
Object Localization Using RFID 
Kirti Chawla, Gabriel Robins, and Liuyi Zhang 

Department of Computer Science, University of Virginia 

Charlottesville, Virginia, 22904, USA 

{kirti, robins, lz3m}@virginia.edu 

 
Abstract — Object localization is a key primitive in pervasive 

computing environments, where numerous applications depend 

on the rapid and accurate position estimation of objects.  We 

present a general RFID–based localization framework that 

reliably determines the positions of objects with unprecedented 

accuracy and speed.  This is achieved by varying the power levels 

of the RFID readers, calibrated against reference tags of known 

sensitivity.  Our implementation and experiments are able to 

localize objects to an accuracy of 15 cm within a few seconds, and 

this compares favorably with previous techniques. We also 

suggest several practical optimizations for further enhancing the 

speed and accuracy of the method. 

Keywords –RFID, localization,  positioning algorithms  

I.  INTRODUCTION 

Radio frequency identification (RFID) technology is 

rapidly transforming pervasive computing applications by 

offering new capabilities and a richer user experience [13].  

Capabilities such as object identification, real time tracking, 

and object localization are at the heart of numerous innovative 

RFID applications [9] [11].  While RFID technology enables 

object identification and tracking, it does not normally include 

object localization (i.e., positioning) capabilities.  We propose 

to address this limitation by developing an RFID–based 

localization framework that accurately and quickly determines 

the positions of objects.  In other words, our system offers a 

GPS-like positioning capability in an RFID environment. 

Obstacles to localization accuracy, speed and reliability, 

include environmental interferences and occlusions (e.g., the 

presence of liquids and metals), orientation and spatial 

arrangement of tags, ambient RF noise, tag sensitivity 

variations, readers' locations, etc.  These factors can weaken, 

scatter, or occlude radio waves, and thus lead to unreliable 

detection and inaccurate positioning of objects [4] [5]. 

Several RFID-based localization techniques have been 

proposed, either focusing on mobile objects (e.g., a robot) or 

stationary objects (e.g., a wallet) [6] [7] [12] [14].  However, 

previous techniques tend to sacrifice speed and accuracy in 

localizing objects in order to obtain reliable estimates (i.e., 

repeated measurements should consistently yield the same 

outcome). Unfortunately, these resulting speed and accuracy 

degradations tend to reduce the efficacy of client applications. 

We propose a localization framework that enables accurate 

object position estimation, without compromising either speed 

or reliability.  Our localization method varies the power levels 

of the readers, calibrated against a set of reference tags of 

known sensitivity, to accurately estimate target tag positions 

in a region of interest. Although we initially tested this 

methodology indoors to localize stationary objects, our 

framework is quite general and can be applied to many other 

scenarios, including outdoor environments, 3D localization, 

moving objects, various tag types, different combinations of 

tags, antennas and readers, etc.  Our framework is highly 

scalable and can accommodate a wide range of requirements 

and tradeoffs among power, cost, accuracy and speed. 

We implemented, tested and evaluated the proposed 

framework, and experimentally confirmed its accuracy, speed 

and reliability in localizing objects. In order to ensure high 

reliability and accuracy in localization, our methodology 

addresses various practical issues such as “binning” the 

calibrated tags according to their detection sensitivities, which 

can vary significantly even among “identical” tags (due to 

manufacturing variability). 

This paper is organized as follows.  In Section II, we 

describe the proposed localization framework. We present 

several localization algorithms and heuristics in Section III.  

We experimentally evaluate the proposed framework in 

Section IV, and conclude in Section V with extensions and 

future directions. 

II.  THE LOCALIZATION FRAMEWORK 

The proposed localization method is based on continuously 

varying the power levels of the RFID readers in order to infer 

distance and position information about target tags.  We use 

reference tags at known locations to help calibrate the power 

vs. distance relationships, and we employ several readers in 

order to reduce the localization uncertainty when inferring the 

position of target tags, as illustrated in Figure 1. 
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Figure 1.  Working principle of the proposed localization method 



Figure 1 depicts the intersection region covered by the 

lobes of radio waves emitted by different readers.  Based on 

the relative power level that is necessary for a reader to detect 

a target tag, we can infer the distance between that tag and the 

reader.  Moreover, several such power-distance correlations 

obtained from different readers can help localize a target tag 

with greater precision. 

