On the Primer Selection Problem
in Polymerase Chain Reaction Experiments

William R. Pearsonjf, Gabriel Robins, Dallas E. Wrege, and Tongtong Zhang

Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442
f Department of Biochemistry, University of Virginia, Charlottesville, VA 22903-2442

Abstract

In this paper we address the problem of primer selection in polymerase chain reaction (PCR) experi-
ments. We prove that the problem of minimizing the number of primers required to amplify a set of DNA
sequences is N P-complete. Moreover, we show that it is also intractable to approximate solutions to this
problem to within a constant times optimal. We develop a branch-and-bound algorithm that solves the
primers minimization problem within reasonable time for typical instances. Next, we present an efficient
approximation scheme for this problem, and prove that our heuristic always produces solutions with cost
no worse than a logarithmic factor times optimal. Finally, we analyze a weighted variant, where both
the number of primers as well as the sum of their costs is optimized simultaneously. We conclude by
addressing the empirical performance of our methods on biological data.

1 Introduction

The polymerase chain reaction (PCR) has revolutionized the practice of molecular biology, making it routine
to synthesize millions of copies of a single gene or other portion of a genome [5]. PCR has been used to
synthesize nanogram quantities of a gene from a single sperm (and thus a single DNA molecule), a 10'%-fold

amplification [1].

Computer programs [7] [10] [11] are used extensively to design PCR primers (i.e., short stretches of DNA,
15 to 20 nucleotides long, that are used to establish the ends of the PCR reaction). In general, these programs
have focused on optimizing a pair of nucleotide sequences for amplifying a single sequence in a complex genome
(which may contain 3 - 10 sites) and avoiding various artifacts that can be encountered with PCR. Thus,
the computer program is given a single DNA sequence, which might contain several hundred to thousands of

potential primer sites, and the sites that optimize some simple sequence composition properties are selected.

In this paper, we describe an approach to the solution of a related problem - the amplification of previously
undiscovered members of a multigene family by designing primers that will function on the largest possible
set of known members of the family. Large families of related genes have become surprisingly common over
the past 5 years. One the largest known families contains more than 1000 related genes that encode proteins
called G-protein-coupled receptors [6]. However, many families encode a large set of related proteins with
essential roles; PCR amplification is usually the most effective method for characterizing members of such

large gene families. Here the problem is quite different from the typical primer selection process (where the

objective is to amplify a single specific sequence). We are given a set of 5 to 50 (or more) members of a family
of genes, each of which has 20 to 100 potential primer sites on each end of the region to be amplified, and we
must select a set of primers that would function on the largest possible number of family members, with the

hope that such primers will also allow new members of the family to be amplified.

The typical primer selection program identifies two primers for the two ends of the PCR-amplified region.
In contrast, our goal is to select a set of primers from sequences on one end of the region to be amplified. The
process must be repeated on a second set of sequences to select primers for the other end of the region to be

amplified.

We offer both theoretical and practical contributions. On the negative side, we prove that minimizing the
number of primers required to amplify a given set of sequences is A"P-complete (Section 3). Moreover, we
show that one can not even hope to solve this problem approximately in an efficient manner. On the positive
side, in Section 4 we give a branch-and-bound algorithm that solves the primer minimization problem within
reasonable time for typical instances. We also give an efficient approximation algorithm for this problem,
and prove that our heuristic always produces solutions that are guaranteed to have cost no worse than a
logarithmic factor times optimal (Section 5). Finally, in Section 6 we analyze a weighted variant, where both
the number of primers as well as the sum of their “costs” must be minimized simultaneously. We discuss in
Section 7 the empirical performance of our methods on biological data, and conclude in Section 8 with future

research directions. A preliminary version of this work has appeared in [13].

2 Notation and Problem Formulation

Before we formulate the problem of minimizing the number of primers required to synthesize a given set of
DNA sequences, we first develop the necessary notation. We use small lowercase italic letters (e.g. “a”) to
denote characters and strings, uppercase letters (e.g. “A”) to denote sets, and uppercase calligraphic letters

(e.g. “A”) to denote collections of sets.

Let S = {s1,..., sp} be a finite set of strings over a finite alphabet X (of nucleotides). The concatenation of
two strings u and v, denoted by uv or u - v, is defined as the string formed by all the symbols of u followed by
all the symbols of v. For any finite set of symbols X, we use X* to denote the set of all finite strings of symbols
from X. For example, if ¥ = {a, b}, then X* = {¢, a, b, aa, ab, ba, bb,aaa,aab, ...}, where ¢ denotes the unique
empty string of length 0. For two strings u,v € X*, u is a substring of v if u is a contiguous subsequence
of v, and we denote this as u < v; i.e., u < v implies that there exist z,y € X* such that zuy = v. The

length of a string u is denoted by |u|. For a collection of sets C, we denote the union of all of its members as

Ue=UJc.

cec

A set of strings is said to be of order k if all the strings have a common substring of length k£ or more.

Thus, given a string set S = {si,...,s,}, if there exists a u € X* with |u| > k, such that u < s; for all
1 <@ < n, then S is a string set of order k, and u is their (not necessarily unique) common substring of length
at least k. We then say that u induces the string set S, and that S is the string set associated with . The
size of S is the number of strings in S, denoted by |S|. If a subset S’ of S is of order k, then this is denoted as
S" C S. A string subset is mazimal if it is not a proper subset of any other string subset of the same order.
We denote the collection of all string subsets of S of order k as S = {S" | S’ Ty S}. If for some C C S, we
have S C |JC, then we say that C is a cover for S of order k and size |C|. An optimal cover of order k is a
cover of order k£ having minimum size. In Section 6 below we extend the definition of “optimal” cover to take

into account inexact string matching.

