
Improved Steiner Tree Approximation in Graphs�

Gabriel Robinsy and Alexander Zelikovskyz

yDepartment of Computer Science, University of Virginia, Charlottesville, VA 22903-2442
robins@cs.virginia.edu, www.cs.virginia.edu/robins

zDepartment of Computer Science, Georgia State University, Atlanta, GA 30303

alexz@cs.gsu.edu, www.cs.gsu.edu/
~

matazz

Abstract

The Steiner tree problem in weighted graphs seeks a minimum weight connected subgraph
containing a given subset of the vertices (terminals). We present a new polynomial-time
heuristic with an approximation ratio approaching 1 + ln 3

2
� 1:55, which improves upon

the previously best-known approximation algorithm of [10] with performance ratio � 1:59.
In quasi-bipartite graphs (i.e., in graphs where all non-terminals are pairwise disjoint), our
algorithm achieves an approximation ratio of � 1:28, whereas the previously best method
achieves an approximation ratio approaching 1:5 [19]. For complete graphs with edge weights
1 and 2, we show that our heuristic has an approximation ratio approaching � 1:28, which
improves upon the previously best-known ratio of 4

3
[4]. Our method is considerably simpler

and easier to implement than previous approaches. Our techniques can also be used to
prove that the Iterated 1-Steiner heuristic [14] achieves an approximation ratio of 1:5 in
quasi-bipartite graphs, thus providing the �rst known non-trivial performance ratio of this
well-known method.

1 Introduction

Given an arbitrary weighted graph with a distinguished vertex subset, the Steiner Tree Problem

asks for a minimum-cost subtree spanning the distinguished vertices. Steiner trees are important
in various applications such as VLSI routing [14], wirelength estimation [6], phylogenetic tree
reconstruction in biology [11], and network routing [12]. The Steiner Tree Problem is NP -hard
even in the Euclidean or rectilinear metrics [8].

Arora established that Euclidean and rectilinear minimum-cost Steiner trees can be e�ciently
approximated arbitrarily close to optimal [1]. On the other hand, unless P = NP , the Steiner
Tree Problem in general graphs cannot be approximated within a factor of 1 + � for su�ciently
small � > 0 [4, 7]. For arbitrary weighted graphs, the best Steiner approximation ratio achievable
within polynomial time was gradually decreased from 2 to 1:59 in a series of works [20, 21, 2, 22,
18, 15, 10].

In this paper we present a polynomial-time approximation scheme with a performance ratio
approaching 1 + ln 3

2 � 1:55 which improves upon the previously best-known ratio of 1.59 due to

�This work was supported by a Packard Foundation Fellowship, by National Science Foundation Young Inves-
tigator Award (MIP-9457412), and by a GSU Research Initiation Grant.

1

Hougardy and Pr�omel [10]. We apply our heuristic to the Steiner Tree Problem in quasi-bipartite
graphs (i.e., where all non-terminals are pairwise disjoint). In quasi-bipartite graphs our heuristic
achieves an approximation ratio of � 1:28 within time O(mn2), wherem and n are the numbers of
terminals and non-terminals in the graph, respectively. This is an improvement over the primal-
dual algorithm by Rajagopalan and Vazirani [19] where the bound is more than 1:5. We also
show that a well-known Iterated 1-Steiner heuristic [13, 9, 14] achieves an approximation ratio
of 1:5 for quasi-bipartite graphs; previously, no non-trivial bounds were known for the Iterated
1-Steiner heuristic. Finally, we improve the approximation ratio achievable for the Steiner Tree
Problem in complete graphs with edge weights 1 and 2, by decreasing it from the previously
known 4

3 [4] to less than 1:28 for our algorithm.
The remainder of the paper is organized as follows. In the next section we introduce basic

de�nitions, notation and properties. In Section 3 we present our main algorithm (called k-LCA)
and formulate the basic approximation result. In Sections 4 and 5 we prove the approximation
ratio of the algorithm k-LCA in general graphs and estimate the performance of the Iterated
1-Steiner heuristic and k-LCA in quasi-bipartite graphs and in complete graphs with weights 1
and 2. We conclude by proving in Section 6 the basic approximation result for k-LCA.