The reference tags serve as a practical mechanism used to 

initially calibrate the power vs. distance relationships, in order 

to avoid relying on possibly erroneous formulas, unpredictable 

environmental conditions, etc.  This constitutes a “feedback 

mechanism” that enables our system to dynamically adapt to 

unknown variables (e.g., noise, occlusions, interferences, etc.) 

that may adversely affect tag readability and localization. 

While the use of reference tags ascertains the actual power-

distance relationships, it may also introduce errors in position 

estimates of target tags.  When target tags are detected by 

varying the reader power levels, positions of the reference tags 

detected at the same power-level are used to infer (by 

interpolation) the position of target tags.  This is a source of 

possible localization error, as depicted in above illustration.  

We apply different heuristics to minimize this error, based on 

the minimum reader power levels necessary to detect 

reference and target tags, as detailed in the next section. 

III.  ALGORITHMS AND HEURISTICS 

We now describe three localization algorithms that 

incorporate the basic principles of the proposed localization 

framework, discuss possible sources of localization error, and 

present heuristics to minimize the error. The proposed 

localization method uses varying reader power levels to infer 

the position of target tags.  We give three localization 

algorithms that control this key parameter (i.e., reader power 

level) in different ways in order to establish tradeoffs between 

accuracy and speed, as described below. 

A. Localization Algorithms 

In the first localization algorithm, we linearly increment the 

reader power level to determine the minimum power level at 

which reference (and therefore target) tags are detected.  The 

variable Power_Step determines the size of the power level 

increment.  The convergence time for the algorithm to find the 

minimum power level for tag detection is dependent on this 

Power_Step variable (i.e., the smaller this step size, the longer 

it may take to reach the desired detection  threshold, but could 

yield greater localization accuracy).  For example, if power 

level is varied between 0 and 33 dBm, and the Power_Step is 

0.25 dbm, then this algorithm will iterate up to (33 / 0.25) + 1 

= 133 times to ascertain the minimum detection power level. 

The algorithm varies the reader power level from lowest to 

highest to determine a minimum tag detection power level 

(other possible power varying strategies will be discussed 

later).  While this approach finds the minimum detection 

power levels, it may require too long to converge.  Optionally, 

we can instead vary the power level from highest to lowest, 

since tags are not typically located very near the reader, but 

rather are often found closer to the far end of the reader 

detection range.  Thus, stepping the power level down instead 

of up will tend to reduce the average number of iterations to 

determine the minimum detection power level. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Algorithm I: Linear search for the minimum power-level 

 

Figure 2 describes this algorithm, called “Algorithm I”.  

The algorithm takes as input a unique tag id (Tag_ID), power 

step (Power_Step), and increment direction flag 

(Direction_Flag), and returns the minimum reader power 

level at which that tag becomes detectable.  The time this 

algorithm requires to process a tag is linearly proportional to 

the number of distinct power levels used during the search.  

Thus, to process N tags using P power levels, this algorithm 

will run within time O(N⋅P) in the worst case. 

The overall running time can be further reduced by using a 

binary search on the power level instead of a linear search.  

This will enable a faster convergence on the minimum 

detection power level, requiring at most O(N⋅log P) steps to 

process N tags with a resolution of P power levels.  We call 

this binary–search based approach “Algorithm II”. 

Another efficiency optimization leverages the capability of 

an RFID reader to simultaneously detect a large number of 

tags during the same read cycle.  Therefore, instead of 

invoking Algorithm I separately for each tag ID, we can have 

it determine at each iteration all the tags that are detectable at 

that power level, and separately update the status of each one.   

Input: Tag_ID, Power_Step, Direction_Flag 

Output: Minimum detection power level 

 
if (Direction_Flag = LOW_TO_HIGH) then 

     Power = MIN_POWER_LEVEL 

     repeat 
           if (Power > MAX_POWER_LEVEL) then  

               return NOT_FOUND 

           end 
           Set reader power-level to Power 

           Search for tags until successful or time-out 

           if Tag_ID is found then  
               return Power 

           end 
           Power = Power + Power_Step 

     end 

else 

     Power = MAX_POWER_LEVEL 
     Found_Power = NOT_FOUND 

     repeat 
           if (Power < 0) then  
               return NOT_FOUND 

           end 
           Set reader power-level to Power 
           Search for tags until successful or time-out 

           if Tag_ID is found then  

               Found_Power = Power 

           else  
               return Found_Power 

           end  
           Power = Power  – Power_Step 

     end 

end 
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Note that this is logically equivalent to running Algorithm I 

in parallel independently for each tag.  Assuming that the 

number of tags does not exceed the maximum simultaneous 

tag reading capacity of the reader, this strategy will require 

O(P) steps using a resolution of P power levels, independently 

of the number of tags.  We call this parallel–based approach 

“Algorithm III”. 