For example, the set S = {cabaca, acabab, bbacaba} C {a,b,c}* is a string set of order 4, since caba is

a common substring of length 4 for each string in S (we use the underline notation to highlight common
substrings). Note that S = {cabaca, acabab, bbacaba} is also a string set of size 3 and order 2, since all strings
in S have the common substring ac of length 2. On the other hand, S is not a string set of order 5, since
there exists no substring of length 5 common to all the strings of S. We observe that S contains a maximal
string subset of order 5 and size 2, namely {acabab, bbacaba}, associated with the common substring acaba

of length 5. Finally, the two string subsets contained in C = {{acabab, bbacaba}, {cabaca}} form an optimal

cover for S of order 5 and size |C| = 2, while the single string subset {cabaca, acabab, bbacaba} (i.e., S itself)

forms an optimal cover for S of order 4 and size 1.

In our formulation, a string corresponds to a DNA sequence, a substring corresponds to a primer or a
portion of a primer, and a string (sub)set corresponds to a primer set; we use these terms interchangeably
in what follows, depending on context. Although above we did not restrict the alphabet size, in biological
applications the alphabet typically consists of the four nucleotide bases adenine, cytosine, guanine, and

thymine, abbreviated as ¥ = {a, ¢, g,t}.

Given a set of DNA sequences (strings), there are many choices as to which primers (i.e., common sub-
strings) we can synthesize to amplify (i.e., cover) different sequence subsets (i.e., string subsets). Moreover, to
keep the problem realistic, we insist that all primers have length k& or more, otherwise we could, for example,
trivially use a single primer of length zero (i.e., the empty string) to cover all of the DNA sequences, which
would not be useful biologically. Yet, even if we set an a priori lower limit on the primer length (not greater
than the shortest DNA sequence), any set of DNA sequences can be covered by using a single distinct primer
for every DNA sequence (e.g., the DNA sequence itself). However, such a solution would be unlikely to allow
us to discover new genes. With this in mind, we seek to minimize the number of primers of a specified length

necessary to cover a given set of DNA stands:

Optimal Primer Cover (OPC) Problem: Given a finite set S of DNA sequences and an integer k, find

an optimal cover for S of order k.

3 Complexity of the OPC Problem

Our first theoretical result establishes the intractability of the optimal primer cover problem.
Theorem 3.1 The OPC problem is N'P-complete.

Proof: Clearly the decision version of the OPC problem is in AP. To complete the proof that OPC is
NP-complete, we transform a well-known problem in APC to the OPC problem, namely the minimum set

cover (MSC) problem, which is defined as follows:

Minimum Set Cover (MSC) Problem: Given a collection M of subsets of a finite set T and a positive
integer h, does there exist in M a cover for T' of size at most h? (i.e., is there a M’ C M such that [M'| < h
and T C UM’ 7)

We now show how to transform an arbitrary instance < 7, M, h > of MSC into an instance < S, k,l > of

OPC, in such a way that < S, k,l > has a solution if and only if < T, M, h > has a solution.

Given an arbitrary instance < 7, M, h > of the MSC problem, set { = h, ¥ = {0,1,b1,bs,..., b7}, and
k = [log, IM]] (the b;’s will be used as “separators” to delineate substrings in the encoding described below).
We will construct a set S of strings over ¥ where each string s; € S represents a distinct element ¢; € T', with
s; encoding the subset membership information of its corresponding ¢; (i.e., the encoding s; reflects which M;
in M contain ¢;). Thus, for every M; € M, the construction places some common substring u; in all strings
in S that correspond to the elements in M;. We encode each M; € M by a unique string u; over {0,1} C X
with |u;| = k, and concatenate u; and the unique “separator” symbol b; to every s; € S that corresponds to

each t; € M;. In other words, if the subsets M,

i1y My, ..., M; are exactly those that contain an element ¢;,

we construct s; = u;, bju;,b; - - -u;, bj. This scheme (see Figure 1) will clearly induce a string subset S; Ty S

corresponding to M;, since u; < s; for all s; corresponding to ¢; € M;.

Although it is clear from the construction that each subset M; € M has a corresponding string subset S;,
it is not obvious that our construction avoids introducing maximal subsets of order £ that do not correspond
to any subset M; € M. We therefore now argue that the transformation does not induce such spurious

maximal subsets.

Assume to the contrary that a spurious maximal string subset S’ of order k exists, and consider the
string/primer u associated with S Cy S. Since by assumption S’ is not associated with any subset M; € M,
u cannot be equal to any u; formed strictly from elements in {0, 1} by the construction (otherwise S’ would
ezactly correspond to some subset in M). But the size of u is at least as large as the size of the u;’s (namely
k symbols long), so if u is not equal to any of the u;’s, then u must contain some separator symbol b;.

