functional representation, any surface D* that spans

I will satisfy proj(D*) = D, i.e.:

Definition: A surface D* is the set of points {(z,y, f*(z,y)) € R%|(z,y) € D} where f* is a continuous

real function f*: D — R defined over some region D in the zy-plane.

Any contour I'* induces an infinite family of distinct spanning surfaces. We may view the continuous
surface function f* : D — R as an extension of the contour function f: ' — R; i.e., f*(z,v) = f(z,y)

for all (z,y) € ' C D (recall Figure 1).



Given a surface D*, define the cylinder cyl(D*) to be the set of all points directly above or below
D*; in other words, cyl(D*) = {(z,y,2) | (z,y) € proj(D*),z € R}. We may extend the cyl function
to contours: cyl(T*) =cyl(D), where as usual D =proj(T*) U int(proj(T*)). Intuitively, any surface

D* partitions cyl(D*) into three mutually disjoint subsets:

1. the points lying above D*, denoted by Dy = {(z,y,2) | (z,y) € proj(D*),z > f*(z,vy)};
2. the points of D* itself, {(z,y, f*(z,y)) | (z,y) € proj(D*)}; and

3. the points lying below D*, denoted by D} = {(z,y, 2) | (z,y) € proj(D*),z < f*(z,y)}

In other words, the surface D* separates D; from Df. In practice, we can truncate both the top and
the bottom of the cylinder cyl(T'*) “far enough” above and below D*, respectively, so that both Dj
and D are bounded sets. We then define a weight function w : cyl(T*) — R* such that each point

s € cyl(T*) has a non-negative weight w(s).

‘We now generalize our formulation to allow a prescribed non-zero thickness to the separating surface
D* (recall the orange peel analogy suggested earlier). From this, we will establish the relationship

between the concept of d-separation and this thickness-d requirement [GHY74] [Hu69)].

Definition: Given a contour I'*, a d-separating slab D* ¢ cyl(D*) is a superset of some surface D*
with I'* as the bounding contour of D*, such that any point of D} — D* is at distance d or greater

from any point of Dy — D*.

This is illustrated in Figure 2. We say that D~ is a minimal d-separating slab if no subset of D* satisfies
the preceding definition. The cost of a slab is defined to be the integral of the weight function w over
the volume of the slab. Because the weight function is non-negative and because we are interested
in minimum-cost slabs, our discussion henceforth will refer only to minimal d-separating slabs. Given

d > 0, the thickness-d Plateau problem is stated as follows:

Thickness-d Plateau Problem: Given a contour T'*, a weight function w : cyl(T*) — R*, and a

thickness d > 0, find a d-separating slab D* c cyl(T*) which has minimum total cost.

While the formulation specifies an arbitrary continuous weight function that must be integrated over
the volume of the slab to yield a total cost, in practical applications the space is often discretized relative

to a given fixed grid or sampling granularity. This is standard practice with numerical approaches to



Figure 2: a d-separating slab D* relative to a given contour I'*.

the Plateau problem (e.g., [HSK74] [Tsu86] [Wil61]), and we therefore adopt this assumption of a fixed
grid representation. With such a discrete version of the thickness-d Plateau problem, the cost of a
slab is naturally defined to be the sum of the weights of the grid points contained in it. The notion of

d-separation also naturally extends to a discrete grid:

Definition: Given a cylinder S, a discrete d-separating slab D* in the gridded space § is the set of

grid points of § contained in some d-separating slab D* in S (Figure 3).

-

X

Figure 3: A discretized representation S of a space S, and a discrete d-separating slab D*
in S. Note that D* is the set of lattice points contained in the continuous d-separating
slab D in S.

As in the continuous case, a discrete d-separating slab partitions the rest of the grid points into two

sets, such that each gridpoint in one set is at least distance d away from any gridpoint in the other



set. A discrete d-separating slab is minimal if no subset of it satisfies the preceding definition. We now

have:

Discrete Plateau Problem: Given a weighted gridded space S with border B C §, a contour I'* on
the border of 3, a thickness d > 0, and a weight function w : S — R, find a discrete d-separating slab

D* C § which contains I'* and has minimum total cost.