2 De�nitions, Notations and Basic Properties

Let G = (V;E; cost) be a graph with a non-negative cost function on its edges. Any tree in G
spanning a given set of terminals S � V is called a Steiner tree, and the cost of a tree is de�ned
to be the sum of its edge costs. The Steiner Tree Problem (STP) seeks a minimum-cost Steiner
tree. Note that a Steiner tree may contain non-terminal vertices and these are referred to as
Steiner points. We can assume that the cost function over G = (V;E; cost) is metric (i.e., the
triangle inequality holds) since we can replace any edge e 2 E with the shortest path connecting
the ends of e. Henceforth we will therefore assume that G is a complete graph. Similarly, for the
subgraph GS induced by the terminal set S, GS is a complete graph with vertex set S.

Let MST (GS) be the minimum spanning tree of GS. For any graph H, cost(H) is the sum
of the costs of all edges in H. We thus denote the cost of a minimum spanning tree of H by
mst(H), e.g., cost(MST (GS)) = mst(GS). For brevity, we use mst to denote mst(GS). In order
to simplify our analyses, we further assume that all edge costs in G are unique (this ensures that
the optimal Steiner tree and minimum spanning tree are unique).

A Steiner tree over a subset of the terminals S0 � S in which all terminals S0 are leaves is called
a full component (see Figure 1(a)). Any Steiner tree can be decomposed into full components
by splitting all the non-leaf terminals. Our algorithm will proceed by adding full components
to a growing solution, based on their \relative cost savings" (this notion will be made precise
below). We assume that any full component has its own copy of each Steiner point so that full
components chosen by our algorithm do not share Steiner points.

A Steiner tree which does not contain any Steiner points (i.e., where each full component
consists of a single edge), will be henceforth called a terminal-spanning tree. Our algorithm
will compute relative cost savings with respect to the \shrinking" terminal-spanning tree which
initially coincides with MST (GS).

The relative cost savings of full components are represented by a ratio of how much a full
component decreases the cost of the current terminal-spanning tree over the cost of connecting
its Steiner points to terminals. The cost savings of an arbitrary graph H with respect to a
terminal-spanning tree T is the di�erence between the cost of T and the cost of the Steiner tree

2

a

d

b
d

b c

a

(c)(b)(a)

c

Figure 1: (a) A full component K: �lled circles denote terminals and empty circles denote Steiner
points. (b) Connected components of Loss(K) to be collapsed, dashed edges belong to Loss(K).
(c) The corresponding terminal-spanning tree C[K] with the contracted Loss(K).

obtained by augmenting H with the edges of T . Formally, let T [H] be the minimum cost graph
in H [T which contains H and spans all the terminals of S (see Figure 2). The gain of H
with respect to T is de�ned as gainT (H) = cost(T) � cost(T [H]). If H is a Steiner tree, then
gainT (H) = cost(T) � cost(H). Note that gainT (H) � cost(T) � mst(T [H) because T [H]
cannot cost less than MST (T [H). We will use the following property of gain proved in [21, 2].

(b)(a)

T[H]T

H

Figure 2: (a) A graph H (dashed edges) and a terminal-spanning tree T (solid edges). (b) The
corresponding graph T [H] contains H and spans all the terminals.

Lemma 1 For any terminal-spanning tree T and graphs H and H 0,

gainT (H [H 0) � gainT (H) + gainT (H
0)

The minimum-cost connection of Steiner points of a full component K to its terminals is
denoted Loss(K). Formally, Loss(K) is a minimum-cost forest spanning the Steiner nodes of a
full component K such that each connected component contains at least one terminal (see Figure
1(b)). Intuitively, Loss will serve as an upper bound on the optimal solution cost increase during
our algorithm's execution (as will be elaborated below). We will denote the cost of Loss(K) by
loss(K). The loss of a union of full components is the sum of their individual losses.