However, the symbol b; occurs only in the string s;, and thus the size of the string subset S’ is at most 1

MSC Instance OPC Construction OPC Instance

M, M, M, M,
S1 = u1bs
S1 = u1bs
S2 = uib2 u2bz
S2 = uib2 u2bz

S3 = uz2bs uzbs

S3 = uz bz uzbs
S4 = Uz bs
S4 = us bs
_ Ss = Usbs usbs
S5 = usbs usbs
Se6 = U4 bs
Se = Us be

Figure 1: The construction of an instance of OPC from an arbitrary instance of MSC.
A unique string u; is used to encode each subset M; (i.e., here the unique strings uq,
ug, uz, and uy are created to represent My, Ma, Mz, and My, respectively). Also, each
string s; uses its own unique separator b; in between the u;’s. Each string s; is formed
according to the construction above; for example, t5 is a member of both M3 and My,
and thus the corresponding string ss is set to ugbs - ugbs.

(i.e., S = {s;}). The fact that s; is not the empty string (since it contains u) implies that the element ¢; € T
corresponding to s; must be contained in some M;: € M, and moreover |M;/| = 1, otherwise there would be
some substring u;+ < s; that would induce a string subset of order k strictly containing S’, contradicting the

assumed maximality of S’. It follows that if S’ is maximal, then it is not spurious. 0O

In Theorem 3.1, the alphabet size of the OPC instance depends on the MSC instance (i.e. |X| is a function
of [T|). In biological applications however, the alphabet is of constant size, independent of the input (i.e.,
Y ={a,c,g,t}, s0 |X| =4). We therefore need to show that the OPC problem with alphabet ¥ = {a,¢,g,t}
remains A'P-complete, and this will be accomplished using an argument similar to that used in the proof of
Theorem 3.1. Thus, {a,c} and {g,t} can be used to encode {0,1} and {b1,bs,..., b} of the unrestricted
alphabet, respectively. This enables a one-to-one correspondence between the subsets M; € M and the

maximal string subsets S; T S, using only the restricted alphabet ¥ = {a, ¢, g,t} for the encoding.

4 An Exact Branch-and-Bound Algorithm

We saw above that the MSC problem reduces to the OPC problem. A reduction in the opposite direction
(i.e., a transformation of the OPC problem to the MSC problem), will enable the application of techniques for
the MSC problem in order to solve the OPC problem. In this section we outline a branch-and-bound exact

algorithm for the OPC problem (the next section will outline a more efficient heuristic solution).

The heart of the reduction from MSC to OPC (Theorem 3.1) was a one-to-one correspondence between the
subsets of the MSC instance and the string subsets of the OPC instance. With this in mind, we transform the

OPC problem to the MSC problem as follows: for each maximal string subset in the OPC instance, exactly

one subset in the MSC instance is created. This enables us to think of the optimal primer cover problem
as a “special case” of the minimum set cover problem. In particular, given an instance of < S, k,{ > of the
OPC problem, for each string s; € S we find all length-k substrings s; < s;, and for each one of these s; we
form the maximal string subset in S associated with s;; these become the subsets of our corresponding MSC
instance. Clearly, a good solution to the resulting MSC instance would constitute a good solution to the OPC

instance. We therefore now turn our attention to strategies for solving the minimum set cover problem.

One straightforward scheme to solve the MSC problem optimally is to exhaustively enumerate all 2IMI

subset combinations, and select the one containing the smallest number of subsets that covers 7. This
algorithm considers all possible solutions, and is therefore guaranteed to find the optimal one. However, this

brute-force approach runs in time exponential in the number of subsets |M]|.

We can greatly improve the performance of this exhaustive algorithm in practice by eliminating large
portions of the search space using a branch-and-bound technique. In particular, we use a tree-structured
search scheme in which we keep information about partial covers during our search, so that we may recognize
certain partial covers that cannot possibly lead to solutions better than the best solution seen so far. Using
this information, we prune the search tree and thus avoid examining large portions of the search space. In
particular, we search for a maximal cover containing at most h subsets, as shown in Figure 2. By invoking
this modified algorithm with all values of h, 1 < h < |M], we can still consider the entire feasible solution
space as before. However, during our search, we keep track of the current best candidate solution and make

use of the following Lemma, which enables the branch-and-bound strategy:

Lemma 4.1 Consider an instance < T, M, h > of MSC, and a “partial cover” M' for T" C T (i.e., a

collection of subsets M' C M, where M’ covers T' = |JM'), and let the cardinality of the largest unused

subset in M be b = oy lhax |M;|. Then M’ can not be “extended” by m additional subsets into a cover for
c _ ’

i

T of size |M'| + m, unless |T'|+ m -b > |T|.

Proof: The number of elements that are not covered by M’ is |T7| — |T'|. Therefore, if we augment M’ by
m additional subsets M" C M, |[M"| = m such that M’ U {M"} covers T', then ||JM"| must be at least of
size |T| — |T"|. Thus, the largest subset in M — M’ must have cardinality b > [(|T| — |7"])/m]. 0

Based on this observation, we can avoid trying to augment partial covers if there are no remaining unused
subsets which are large enough to yield a complete cover competitive with the best cover seen so far during
the search. This obviates the examination of large portions of the search space, and leads to significant
improvements in actual run times. This scheme is formalized in Figure 2, and we discuss the empirical

performance of this optimization in Section 7.