In the next section we use a network flow approach to develop an efficient, optimal algorithm for the
discrete Plateau problem. Note that the grid granularity is specified as part of the problem instance, and
that our method will optimally solve any instance of the discrete Plateau problem. As the granularity
quantum of the grid approaches zero, the solution of the discrete Plateau problem instance will converge

on the corresponding continuous thickness-d Plateau problem instance.

3 A Solution Using Network Flow

To solve the discrete Plateau problem, we use ideas from network flows in continua [Hu69] and exploit

the duality between a minimum cut and a maximum flow. The overview of our solution is as follows:

1. Create a d-connected mesh network over the gridded space S by connecting each lattice point to
all other lattice points within distance d; this guarantees that any separating set of nodes will
correspond to a slab with minimum thickness d (we use the obvious one-to-one correspondence

between nodes of the network and points in the gridded space 5’);

2. Connect a source node s to all nodes on the border B of the gridded space S that lie below the

contour IT'*;

3. Connect a sink node ¢ to all nodes on the border B of the gridded space S that lie above the

contour I'*;
4. Use a maximum flow algorithm to compute a maximum s-¢ flow in the resulting network;

5. A maximum s-t flow specifies a minimum cut through the gridded space S, which separates s
from ¢, and this minimum cut corresponds to a minimal thickness-d slab containing the given

contour I'*.



Before describing each of these steps in greater detail, we first review several key concepts from
the theory of network flows [FF62] [FF56] [FF57] [Law76]. A flow network n = (N, A, s,t,c,c') is a
directed graph with node set N; a set of directed arcs A C N x N; a distinguished source s € N and
a distinguished sink ¢t € N; an arc capacity function ¢ : A — R+ which specifies the capacity c;; > 0 of
each arc a;; € A; and a node capacity function ¢’ : N — R* which specifies the capacity ¢} > 0 of each
node n; € N. (To handle undirected graphs, we may replace each undirected arc a;; by two directed

arcs a;; and aj;, each having capacity c;;.)

A flow in n assigns to each arc a;; a value ¢;; with the constraint that 0 < ¢;; < c¢;;. An arc a;;
is saturated if ¢;; = c;j. We insist on flow conservation at every node except s and ¢, and we require

that the flow through each node does not exceed the capacity of that node:

i = Y b < & j# st
i k

A node n; is called saturated if E bij = c;-. Since flow is conserved at every node, the total amount of
i
flow from the source must be equal to the total flow into the sink, and we call this quantity the value

® of the flow:

2= ¢ = ) bit
@ J

A flow with the maximum possible value is called a mazimum flow. An s-t cut in a network is a set
(N', A") of nodes N' C N and arcs A’ C A such that every path from s to ¢t uses at least one node of
N’ or at least one arc of A’. The capacity c(N', A") of a cut is the sum of the capacities of all nodes and
arcs in the cut. A classical result of linear programming states that the maximum flow value is equal
to the minimum cut capacity; this is known as the maz-flow min-cut theorem [FF62] [FF56] [FF57],

which also generalizes to continuous domains [Str83]:

Theorem: Given a network n = (N, A, s,t,c,c'), the value of a maximum s-t flow is equal to the
minimum capacity of any s-t cut. Moreover, the nodes and arcs of any minimum s-t cut are a subset

of the saturated nodes and saturated arcs in some maximum s-¢ flow. 0

Recall our earlier observation that any slab D* will separate, or cut, D; from Dj. In particular,
a slab D* with small cost will correspond to a cut between a node s € D; and a node t € D} with a

small cost (capacity). Since a subset of the saturated nodes/arcs in some maximum s-t flow will yield



this s-t cut, it is natural to derive the desired minimal slab via a maximum flow computation in an

appropriately capacitated network.