As soon as our algorithm accepts a full component K it contracts its Loss(K), i.e. \collapses"
each connected component of Loss into a single node (see Figure 1(c)). Formally, a loss-contracted

3

full component C[K] is a terminal-spanning tree over terminals of K in which two terminals
are connected if there is an edge between the corresponding two connected components in the
forest Loss(K). The cost of any edge in C[K] coincides with the cost of the corresponding
edge in K. The 1-to-1 correspondence between edges of K n Loss(K) and C[K] implies that
cost(H)�loss(H) = cost(C[H]). Similarly, for any Steiner tree H, C[H] is the terminal-spanning
tree in which the losses of all full components of H are contracted.

Our algorithm constructs a k-restricted Steiner tree, i.e., a Steiner tree in which each full
component has at most k terminals. Let Optk be an optimal k-restricted Steiner tree, and let
optk and lossk be the cost and loss of Optk, respectively. Let opt and loss be the cost and loss
of the optimal Steiner tree, respectively.

We now prove the following lower bound on the cost of the optimal k-restricted Steiner tree.

Lemma 2 Let H be a Steiner tree; if gainC[H](K) � 0 for any k-restricted full component K,
then

cost(H)� loss(H) = cost(C[H]) � optk

Proof. Let K1; : : : ;Kp be full components of Optk.

cost(C[H])� optk = gainC[H](Optk)

= gainC[H](K1 [: : : [Kp)

� gainC[H](K1) + : : : + gainC[H](Kp)

� 0

ut
An approximation ratio of an algorithm is an upper bound on the ratio of the cost of the

found solution over the cost of the optimal solution. In the next section we will propose a new
algorithm for the Steiner Tree Problem, and then prove a (best-to-date) approximation ratio for
it.

3 The Algorithm

All previous heuristics (except Berman and Ramayer's [2] approach) with provably good approx-
imation ratios choose appropriate full components and then contract them in order to keep them
for the overall solution. This does not allow us to give up an already-accepted full component
even if later we would �nd out that a better full component disagrees with a previously accepted
(two components disagree if they share at least two terminals).

The main idea behind the Loss-Contracting Algorithm (see Figure 3) is to contract as little as
possible so that (i) a chosen full component may still participate into the overall solution but (ii)
not many other full components would be rejected. In particular, if we contract Loss(K), i.e.,
replace a full component K with C[K], then (i) it will not cost anything to add a full component
K in the overall solution and (ii) we decrease the gain of full components which disagree with K
by a small value (e.g., less than in the Berman-Ramayer algorithm for large k, and much smaller
than in [15] for any k).

Our algorithm iteratively modi�es a terminal-spanning tree T , which is originallyMST (GS),
by incorporating into T loss-contracted full components greedily chosen from G. The intuition
behind the gain-over-loss objective ratio is as follows. The cost of the approximate solution lies

4

between mst = mst(GS) and optk. If we accept a component K, then it increases (by a gain
of K) the gap between mst and the cost of the approximation. Thus the gain of K is our clear
pro�t. On the other hand, if K does not belong to OPTk, then after accepting K we would
no longer be able to reach Optk because we would need to pay for the connection of incorrectly
chosen Steiner points. Therefore, the value of loss(K), which is the connection cost of Steiner
points of K to terminals, is an upper bound on the increase in the cost gap between optk and
the best achievable solution after accepting K. Thus loss(K) is an estimate of our connection
expense. Finally, maximizing the ratio of gain over loss is equivalent to maximizing the pro�t
per unit expense.

Loss-Contracting Algorithm (k-LCA) for Steiner Trees in Graphs
Input: A complete graph G = (V;E; cost) with edge costs satisfying the triangle inequality,

a set of terminals S � V , and an integer k � jSj
Output: A k-restricted Steiner tree in G connecting all the terminals in S

T =MST (GS)
H = GS

Repeat forever
Find a k-restricted full component K with the maximum r = gainT (K)=loss(K)
If r � 0 then exit repeat
H = H [K
T =MST (T [C[K])

Output the tree MST (H)

Figure 3: The k-restricted Loss-Contracting Al-
gorithm (k-LCA).

In Section 6 we will show that cost(T)�mst(T [K) = gainT (K). Therefore, each time the
algorithm chooses a full component K, the cost of T decreases by gainT (K)+ loss(K). This will
imply the basic approximation result proved in Section 6.