Branch-and-Bound Exact Algorithm for Minimal Set Cover
Input: A set T of elements, a set M of subsets M; C T, and integer h.
Output: A collection M’ C M, |M’| = h, such that ||JM’| is maximum.
1. Procedure Optimal Algorithm (7', M, h)

2. Sort M = {Mi,..., Mp} by non-increasing cardinality of M;

3. OPT <0 /*OPT is a global variable */

4. Try_Subset(OPT, h, 1)

5. Return OPT

6. Procedure Try _Subset(M/’ left next)

7. If |UM’| > |OPT| Then OPT — M’

8 If left= 0 Then Return

9. For ¢ =next to |[M| Do

10. If | U M| +left-|M;| > |OPT| Then Try _Subset(M’ U {M;} left—1,i+ 1)

Figure 2: An exact set cover algorithm, using branch-and-bound to speed up the search:
out of all (I/Z/ll) possible covers, the one that covers the greatest number of elements of
T is returned. Branch-and-bound occurs when it is determined that the current partial
cover can not be extended so that the number of elements it covers exceeds that of the
best cover seen so far during the search.

5 A Provably-Good Heuristic

Since the OPC problem is AP-complete, efficient exact algorithms are not likely to exist, and we seek
efficient heuristics that yield near-optimal solutions. Based on the results of [12], it can be proved that that
no polynomial-time approximation heuristic is likely to solve the OPC problem to within less than a factor of
%loge |T'| times optimal in terms of solution quality. Thus, the best polynomial-time approximation scheme
that we can hope to find would have a theoretical performance bound of O(log|T|) times optimal. Next, we

show how this theoretical optimum can actually be achieved using a greedy heuristic.

One greedy strategy for the MSC problem is to select the subset M; that covers the most remaining
uncovered elements, and iterate until all elements are covered. This greedy heuristic for set cover can be
implemented within time O(|M|log, |M]), or with slight modifications, it can be implemented within linear
time [4]. A simple worst-case example where the greedy strategy produces a cover of size (log, |T])-OPT is

presented in Figure 3.

The performance of this greedy heuristic for the set cover problem has been analyzed extensively in the
literature [3] [8] [9] [12]. Johnson presents an example in which the greedy heuristic yields a cover of size
of (log, |T|)-OPT, where OPT is the size of an optimal set cover [8]. Lovasz and Johnson both present a
(log, |T| + 1)-OPT upper bound on the greedy heuristic. Thus, the greedy heuristic performs as well as can
be expected, given that it matches the asymptotic lower bound on the performance of any polynomial-time

approximation scheme for MSC.

B4 || B3 B2 Bl

(OO0 0 00
= [O00do0 00

/

B5
NS

Figure 3: An example for which the greedy heuristic will produce a cover of size
(log, |T'])-OPT. Here the circles represent the elements to be covered, and the Al, A2,
B1, B2, B3, B4, and B5 ovals represent the various subsets. Observe that the optimal
cover consists of A1 and A2, while the greedy heuristic may select subsets B1, B2, B3,
B4, and B5, a logarithmic factor times optimal. This example extends to an arbitrary
number of elements.

6 The Weighted OPC Problem

The discussion above thus far has been restricted to address the problem of minimizing the cardinality of
the cover (i.e., the number of primers that are required to specify one end of a PCR reaction from a set of
DNA sequences). Thus, the algorithms in Sections 4 and 5 strive to minimize the number of string subsets.
In practice, however, the requirements for the length of a PCR primer (15 nucleotides) virtually ensure that
a reasonable number of primers (e.g. 5-8) cannot be found that match exactly to 20 or more members of a
diverse gene family. Since we wish to identify new members of a family by finding from known sequences a

modest number of primers, we must consider how to construct inexact primers.

One method is to produce degenerate oligonucleotide primers. The machines that synthesize primers can
be programmed to incorporate 2, 3, or 4 nucleotides in a single polymerization step, thus, it is possible to
construct a primer that is actually a mixture of many different sequences. The disadvantage of this approach
is that the concentration of each individual sequence is reduced and the mixture of primers may no longer
be specific for the gene family of interest. Alternatively, one can construct primers that do not match each
sequence exactly, but match all of the members of a set of sequences with only one or two mismatches. In
general, because of the biochemistry of the PCR reaction, primers must have an exact match of about 5
nucleotides at one end of the primer; degeneracies or mismatches are then allowed in the remainder of the
primer molecule. Thus, primer selection becomes the problem of finding an optimal primer covering of order
5, and then a weighted covering, where the weighting incorporates values for degeneracies or mismatches, for

the 10 remaining adjacent nucleotides.

With this in mind, we introduce a cost function W that assigns a nonnegative weight to each primer u;

and its string subset S;. The cover weight is inversely proportional to the cover “quality”: a cover with low
weight is considered superior to a cover with higher weight. We define the optimal cover in this new weighted
version to be a cover with minimum total weight. The weighted version of the OPC (WOPC) problem may

be formally stated as follows:

Weighted Optimal Primer Cover (WOPC) Problem: Given a finite set S of DNA sequences, a positive
integer k, and a nonnegative cost function that assigns a weight to each string set S; and its associated primer
u;, find a cover C for S of order k, which minimizes the total weight Z W(S;, us).
S;€eC

Given that the OPC problem is N"P-complete, it is not surprising that the more general WOPC is N'P-
complete as well (i.e., set the weights to 1). We next consider a weighting scheme that is tailored specifically
to the primers selection problem in biology. To permit inexact matching, we need to develop a weighting
scheme that quantifies the “accuracy” of the matches between primers and sequences. Toward this end, we
make the cost function W depend on weight contributions from inexact matches between the primer u and

the individual strings s; € S’, denoted by w(s;, u), so that W (S, u) = Z w(si, u). Given a primer u and a
s, €8/
string s;, we thus set w(s;, u) to the number of positions in which s; differs from u. For example, if u = abbab

and s; = ababb, w(s1,u) = 2, since s; differs from w in positions 3 and 4.