Our first steps towards this goal transform an instance of the discrete Plateau problem into an
instance of network flow, by: (i) assigning capacities to nodes in the gridded space S according to the
weight function w : § — R, and (ii) converting the gridded space into a mesh network 1 by mapping
grid points to capacitated nodes of n and then adding infinite-capacity arcs to join these nodes into a

mesh.

To ensure that any s-¢ cut in the mesh created in step (ii) will have the required thickness, we define
the d-neighborhood of a node v to be the set of all nodes at distance d or less from v. We then connect
each node to all nodes in its d-neighborhood with infinite-capacity arcs, where d is the prescribed slab

thickness. An illustration of this construction for d = 2 is shown in Figure 4.
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Figure 4: A node and its d-neighborhood; here d = 2.

Finally, we introduce two new nodes, a source node s and a sink node t. We connect s to the nodes
on the gridded space’s border B C S lying “below” I'*, and similarly we connect ¢ to the nodes of
the border B C S lying “above” I'*. This forces any st-separating cut (which will correspond to the
desired d-separating slab) to contain the given contour nodes I'* lying on the border B of the gridded
space. In other words, we force the minimum slab to span the contour I'*. This completes the outline

of our transformation; Figure 5 gives a high-level illustration of the construction.

The resulting d-connected network has two useful properties. First, a minimum s-¢ cutset in this
network will consist only of nodes. This is because all arcs have infinite capacities, while there exist
cuts with finite cost since all node capacities are finite. Second, any set of nodes that forms a minimum

cut in this network must correspond to the set of lattice points located in the interior of a discrete
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Figure 5: A discrete Plateau problem instance transformed into a network flow instance.

d-separating slab; this property follows from the d-connectivity of the mesh.

To see that minimal cuts in this network correspond to minimal thickness-d surfaces, we first observe
that every node is connected with arcs to all nodes within distance d from it. This implies that if a cut
has somewhere along it a thickness of less than d, then some arcs will jump across the cut (since all
pairs of nodes with a distance between them of d or less are connected by arcs), which would contradict
the definition of a cut. Therefore, any cut (which separates s from t) must be d units thick. On the
other hand, a minimal cut cannot be thicker than d units, since if a cut has at some spot along it a
thickness greater than d, then some nodes near that location may be removed, yielding a smaller cut,

contradicting the assumed minimality of the original cut.

At the same time, the dense, regular d-connected structure of the network ensures that a cut must
span a contiguous set of nodes that include the boundary contour, since any non-contiguities (i.e.,
gaps or missing nodes) inside a cut would enable some remaining arcs to jump the cut, contradicting
the definition of a cut. Therefore, cuts in the network correspond to thickness-d surfaces. Finally, to
see that minimal cuts correspond to minimal thickness-d surfaces, we note that since any cut/surface
has a thickness of exactly d everywhere, the area of that surface is proportional to the volume of the

corresponding cut (with the factor of proportionality being d). This implies that minimum cuts in this

11



network correspond to minimum thickness-d/area surfaces.

Observe that up to this point, we have converted a discrete Plateau problem instance into a max-
imum flow instance on an undirected, node-capacitated network. However, network flow algorithms
typically assume that the input is an arc-capacitated network (with infinite node capacities). There-
fore, in order to use a standard maximum flow algorithm on our network, we must transform an instance
having both node and arc capacities into an equivalent arc-capacitated maximum flow instance. To
accomplish this, we use the standard technique of splitting each node v € N with weight w, into two
unweighted nodes v’ and v", then introducing a directed arc from v’ to v" with capacity w,. Then, we
transform each arc (u,v) € A of the original network into two directed arcs (u",v') and (v",u'). Each
arc (v',v") of the resulting directed network will, when saturated, contribute the original node weight

W, to the minimum cut value. This transformation is illustrated in Figure 6.

C23
C12
C24

Figure 6: Transformation of a node- and arc-capacitated flow network to a purely arc-
capacitated flow network.