There are several sources of possible “localization errors”, 

including the “round off” error inherent in identifying a target 

tag with the “nearest” reference tag, as well as the errors 

inherent in the algorithms for estimating the minimum 

detection power level. We next discuss these errors and 

outline techniques to mitigate them. 

B. Localization Error Mitigation  Heuristics 

Apart from the errors discussed above, other factors that 

contribute to localization errors include variability in tag 

sensitivity and environmental interferences [5].  In Section IV, 

we discuss the impact of variability in tag sensitivity on 

localization errors, and suggest practical methods to reduce it.  

We now present eleven heuristics for mitigating localization 

errors, grouped into four broad categories as follows.  

1) Absolute Difference:  This heuristic takes into account 

the absolute difference between the minimum detection power 

levels for the neighbouring reference tags and the target tags.  

We suggest four heuristic variations of this type: 
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2) Minimum Power Reader Selection: This heuristic 

employs the minimum detection power levels from two 

(orthogonal) readers to compute the absolute difference 

between the power levels of the neighbouring reference and 

target tags.  Two such heuristic variations are given as follows: 
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3) Root Sum Square Absolute Difference: In these 

heuristics, we compute the square root of the sum of squares 

of the absolute difference between the minimum detection 

power levels of the neighbouring reference and target tags.  

The following heuristic variations are based on this approach: 
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4)  All Heuristics Minimum:  This “meta-heuristic” 

computes for a given target tag the minimum of all the other 

heuristics, as follows: 

        (11) 
 

 

Where the following notation glossary applies to all of the 

above heuristics: 

 

T = Target tag 

RI = Reference tag I 

H = Heuristic 

Power = Minimum detection power level for a tag 

M  = Number of readers 

∆Ι(R) = |Power(T) – Power(R)| 

S, Q, J, K= Iteration variables for neighbourhood tags 

I = Iteration variable for unmarked tag 

L = Heuristic iteration variable 

 

The above positioning heuristics are used as a post-

processing step in our localization algorithm, once the 

minimum detection power levels of the reference and target 

tags have been determined. By employing different 

combinations of localization algorithms and positioning 

heuristics, a desired level of accuracy can be achieved. 

A key feature of the proposed framework is the flexibility 

to incorporate new localization algorithms and heuristics that 

may be developed in the future, which can enable the 

framework to localize objects with higher accuracy and speed. 

IV.  EXPERIMENTAL EVALUATION 

In this section, we present our experimental evaluation 

methodology, report results regarding tag sensitivity, 

localization accuracy and speed, and compare the overall 

approach to existing techniques. 
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A. Experimental Setup 

We evaluated the proposed localization framework to 

localize stationary objects in an indoor environment using one 

reader connected to four antennas.  Our goals for this 

evaluation were to first classify the tags based on their 

detection sensitivity (i.e., “binning” them by quality), then 

ascertain the localization accuracy and speed of the proposed 

method, and finally compare the overall performance with 

existing localization techniques.  Table I details the 

experimental setup used in our experiments. 

 

TABLE I 
EXPERIMENTAL SETUP DETAILS 

Type Technology Parameters 

CPU 
AMD Athlon 64 

@ 2 GHz 
OS WinXP 

RAM 1 GBytes 
Prog. 

Support 
C++/C# Workstation 

Hard Disk 100 GBytes API M4 LIB 

Reader ThingMagic M4 Protocol 
EPC 

Gen2 RFID 

Backend 
Antenna Linear Readers 1 

Sector  

Map Area 
6 square meters Antennas 4 

Environment 
Room 

Volume 
41 cubic meters 

References 

Tags 
32 

Tags Type 

EPC Gen2  

UHF passive 

tags (96 bit) 

Model 

Impinj 

“Dogbone 

Monza 3” 

93×23mm 

 

Our experiment was deployed in a rectangular region 

having an area of 6 square meters (2m × 3m).  This region was 

divided into eight equal sub-regions called “sectors”, each 

having an area of 0.75 square meters (1m × 0.75m).  