The OPC problem naturally extends to the WOPC problem via the introduction of a weighting scheme,
and just as we have used techniques from the minimum set cover problem to attack the unweighted case, we
can address the weighted case using techniques from the weighted minimum set cover (WMSC) problem. The

WMSC problem is defined as follows:

Weighted Minimum Set Cover (WMSC) Problem: Given a collection M of subsets of a finite set T,
each subset M; € M having a nonnegative weight w(M;), and a real value h, does there exist in M a cover
for T' of weight at most A7 (i.e. is there a M’ C M such that 7' C U/\/l/ and Z w(M;) < h?)

M;eM’

This weighted variant of the minimum set cover problem is well-studied, and we can therefore use known
techniques developed for the WMSC problem in solving the WOPC problem [2] [3]. Clearly, an exact solution
to WOPC can clearly be obtained by performing an exhaustive search of all subset combinations. As we did
in Section 4, we can decrease the computation time of this exponential algorithm by resorting to branch-
and-bound techniques: keeping track of the weights of partial solutions will enable the pruning of numerous

branches of the search tree.

Given the analysis in Section 5 of the greedy heuristic for the MSC problem, it is not surprising that a
greedy heuristic for the WMSC problem also has a worst-case performance bound of (log, |7+ 1)-OPT [2] [3].
The only difference between the unweighted greedy heuristic and the weighted variant of the heuristic is the

selection criteria. At each step, we now select the subset that covers the maximum number of yet-uncovered

elements in T' at the lowest cost per element (i.e. we select the subset M; for which w(M;)/|M;| is minimum

[3]). This extends the unweighted approximation algorithm to a weighted approximation algorithm.

Although the weighted version of OPC is more general than the unweighted version, the following trivial
solution must be avoided: for each string s; € S, consider an exact-match primer being the string itself (i.e.,
let u; = s; < s;), and thus we obtain a trivial solution with |S| string subsets having total weight 0. Although
under our formulation above this solution would be considered “optimal” (since it has 0 weight), this is not
biologically meaningful. It would therefore be more interesting to pursue an algorithm that simultaneously
minimizes both the weight and the number of string subsets in a cover. Unfortunately, there does not exist
an algorithm that can simultaneously minimize both the weight and cardinality of a cover with provable

non-trivial bounds (Figure 4).

> O[C0I0[C]-++ O]
ponpnogt

Figure 4: An instance of WMSC illustrating that no algorithm can achieve nontrivial
simultaneous bounds on both weight and cardinality of a cover. The circles denote the
elements to be covered, while the ovals denote the weighted subsets. Observe that the
optimal cardinality of a cover is 1, while the optimal weight of a cover is |T|, where T is
the set of elements. Clearly there exist no cover which has both small weight and small
cardinality.

Despite this negative result, in practice we can nevertheless still construct algorithms that will simultane-
ously optimize both cover size and weight, and indeed achieves a smooth tradeoff in practice between these two
objectives for typical biological instances. For example, we can easily construct a new cost function W’ that
considers both the cardinality and weight of a string subset S; by setting W'(S;, u;) = t+W(S;, u;)+(1—1)* K,
for some constant K and a real parameter 0 < ¢ < 1. If we set ¢ = 0, this cost function will consider only
cardinality, while setting ¢t = 1 will make the cost function consider weight only. As ¢ varies in the interval

[0, 1], a reasonably smooth tradeoff will be observed in practice, as we show in the next section.

7 Experimental Results

We implemented the exact algorithm and the approximation algorithms discussed above using the C program-
ming language in the UNIX environment (code is available from the authors upon request). In this section
we compare the performance and running-times of three algorithms: the efficient branch-and-bound optimal
(BBOPT) algorithm (Figure 2), the greedy (GREEDY1) heuristic, and a greedy variant (GREEDY?2) that
differs from GREEDY1 in that it selects at each iteration, the pair of subsets that together constitute the

10

best choice. These algorithms were implemented for both the weighted and the unweighted cases. We also

implemented the scheme mentioned in Section 6 that simultaneously minimizes both cardinality and weight.

We evaluated the performance of these algorithms on biological data consisting of 56 DNA sequences,
each 75 nucleotides long, from transmembrane domain three (TM3) from 56 G-protein coupled receptors [6];
the data itself is given in Figure 5. As mentioned in Section 1, these primers would determine one end of
the amplified sequence. The other end would be determined by a second set of primers from a second set of
sequences. For the G-protein-coupled receptors, TM7 would provide a natural second target, since it is also

highly conserved [6].

We also created 30 random permutations of the codons (i.e., 3-base triplet substrings) of each sequence of
the data, and tested our method on all of the resulting instances. For each input instance, both GREEDY1
and GREEDY2 executed within a few milliseconds, while BBOPT required anywhere from several minutes

to several hours, depending upon the size of the optimal cover.