This last transformation increases the overall size of the network by only a constant factor, i.e.,
the final directed arc-capacitated network will have only 2| N| nodes and |N|+ 2|A| arcs. This implies
that the maximum flow computation in the transformed network will be asymptotically as fast as
in the original node-capacitated network. A formal summary of our algorithm, which we call the

Discrete_Plateau algorithm, is given in Figure 7.

The max-flow min-cut theorem [FF62] and the existence of polynomial-time algorithms for maxi-

mum flow together imply the following:

Theorem: Algorithm Discrete_Plateau outputs an optimal solution to the discrete Plateau problem

in time polynomial in the size of the gridded space S. 0
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Algorithm: Discrete Plateau

Input: gridded space S with border B C §
contour I'* C B

node weight function w: § — Rt
thickness d > 0

Output: A minimal d-separating slab R* with boundary contour I'*

Create a d-connected mesh network G over S

Set node capacities of G according to weight function w

Set arc capacities of G to infinity

Set all border node capacities to oo

Transform node-capacitated network G into arc-capacitated network 7
Create source node s and sink node ¢ in 75 _

Connect s to all border nodes (z,y,2) € BC S 3 z < I'*(z,y)
Connect t to all border nodes (z,y,2) € B C S 3 z > I™(z,y)
Set capacities of all arcs adjacent to s or ¢ to oo

Compute a maximum s-t flow in 75

Output all nodes incident to arcs in a minimum cut of 5

Figure 7: Algorithm Discrete_ Plateau finds a d-separating slab of minimum cost in
an arbitrarily weighted discrete space, i.e., an optimal solution to the discrete Plateau
problem. The time complexity of the algorithm is dominated by the maximum flow
computation.

4 Correctness Issues

In many applications it is natural to set the gridded space S to be the bounding cylinder cyl(T*).
However, there exist cases where the minimal surface may exit the the cylinder cy/(T™) [Can]. Our
method is confined to yield an optimal solution inside the specified gridded space S, which may or
may not correspond to the optimal solution relative to cyl(I'*). For example, Figure 8 shows a case
where part of the optimal minimal surface lies outside of cyl(I'*). However, in such examples, although
the contour I'™* projects to a deformed circle, the true minimal surface does not admit a functional
representation D* = {(z,y, f*(z,y)) € R%|(z,y) € D} as required by the second condition defining
Radd’s class. Thus, our methodology is not expected in general to address such examples (although it

can still address some wide classes of non-functional cases, as discussed in Section 6).

In fact, for a uniformly weighted space (which corresponds to Plateau’s original minimum-surface
formulation), the difficulty presented by D* lying outside cy/(T'*) can occur only when the contour’s
planar projection I' is non-convex. However, in such a uniformly weighted space, no part of a minimal
surface can lie outside the cylinder induced by the convex hull of the boundary contour, an observation
which follows directly from the minimum principle that is usually applied in, e.g., the solution of

Laplace’s equation [Cia78] [Hab87]. The minimum principle states that if the values of a certain type

13
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Figure 8: An example of a bounding contour I'™* (left) where the minimal surface (right)
exits cyl(T'™*). However, this instance is not in Radd’s class since a vertical line inter-
sects the surface more than once (right), contradicting the second condition (functional
representation of D*) which defines Radé’s class.

of a continuous function are held fixed at the domain’s boundary, then that function can not attain a
minimum or maximum anywhere in the interior of the domain, unless the function is constant over the
entire domain (for example, if the temperature function on the boundary of a disk is held fixed and
heat diffusion is allowed to occur until a thermal equilibrium steady state is reached, then both the
minimum and maximum temperatures will occur on the disk’s boundary, i.e., the interior will contain
no “hot spots” or “cold spots”). Thus, if we extend the gridded space to include the entire convex
hull of the projection of the contour, i.e., we define the augmented cylinder induced by a contour T'* to
be cyl(T*) = cyl(convex_hull(proj(T'*))), our methodology applied within this augmented cylinder will

yield globally optimal solutions.