Theorem 1 For any instance of the Steiner Tree Problem, the cost Approx of the Steiner tree

produced by algorithm k-LCA is at most:

Approx � lossk � ln

�
1 +

mst� optk
lossk

�
+ optk (1)

4 Performance of k-LCA in General Graphs

Our estimate of the performance ratio of algorithm k-LCA in arbitrary graphs is based on the
estimates of optimal k-restricted Steiner trees. Let �k be the worst-case ratio of optk

opt
. It was

shown in [5] that �k � 1 + (blog2 kc+ 1)�1. We will show below that the approximation ratio of
k-LCA is at most �k(1 +

1
2 ln(

4
�k
� 1)). Therefore, the approximation ratio of k-LCA converges

to 1 + ln 3
2 < 1:55 when k ! 1. This is an improvement over the algorithm given by Hougrady

and Prommel [10], where the approximation ratio approaches 1.59.

5

Theorem 2 The k-LCA algorithm has an approximation ratio of at most (1 + 1
2 ln(

4
�k
� 1))�k

Proof. Since mst � 2opt (see [20]), the inequality (1) yields the following upper bound on the
output tree cost of k-LCA.

Approx � lossk � ln

�
1 +

2opt� optk
lossk

�
+ optk

It was proved in [15] that for any Steiner tree T , loss(T) � 1
2cost(T). Therefore, lossk �

1
2optk.

The partial derivative (lossk � ln(1+
2opt�optk

lossk
))0lossk is always positive; therefore, the the upper

bound on Approx achieves maximum when lossk =
1
2optk. Thus, we obtain

Approx

opt
�
optk
opt

�

0
@1 + ln(4opt

optk
� 1)

2

1
A

Since the upper bound above grows when optk increases, we can replace optk
opt

with the maximum
value of �k. ut

5 Steiner Trees in Quasi-Bipartite Graphs and Complete Graphs

with Edge Weights 1 and 2

Recently Rajagopalan and Vazirani [19] suggested a primal-dual -based algorithm for approxi-
mating Steiner trees. They show that their algorithm has an approximation ratio of 1:5 + � for
quasi-bipartite graphs, i.e., the graphs where all non-terminals are pairwise disjoint. We �rst
show that the well-known Iterated 1-Steiner heuristic [13, 9, 14] has an approximation ratio of
1.5. Next, we apply algorithm k-LCA to quasi-bipartite graphs and estimate its runtime. Finally
we prove that the performance ratio of k-LCA for quasi-bipartite graphs is below 1.28. We also
apply k-LCA to the Steiner Tree Problem in complete graphs with edge weights 1 and 2. Bern
and Plassmann [4] proved that this problem is MAX SNP-hard and gave a 4

3 -approximation
algorithm. Applying Lovasz's algorithm for the parity matroid problem (see [16]), an 1.2875-
approximation algorithm was given in [3]. We will show that the performance ratio of algorithm
k-LCA approaches 1.28 for such graphs, improving on previously achievable bounds.

The Iterated 1-Steiner heuristic. The Iterated 1-Steiner heuristic (I1S) (see [13, 9, 14])
repeatedly (while it is possible) adds Steiner points to the terminal set, which decreases the cost
of the minimum spanning tree over terminals. Accepted Steiner nodes are deleted if they become
useless, i.e., if their degree become 1 or 2 in the MST over the terminals. Although I1S decreases
the MST cost by the maximum possible value at each iteration, we will estimate the cost of the
output Steiner tree regardless of how it was obtained. The following theorem will also enable us
to estimate the performance ratio of a faster Batched variant of the Iterated 1-Steiner heuristic
[13, 9, 14].

Theorem 3 Given an instance of the Steiner Tree Problem in a quasi-bipartite graph G, let H
be a Steiner tree in G such that (i) any Steiner point has degree at least 3 and (ii) H cannot be
improved by adding any other Steiner point, i.e., mst(H [v) � cost(H) for any vertex v in G.

Then the cost of H is at most 1.5 times the optimal.