Furthermore, we divide each sector into four equal-sized sub-

sectors called “quadrants”, each having an area of 0.19 square 

meters (0.5m × 0.375m), as shown in Figure 3. 

One reference tag was placed in each quadrant, with a total 

of 32 reference tags evenly distributed throughout the entire 

region.  The tag type we used was an EPC Gen2 96-bit UHF 

passive tag, model “Dogbone Monza 3”, manufactured by 

Impinj, Inc. 

B. Binning Tags According to their Sensitivity 

Manufacturing variability can dramatically affect the 

detection sensitivity of tags (i.e., the minimum reader power-

level needed to successfully read a tag at a given location).  In 

fact, a small fraction of any commercially obtained batch of 

tags are typically even “dead” altogether. The accuracy of our 

localization methodology depends on the uniformity of the 

detection sensitivities across all tags, while the localization 

speed will increase with higher tag sensitivities.  As a pre-

processing quality-control check, we therefore tested and 

characterized the sensitivities of all the tags, to ensure that 

only tags with similar (and high) sensitivities are used in our 

localization experiments. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.  The experimental region with sectors (S), quadrants (Q), reference 

tags (T), and reader antennas (R) 

 

Our experimental evaluation showed that tag sensitivity 

varied considerably across a group of 243 tags of the same 

type. We have characterized the tag sensitivities based on the 

read counts using different reader power levels. Thus, given a 

reader power level, if a tag has low read counts among its 

peers, we call it “non-sensitive”.  Similarly, tags with high 

read counts relative to their peers are labelled as “highly 

sensitive”, while tags having equal read count are called 

“equally sensitive”.  

We have performed two experiments to quantify tag 

sensitivities by varying the power levels and distances 

between the readers and the tags.  While these experiments 

used EPC Gen2 passive tags, our “tag binning” approach is 

equally applicable to other types of tags. We now describe 

these sensitivity analysis experiments in detail below. 

1)  Constant Distance / Variable Power:  In this experiment, 

a batch of four tags was positioned at a distance of 2.5 meters 

from the reader’s antenna, while the reader power level was 

varied from 25.6 dBm to 31.6 dBm, in steps of 3 dBm. We 

recorded the cumulative read counts of each tag for 60 

seconds (3 read iterations lasting 20 seconds per iteration). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Tag senstivity measurements for constant distance / variable power 
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Figure 4 shows that 114 out of 243 tags had cumulative 

read counts of zero at 25.6 dBm, with most of the tags having 

read counts in the range of 3 to 9 (with some tags having read 

counts as high as 12).  Moreover, at a reader power level of 

28.6 dBm, most of the tags had cumulative read counts in the 

range 6 to 12.  Finally, at 31.6 dBm, the cumulative read 

counts all ranged between 5 and 12.  Tags were labelled as 

non-sensitive if they had zero cumulative read counts at a 

power level of 25.6 dBm.  Tags were labelled as non-sensitive 

at 28.6 dBm only if they were also labelled as non-sensitive at 

25.6 dBm.  Similarly, we labelled tags as highly-sensitive at 

25.6 dBm only if they were labelled as highly-sensitive at 31.6 

dBm.  

Using this process, 89 out of 243 tags were marked as 

highly-sensitive, 133 tags as equally-sensitive, and the 

remaining tags were considered to be non-sensitive. Thus, this 

experiment classified all 243 tags into three sensitivity 

categories, based on reader power levels needed for detection. 

2)  Variable Distance / Constant Power: In the second tag 

sensitivity experiment, we fixed the reader power level to 31.6 

dBm and varied the distance between the tags and the reader 

from 1.27 meters to 3.81 meters, in steps of 1.27 meters. We 

labelled tags as non-sensitive if they had low read counts at 

1.27 meters.  Tags were labelled as non-sensitive at 2.54 

meters only if they were also labelled as non-sensitive at 1.27 

meters.  Similarly, we labelled tags as highly-sensitive at 1.27 

meters only if they were also labelled as highly-sensitive at 

3.81 meters.   