The minimum principle also implies that a minimal surface in a uniformly weighted space can not
extend up past the highest point on its bounding contour, or down past the lowest point on the contour.
With regard to our solution of the discrete Plateau problem, the minimum principle thus implies that
given a uniform weight function, “far enough” above (below) the bounding contour I'* (recall the
discussion defining a cylinder in Section 2) may be achieved with a discrete cylinder that extends no
higher (lower) than the highest (lowest) point on I'*. In summary, while our method guarantees optimal
solutions within the specified gridded space, the above discussion explains how to augment/expand the

gridded space as to yield globally optimal solutions.
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5 Discretizing the Space

In this section we address the issue of how to create the gridded space that algorithm Discrete_Plateau
accepts as one of its input parameters. Recall that the original application of our network-flow based
technique is solving the continuous Plateau problem of minimal surfaces. Given a continuous contour,
i.e., an instance of the actual (continuous) Plateau problem, the first step in defining the gridded
space S is to bound the volume of space to be discretized. This can be achieved by considering
the cylinder induced by the convex hull of the contour’s projection onto the zy plane, i.e., S =
cyl(convez_hull(proj(T'*))). As discussed above in Section 4, this volume of space is guaranteed to

contain the optimal solution to an instance of Plateau’s problem.

Next, we choose a spatial density g (i.e., number of points per unit length), and then select grid
points in S relative to the chosen spatial density g. For example, we can select as grid points all
points (i/g,j/g,k/g), for all integers i, j, k such that (i/g,5/9,k/g) € S. This will “fill up” the space
S completely with regularly-spaced (and orthogonally-placed) grid points at density g. Other simple
gridding schemes are feasible as well, such as a three-dimensional dense sphere-packing -based (i.e.,
the grid points being the centers of congruent spheres where each sphere touches exactly twelve other
spheres). In any such regular gridding scheme, the number of grid points in the gridded space S grows

as the cube of the spatial density g, which in turn affects the time complexity accordingly.

A discretized version of the continuous contour itself may be obtained by selecting as the discretized
contour all the grid points on the border of the gridded space S within a distance of d /2 from the original
continuous contour. Naturally, the gridded space density g should be large enough, as compared with

the specified slab thickness d, so as to avoid degeneracies when we apply our methodology.

Note that although the gridding schemes suggested above induce a uniformly-dense gridded space
and contour representation, this is not an essential requirement: non-uniform gridded spaces are per-
fectly compatible with our methodology, and in fact may be preferable in situations where a higher
degree of approximation accuracy may be desired without substantially increasing the overall run time.
For example, higher densities may be selectively specified in the vicinity of “critical” regions in the
space where the contour or the resulting minimal surface are more complex or else possess finer/smaller
features. Selectively varying the spatial density in a non-uniform manner would thus enable the user

to focus on and explore such critical regions more closely.
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Similarly, varying the space weighting function over the gridded space can influence the minimal
surface to preferentially occupy certain regions, or else induce the surface to avoid certain other regions
of space. This capability may be very useful is applications that arise in such areas as bone surgery,
where two pieces of bone are to be connected together using an implant: although we need to insure
a strong bond, we also seek to reduce the contact surface area between bones and implant in order to
minimize the possibility of infection or rejection. Another medical application where minimal surfaces
are induced by non-uniform weight functions is in dentistry, where we may want the shape of caps (or
false teeth) to have smaller area in order to reduce tooth decay, since bacteria grow in proportion to

surface area.

6 Generalization to Parametric Cases

Our techniques generalize to also address certain parametric cases of the Plateau problem, where the
minimal surface does not necessarily admit a functional representation (i.e., when the minimal surface,
or even the contour itself, is not necessarily representable as a function f(z,y) over some domain in
the zy plane). In particular, our method can solve for contours which yield surfaces that are folded
and twisted in complex ways, as long as the induced minimal surfaces are not self-intersecting. In fact,
our technique can handle any surface which separates a cylinder induced by a bounding contour (or
more generally the border of the bounding space) into two distinct, well-defined spatial regions, one
“above” and the other “below” the contour. This condition allows the network-flow based construction
to remain well-defined even when the contour/surface may be non-functional (i.e., parametric), and

ensures that our methodology would still yield correct outputs in such cases.