The performance of the unweighted versions of the algorithms on the data sets is shown in Table 1. The
objective here is to minimize the cardinality of the cover. The cardinality of the solutions produced by
BBOPT, GREEDY1, and GREEDY2 are shown in the table. GREEDY1 and GREEDY?2 both produced an
optimal cover for 19 out of the 30 random permutations, and for the remaining permutations, the solutions
produced by GREEDY1 and GREEDY?2 are at most 1 primer more than the optimal. We conclude that the

two greedy heuristics are quite effective in primer number minimization.

Table 2 shows the performance of the various algorithms for the (weighted) WOPC problem, where the
objective is to minimize the total weight of the cover rather than its cardinality. Both the weight and
cardinality of the solutions produced by GREEDY1 and GREEDY?2 for the data sets are shown in the table.
Here GREEDY?2 outperforms GREEDY1 on some instances.

Though as we saw in Section 6 that it is impossible to achieve provably-good simultaneous bounds on both
the cardinality and weight of a cover, in practice we can still design algorithms which exhibit a smooth tradeoff
between these two objectives. We implemented a greedy heuristic with objective function W'(u;, M;) =
t*« W(u;, M;)+ (1 —t) * K mentioned in Section 6 for various values of ¢ in the interval [0, 1]. The results are
presented in Figure 6. Fach data point represents the average values over the 30 runs on the random data for

selected values of t. As expected, we observe a smooth tradeoff between cover cardinality and weight.

8 Conclusions and Future Directions
We investigated the problem of minimizing the number of primers in polymerase chain reaction experiments.

We proved that minimizing the number of primers necessary is intractable, as is approximating optimal

solutions within a constant factor. On the positive side, we gave a practical branch-and-bound exact algorithm,

11

and an efficient approximation scheme for primer number minimization. We proved that our heuristic is
guaranteed to produce solutions with cost no worse than a logarithmic factor times the optimal cost. Finally,
we analyzed a weighted variant, where both the number of primers as well as the sum of their “costs” is to
be optimized simultaneously. Our algorithms are easy to implement and perform very well in practice on

biological data. It is our hope that these techniques would be helpful in finding new proteins.

Future research directions include: (1) investigating alternative heuristics for both the weighted and the
unweighted versions of the OPC problem; (2) experimenting with various weighting schemes and criteria for
primer selection; (3) exploring additional heuristics for simultaneous tradeoffs between subset cardinality and

weight; and (4) running actual PCR experiments to investigate the practical efficacy of these approaches.

9 Acknowledgments

The authors are grateful to the anonymous referees and to the editors of the special issue for their thoughtful
comments. This research was supported in part by National Library of Medicine grant LM04961 (Pearson),
National Science Foundation Young Investigator Award MIP-9457412, and a Packard Foundation Fellowship

(Robins). Copies of related papers by our group may be found at http://www.cs.virginia.edu/~robins/.

References
[1] N. ArNHEIM, H. L1, AND X. Cul, PCR Analysis of DNA Sequences in Single Cells: Single Sperm Gene
Mapping and Genetic Disease Diagnosis, Genomics, 8 (1990), pp. 415-419.

[2] R. BAR-YEHUDA AND S. EVEN, A Linear-Time Approzimation Algorithm for the Weighted Vertex Cover
Problem, J. Algorithms, 2 (1981), pp. 199-203.

[3] V. CHVATAL, A Greedy Heuristic for the Sei-Covering Problem, Mathematics of Operations Research, 4
(1979), pp. 233-235.

[4] T. H. CorMEN, C. E. LEISERSON, AND R. RIVEST, Introduction to Algorithms, MIT Press, 1990.

[5] H. A. ErLicH, D. GELFAND, AND J. J. SNINSKY, Recent Advances in the Polymerase Chain Reaction,
Science, 252 (1991), pp. 1643-1651.

[6] J. K. HarrisoN, W. R. PearsoN, aAND K. R. LyNcH, Molecular Characterization of Alpha-1 and
Alpha-2 Adrenoceptors, Trends Pharm. Sci., 12 (1991), pp. 62-67.

[7] L. HILLIER AND P. GREEN, OSP: a Computer Program for Choosing PCR and DNA Sequencing Primers,
PCR Methods and Applications, 1 (1991), pp. 124-128.

[8] D. S. JounsoNn, On the Ratio of Optimal Integral and Fractional Covers, J. Comput. System Sci., 9
(1974), pp. 256-278.

[9] L. Lovasz, On the Ratio of Optimal Integral and Fractional Covers, Discrete Mathematics, 13 (1975),
pp- 383-390.

[10] T. LowE, J. SHAREFKIN, S. Q. YANG, AND C. W. DIEFFENBACH, A Compuler Program for Selection
of Oligonucleotide Primers for Polymerase Chain Reactions, Nuc. Acids Res., 18 (1990), pp. 1757-1761.

12

[11] K. Lucas, M. BuscH, S. MOSSINGER, AND J. A. THOMPSON, An Improved Microcomputer Program
for Finding Gene- or Gene Family-Specific Oligonucleotides Suitable as Primers for Polymerase Chain
Reactions or as Probes, Comp. Appl. Biosci., 7 (1991), pp. 525-9.