This approach classified 61 out of the 243 tags as non-

sensitive, 161 tags as equally-sensitive, and 21 tags as highly-

sensitive, based on the minimum detection distances between 

the tags and the reader.  Figure 5 gives the distribution of the 

cumulative read counts of the tags, taken over the three testing 

distances, for a duration of 60 seconds each. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Tag senstivity measurements for variable distance / constant power 

Based on the combined outcomes of these two sensitivity 

experiments, we classified 133 tags as equally-sensitive (i.e., 

by taking the intersection of the equally-sensitive tag sets 

from each experiment).  In our ensuing localization 

experiments, we selected all reference and target tags from 

this equally-sensitive tag set. 

C. Localization Accuracy and Speed 

We measured localization accuracy by determining the 

effect of the parameter Power_Step on the minimum detection 

power levels.  This is accomplished by determining for a 

given target tag, the minimum detection power levels over 

different power steps.  These measurements are given below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Power level comparison for algorithms I, II, and III  

 

Figure 6 gives the minimum detection power levels of a tag 

for four different power steps, measured using the three 

localization algorithms using two orthogonally placed 

antennas.  Algorithm I (in low-to-high LTH mode) reports the 

lowest minimum detection power level, while Algorithm III 

(in high-to-low HTL mode) yields the highest minimum 

detection power level for the same tag for all the algorithms 

and power steps.  Since localization accuracy is based on 

determining minimum detection power levels, the Algorithms 

I, II, and III are able to trade off accuracy and speed. 

The time required for localization is heavily dependent on 

the time required to detect tags. Figure 7 gives the time 

required to detect tags placed at eight random locations in the 

region for all three algorithms (using two orthogonal reader 

antennas). The data confirms our hypothesis that varying the 

power levels from high to low is typically more efficient for 

localizing tags farther away from the reader.   

While Algorithm II consistently requires less time to find 

tags, it yields sub-optimal minimum detection power level 

estimates, due to the coarser granularity of the binary search 

as compared to the linear search of Algorithm I.  Also, 

Algorithm III requires the smallest search time to find tags, 

unless the tags are placed very near to the antennas, which 

then enables Algorithm I to find them more quickly.   

Thus, by combining different algorithms, we can choose 

appropriate application-driven tradeoffs between localization 

accuracy and localization speed. 
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Figure 7.  Search time comparison for algorithms I, II, and III  

 

Table II compare our proposed framework with existing 

localization techniques.  We report separately the run times 

for the “setup stage” (calibration using reference tags) and the 

“localization stage” (localizing target tags).  Note that the 

setup stage is performed only once at the beginning of the 

experiment.  In summary, our approach is able to localize 

objects with an average accuracy of 15cm, and an average run 

time under 26 seconds using two antennas (or 54 seconds 

using four antennas in order to yield higher accuracy).  

 
TABLE II 

COMPARISON OF THE PROPOSED FRAMEWORK WITH EXISTING  

RFID-BASED LOCALIZATION TECHNIQUES 

Average time (min) Technique 

Setup 

Stage 

Localization 

Stage 

Test area 

(square 

meters) 

Error 

(meters) 

Ni et al [10] NR NR NR ~2   

Alippi et al [1] NR NR 20 0.68 

Joho et al [8] ~27 NR NR 0.375 

Zhou et al [16] NR NR NR 0.19 

Bechteler et al [2] NR NR NR 0.2 

Wang et al [15] NR NR NR 0.1 – 0.9 

Bekkali et al [3] NR NR 9 0.5 – 1.0 

Proposed 

Framework 

Algorithms I, II, III 

19.3 

14.7 

3.6 

0.72  

0.48 

0.91 

6 0.08 – 0.31 

Avg.= 0.15 

* NR – Not Reported 

V. CONCLUSION 

We proposed a low-cost and efficient object localization 

framework using RFID.  The framework is quite general and 

can be extended to many different environments, scenarios, 

and types of RFID readers and tags.  Future work includes 

reducing the average time required to localize an object, 

improving the localization accuracy, and testing in different 

environments (e.g., outdoors, 3D space, moving objects etc.). 
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	1) Absolute Difference:  This heuristic takes into account the absolute difference between the minimum detection power levels 
	2) Minimum Power Reader Selection: This heuristic employs the minimum detection power levels from two (orthogonal) readers to 
	3) Root Sum Square Absolute Difference: In these heuristics, we compute the square root of the sum of squares of the absolute 
	4) All Heuristics Minimum:  This “meta-heuristic” computes for a given target tag the minimum of all the other heuristics, as 