7 A Practical Implementation and Its Time Complexity

There are many algorithms for computing maximum flows in a network [FF62] [GTT89] [Hu69]. To
demonstrate the viability of our approach, we have applied an existing implementation of the algorithm
of Dinic [GG88]. Starting with an empty flow, the Dinic algorithm iteratively augments the flow in
stages; the optimal flow solution is achieved when no flow augmentation is possible. Each stage starts
with the existing flow, and attempts to “push” as much flow as possible along shortest paths from the

source to the sink in a residual network wherein each arc has capacity equal to the difference between
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its original capacity and its current flow value. After the current flow has been thus augmented,
newly saturated arcs are removed and the process iterates. Since there can be at most |[N| — 1 such
stages, each requiring time at most O(|A4] - |N|), the total time complexity of the Dinic algorithm is
O(|A|-|N|?). However, more efficient flow algorithms are available. For example, by using the network

flow algorithm of [AOT87], we obtain the following:

Theorem: For a given prescribed slab thickness d, our algorithm can solve the discrete Plateau

problem in O(d? - logd - |N|?) time, where |N| is the number of nodes in the gridded space.

Proof: The degree of each node in the mesh is bounded by d?, so that |A| = O(d®-|N|). The network
flow algorithm of [AOT87] operates within time O(|A|-|N|-log(|A|/|N|)). The overall time complexity
of our algorithm is therefore O(d® - logd - [N|?). Note that N itself is cubic in the spatial “resolution”
of the gridded space (i.e., the approximation precision of the required solution). Note also that for
a fixed thickness, d grows cubically with the grid’s spatial resolution. However, the grid’s resolution
(i-e., the spatial density parameter “g” in the discussion of Section 5) is not an input to algorithm

Discrete_Plateau, but rather an implicit feature used to construct the gridded space N, and therefore

does not appear as a term in our formal time complexity. 0

Our current implementation uses ANSI C code to transform an arbitrary Plateau problem instance
satisfying the two conditions of the discrete Plateau problem formulation (i.e., (1) a planar projection of
the boundary contour is a simple closed curve, and (2) the solution admits a functional representation)
into an instance of maximum-flow. We then use the Fortran-77 Dinic code of [GG88] for the network
flow computation. We have tested our implementation on several classes of problem instances, involving

underlying spaces that are both uniformly weighted and non-uniformly weighted.

Although Dinic’s algorithm may not be the ideal maximum flow algorithm for a mesh topology in
terms of execution speed, typical running times used to generate and solve our test cases still range
from only several seconds to several minutes on a SUN workstation. Our observed runtimes depict
the expected dependencies on the mesh resolution and the minimum slab thickness d. Based on our
experimental results, we conclude that our approach is viable for solving the discrete Plateau problem

in arbitrarily weighted spaces.

17



8 Conclusions

We have developed a polynomial-time combinatorial algorithm which yields optimal solutions to a well-
known class of instances of the discrete Plateau problem. Our method is based on the duality between
connecting sets and separating sets, and relies on maximum-flow computations which find a minimum-
cost d-separating slab of prescribed thickness d in an arbitrarily weighted space. The accuracy of the
solution with respect to the continuous version of the problem depends on the grid resolution, which
is a parameter intrinsic to the input. Our method generalizes to both lower- and higher-dimensional

instances.

Among future research goals is the improvement of the time complexity of the network flow compu-
tation; substantial speed improvement is likely since the mesh is a highly regular, symmetric network
that admits a concise representation. Additional research might also examine minimal surface compu-
tations using hierarchical approaches as a heuristic speedup. Addressing the case where the prescribed
contour does not necessarily lie on the border of its containing space is also of interest. Finally, our
methodology can perhaps address an even larger class of Plateau instances via decomposing a spanning

surface into patches which may then be individually solved/optimized.
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