6

Proof. Any full component in quasi-bipartite graphs has a single Steiner point. Therefore, the
loss of any full component equals the cost of the least-cost edge connecting its single Steiner point
to a terminal. Since any Steiner point has degree at least 3 (condition (i)), the loss of any full
component in H is at most one third of its cost. Thus, loss(H) � 1

3cost(H).
We now show that gainC[H](K) � 0 for any full component K. Indeed, condition (ii) implies

that mst(H [K) � cost(H). If we contract the loss of H, then we can decrease MST (H [K)
by at most loss(H) since reduction by loss(H) happens only if all edges of Loss(H) belong to
MST (H [K). Therefore, mst(C[H] [K) � mst(H [K) � loss(H) and mst(C[H] [K) �
cost(H) � loss(H) = cost(C[H]). Thus, gainC[H](K) � cost(C[H]) �mst(C[H] [K) � 0. By

Lemma 2, cost(H)�loss(H) � opt and since loss(H) � 1
3cost(H), we obtain cost(H) � 3

2opt. ut
The above result helps explain why the Iterated 1-Steiner and Rajagopalan-Vazirani heuris-

tics perform similarly when applied to instances of the Steiner Tree Problem restricted to the
rectilinear plane (see [17]).

Runtime of the algorithm k-LCA in quasi-bipartite graphs. For a given Steiner point v,
algorithm k-LCA adds only a full component with the largest gain since the loss is determined
by v. We can �nd a full tree with the maximum gain with respect to a terminal-spanning tree T
among all possible full components with Steiner point v by merely �nding all neighbors of v in
MST (T [v). Therefore a full component maximizing the gain-over-loss ratio over all k can be
found within polynomial time.

We estimate the runtime of k-LCA for quasi-bipartite graphs as follows. Let m and n be the
number of terminals and non-terminals, respectively. The number of iterations is O(n) since a
Steiner point can be added only once to H. Each iteration consists of O(n) gain evaluations, each
of which can be computed within O(m) time. Finally, using the appropriate data structures, the
k-LCA algorithm can be implemented within a total runtime of O(n2m), where m is the number
of terminals.

Performance of the algorithm k-LCA. We �rst estimate the loss of a Steiner tree in the
cases of quasi-bipartite graphs and complete graphs with edge weights 1 and 2.

Lemma 3 For the Steiner Tree Problem in quasi-bipartite graphs and complete graphs with edge

weights 1 and 2,
mst � 2(optk � lossk) (2)

Proof. For quasi-bipartite graphs, let K be an arbitrary full component of a Steiner tree T with
p terminals connected by a single Steiner point with edges of lengths d0; d1; : : : ; dp�1. Assume
that loss(K) = d0 = minfdig. Let mst(K) be the cost of the minimum spanning tree of GS0 ,
where S0 is the set of terminals in K. By the triangle inequality,

mst(K) �
p�1X
i=1

(d0 + di) = p � d0 + cost(K)� 2d0 � 2cost(K)� 2loss(K)

The bound (2) follows from the fact that mst, the minimum spanning tree cost of S, does not
exceed the sum of mst-costs for terminals in each of the full components in Optk.

Now we prove the lemma for the case of complete graphs with edge weights 1 and 2. Letm and
n respectively be the number of terminals and Steiner points in the optimal k-restricted Steiner
tree Optk. Then mst � 2m� 2 since all edge weights are at most 2 and optk � m+ n� 1 since

7

Optk contains m+ n nodes. We may assume that full components of Optk contain only edges of
weight 1, and therefore lossk = n. Thus, mst � 2m� 2 = 2(m+n� 1�n) � 2(optk� lossk). ut

Theorem 4 Algorithm k-LCA has an approximation ratio of at most � 1:279 for quasi-bipartite

graphs and an approximation ratio approaching � 1:279 for complete graphs with edge weights 1

and 2.