[12] C. LuND AND M. YANNAKAKIS, On the Hardness of Approzimating Minimization Problems, Proc. ACM
Symp. the Theory of Computing, 25 (1993), pp. 286-293.

[13] W. R. PEArsoN, G. RoBINs, D. E. WREGE, AND T. ZHANG, New Approach to Primer Selection
in Polymerase Chain Reaction Ezperiments, in Proc. Intl. Conf. on Intelligent Systems for Molecular
Biology, Cambridge, England, July 1995, pp. 285-291.

Unweighted OPC Statistics

input
sets

BBOPT
Cardinality

GREEDY1
Cardinality

GREEDY?2
Cardinality

o~ O O = W N

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

7

SO OO OO~ I~ITO I~~~ OO ~O0~1O0 Ot

7

O NI~~~ I~~~] ~]~]~]~] 0 D 0

7

NI~~~ 1O I~~~ ~1~-1OD 00] =] ~] ~] 0 D 0

Table 1: Cardinality of the covers produced by the various algorithms over 30 random
permutations of a data set consisting of biological data (56 sequences of 75 nucleotides
each). We see that GREEDY1 typically finds optimal solutions, while GREEDY?2 has
performance very similar to that of GREEDY1.

13

hum5HT1a
hamB2
hamiAla
humi2a
humM1
ratD1
hunD2
bovH1
doghdil
ratlNK1
f1lyNK
ratLH
musTRH
bovETA
musGRP
ratNPYY1
bovLCR1
f1lyNPY
ratANG
ratBK2
dogRDC1
ratG10d
ratRBS11
ratNTR
hunfMLF
hunIL8
humC5a
hunTHR
chkP2y
chkGPCR
humRSC
musP2u
musdelto
musEP2
gpPAF
humTXA2
bovOP
humSSR1
ratRTA
humMAS
hunMRG
cmvHH2
cmvHH3
ratP0OT
hunEDG1
musGIR
ratCCKA
dogCCKB
ratVIa
musEP3
herpesEC
rat0ODOR
ratCGPCR
musGnRH
humMSH
humACTH

ctgttcatcgccctcgacgtgetgtgetgectecctcatccatcttgecacctgtgegecatcgegetggacaggtac
ttctggacttccattgatgtgttatgecgtcacagccagecattgagaccctgtgegtgatagecagtggatcgetac
gtgtgggeccgeggtggacgtgetgtgetgcactgectccatccttagectctgeaccatctectgtggaccggtac
atctacctggcgctcgacgtgetcttctgcacgtcgtccategtgecacctgtgegecatcagectggaccgetac
ctctggectggccctggactatgtggeccagcaacgectctgtcatgaatcttctgetcatcagetttgaccgttac
atctgggtggcctttgacatcatgtgectccactgecatccatcctcaacctctgtgtgatcagegtggacaggtat
atcttcgtcactctggacgtcatgatgtgcacggecgagcatcctgaacttgtgtgeccatcagecatcgacaggtac
ttctggectttccatggactatgtggeccagcacggecatccattttcagegtcttcatcttgtgecattgaccgetac
atggtcgcctgecctgtecctcatcctcacccagagetccatcctggeecctgetggegattgecgtggaccgetac
tttcacaacttcttccccatcgectgectctcttcgeccagtatctactccatgacagecgtggecttcgacagatac
ttgtcccagttcatcgecgatgctaagecatctgegectcagtgttcaccctaatggecatctccatcgacagatac
gcagctggcttctttactgtgtttgecagtgaactctctgtctacaccctgacggttatcaccctggaaaggtgg
tgcattacatatctccagtacctaggcattaatgcatcttcatgttcaataacggcecctttaccattgaaaggtac
ttgttcccctttttgcagaagtcctcagtggggatcaccgtccttaatctctgegecctaagegttgacaggtac
ctgatcccctttatacaacttacttcagtgggggtgtctgtcttcacacttacggcactgtcagectgacaggtac
ctgaatccttttgtgcaatgcgtctccattacagtatccattttctctectggttctcatcgetgtggaacgtcat
gcagtccatgtcatctacacagtcaacctctacagcagtgtcctcatcctggectttatcagtctggaccggtac
tttgtgaactactcgcaggeggtctcagttctggtcagegectatactttggtggcaattagecattgaccgetac
atcgcttcggccagegtgacgttcaacctctacgeccagtgtgttccttctcacgttgetcagecatcgaccgetac
gtggtgaataccatgatctacatgaacctctacagcagcatctgecttcctgatgettgtgagtatcgaccgatac
atcacgcacctcatcttctccatcaacctgttcggcagcatcttcttcctcacgtgecatgagegtggaccgetac
ttcattcattatttctaccttgccaacatgtacagcagcatcttcttcctcacctgectcagecattgaccgetac
ctcacgactgctttcttcttcattggecttctttgggggecatattcttcatcaccgtcatcagecatcgaccggtac
ggctactatttcctgegtgatgectgecacctatgeccacagecctcaatgtageccagectgagtgtggagegetac
ttcctctttaccatagtggacatcaacttgttcggaagtgtcttcctgatcgecctcattgetectggaccgetgt
gtggtctcgettgtgaaggaagtcaacttctacagtggaatcctgetcctggectgecatcagtgtggaccgetac
atcctgccctccctcatcctgetcaacatgtacgeccagecatcctgetecctggecaccatcagegecgaccgettt
ttcgtcactgcagcattttactgtaacatgtacgecctctatcttgectcatgacagtcataagecattgaccggttt
ctgcagaggttcattttccacgtgaacctctacggcagcatcctgttcctcacgtgcataagegtgecacaggtac
atctccgtcacgctgttctacaccaacatgtacgggagcattctattcctgacctgecatcagegtggatcgettc
gtctctgeccgtgetcttctacgtcaacatgtacgtcagecattgtgttctttgggetcatcagetttgacaggtat
ctggtgecgtttcctcttctacaccaacctctactgecagecatcctcttecctcacctgecatcagegtgecaccggtge
gctgtgectctccattgactactacaacatgttcactagcatcttcaccctcaccatgatgagegtggaccgetac
tatagcaccttcatcctacttttcttcggtctgtcgggtctcagecatcatctgtgeccatgagecatcgagegetac
ctggctggectgectcttcttcatcaacacctactgetctgtggecttectgggagtgatcacctataaccgette
ttcatgggcgtcgtcatgatcttcttecggectgtcceccgetgetgetgggggecgecatggectcagagegetac
ctggagggcttctttgeccaccttgggeggtgaaattgecactgtggtccttggtggtcctggecatcgageggtac
tactgtctgactgtgctcagegtggaccgectacgtggecgtggtgecatcccatcaaggeggeccgetaccgeegg
gtgtcccggatcgtgggtctctgecacattcttcgecggtgtgagectecttccggecattagecatcgaacgetgt
acattatcagtgacttttctgtttggctacaacacgggecctctatctgetgacggecattagtgtggagaggtge
ttcctggeccatattgtctcccttctectttgaggtgtgtctctgtctectggtggeccatcagecacagageggtgt
ggactcaacgcttgtttctacatctgtctttttgecggegtttgttttctcatcaacctgtcgatggatcgetac
ttactcactgcctgtttctacgtggctatgtttgeccagtttgtgttttatcacggagattgecactcgatcgetac
ttcaaactgggtggggttacagecctccttcacagettctgtgggecagectgttcctcacagecatcgacaggtac
ctgcgggaagggagtatgtttgtggeecctgtcagectecgtgttcagtctcctcgecatecgecattgagegetat
gtcagtcgctttgectcagtactgttctctacatgtctcagecactgactctgacagectatcgecagtggaccgecac
actaccacctacttcatgggcacttccgtgagcgtttccaccttcaacctggtageccatctctctggagagatat
gcagtttcctacctcatgggggtgtctgtgagtgtgtccacactaagecttgtggeccatcgecctggagegatac
gtggtgaagcacctgcaggtgtttgeccatgttcgegtctgectatatgetggtggtgatgacagecgaccgetac
ttcttcgggectaaccatgacagtgttcgggectatcctcgetectggtggecagegecatggecgtggagegegec
ctggaagcttttttcttaaatctcagecatttattggtctcctttcatattagtttttattagtgtcttgegttgt
acccagatatactttttcttgectctttgtagaattggacaacttcttgetgactatcatggectatgaccgttac
gtcacaattggactcattgtcgectctttctectgectctgtetgeagtttgetggetatcactgtggaccgetac
gttctcagctatctgaagctcttctctatgtatgeccccagetttcatgatggtggtgattagectggaccgetcce
gtcattgacgtgatcacctgcagctccatgectgtccagectctgettecctggegecatcgeccgtggaccgetac
atcatcgactccctgtttgtcctctccctgettggetccatcttcagectgtectgtgattgetgeggaccgetac

Figure 5: The biological data used to evaluate the empirical performance of our algo-
rithms; this data consists of 56 DNA sequences, each 75 nucleotides long, from one of
the transmembrane domains (TM3) from 56 G-protein coupled receptors. The names
in the left column indicate the organism from which the sequence originated. The sub-
strings underlined indicate a maximal primer set containing 24 sequences, with the last

5 characters of the primer being an exact match of gaccg.

14

Weighted OPC Statistics |

input GREEDY1 GREEDY2
sets | Weight | Cardinality | Weight | Cardinality
1 317 14 317 14
2 337 15 313 12
3 320 13 278 9
4 322 14 317 13
5 319 13 334 14
6 327 12 318 12
7 313 14 308 13
8 314 13 314 13
9 320 14 315 14
10 301 12 303 12
11 325 14 325 14
12 317 13 309 13
13 298 11 321 13
14 315 13 315 13
15 294 12 288 12
16 316 12 316 12
17 298 13 298 13
18 321 12 321 12
19 307 13 307 13
20 287 12 313 13
21 314 12 318 13
22 292 12 319 13
23 294 12 294 12
24 312 13 312 13
25 253 11 253 11
26 320 11 335 13
27 349 15 334 14
28 299 12 299 12
29 333 14 333 14
30 318 13 318 13

Table 2: Weight and cardinality statistics of the covers produced by the various al-
gorithms on 30 random permutations of a data set consisting of biological data (56
sequences of 75 nucleotides each). Here GREEDY2 does outperform GREEDY1 on
many instances.

550
500

450 —

weight

350

300

T T T T T
10 12

8
cardinality

Figure 6: Average cardinality and weight over 30 data sets using GREEDY1 in a simul-
taneous optimization of both weight and cardinality. Different parameters are used in
the cost function to achieve a smooth tradeoff between the two objectives.

16