Proof. After substituting the MST bound (2) into inequality (1), we obtain

Approx � lossk � ln

�
optk
lossk

� 1

�
+ optk (3)

Taking the partial derivative of (loss � ln(optk
lossk

� 1))0lossk , we see that the single maximum of the

upper bound (3) occurs when x = lossk
optk�lossk

is the root of the equation 1 + lnx+ x = 0. Solving
this equation numerically we obtain x � 0:279. Finally, we substitute x into (3)

Approx �
x

1 + x
� optk � ln

1

x
+ optk = (x+ 1) � optk � 1:279 � optk

The bound above is valid for the output of algorithm k-LCA for quasi-bipartite graphs if we
set k = jSj, i.e., if we omit the index k. For complete graphs with edge weights 1 and 2, optk
converges to opt, and the approximation ratio of algorithm k-LCA therefore converges to 1.279
when k !1. ut

6 Approximation Ratio of Algorithm k-LCA

This section is devoted to the proof of the Theorem 1. Let K1; : : : ;Klast be full components
chosen by k-LCA. Let T0 = MST (GS) and let Ti, i = 1; : : : ; last be the tree T produced by
k-LCA after i iterations. Let cost(Ti) be the cost of Ti after the i-th iteration of k-LCA.

Lemma 4 gainTi�1
(Ki) = cost(Ti�1)�mst(Ti�1 [Ki)

Proof. It is su�cient to show that Ti�1[Ki] =MST (Ti�1 [Ki). Assume that MST (Ti�1 [Ki)
does not contain some edge e 2 Ki and let A and B be two connected components of Ki � feg.
We will show that either A or B has a larger gain-over-loss ratio, which contradicts the choice of
Ki.

Since e does not belong to MST (Ti�1 [Ki), we have cost(Ti�1[A [B]) < cost(Ti�1[Ki]).
By Lemma 1, gainTi�1

(Ki) < gainTi�1
(A [B) � gainTi�1

(A) + gainTi�1
(B). Note that e is

the longest edge on a Ki-path between some pair of terminals, and therefore cannot belong to
Loss(Ki). Thus Loss(Ki) = Loss(A) [Loss(B) and loss(Ki) = loss(A) + loss(B). Finally,

gainTi�1
(Ki)

loss(Ki)
<
gainTi�1

(A) + gainTi�1
(B)

loss(A) + loss(B)
� max

(
gainTi�1

(A)

loss(A)
;
gainTi�1

(B)

loss(B)

)

ut
We de�ne the supergain of a graph H with respect to a Steiner tree T as supergainT (H) =

gainT (H) + loss(H). By Lemma 4, the supergain of Ki with respect to Ti�1 is

supergainTi�1
(Ki) = gainTi�1

(Ki) + loss(Ki)

= cost(Ti�1)�mst(Ti�1 [Ki) +mst(Ti�1 [Ki)� cost(Ti)

= cost(Ti�1)� cost(Ti) (4)

8

Let Gi = supergainTi(OPTk) be the supergain of the optimal k-restricted Steiner tree OPTk
with respect to Ti i = 0; 1; : : : ; last. Let loss(n) be the loss of the �rst n accepted full trees
K1; : : : ;Kn. We will show that the loss of full components accepted by k-LCA does not grow too
fast.

Lemma 5 If Gn is positive, then loss(n)
lossk

� ln G0

Gn

Proof. Let li = loss(Ki) and gi = supergainTi�1
(Ki) be respectively the loss and supergain of

the i-th full Steiner tree accepted by algorithm k-LCA. Let Optk consist of full components Xj .
By Lemma 1,

G0

lossk
�

P
Xj2Optk

supergainT0(Xj)P
Xj2Optk

loss(Xj)
� 1 +maxXj2Optk

(
gainT0(Xj)

loss(Xj)

)
� 1 +

gainT0(K1)

loss(K1)
=
g1
l1

Inductively, for i = 1; 2; : : : ; n, Gi�1

lossk
� gi

li
. Therefore,

gi �
li

lossk
Gi�1 (5)

Each time k-LCA accepts a full tree Ki, it decreases the cost of Ti by the supergain of Ki,
which results in decrease of the supergain of Optk by the same value. The equality (4) yields
Gi = cost(Ti)� cost(OPTk) + lossk. Therefore, Gi�1 �Gi = cost(Ti�1)� cost(Ti) = gi.

The inequality (5) implies that Gi = Gi�1 � gi � Gi�1

�
1� li

lossk

�
. Since Gn > 0, unraveling

the last inequality yields
Gn

G0
�

nY
i=1

�
1�

li
lossk

�

Taking the natural logarithms of both sides and using inequality x � ln(1 + x) we �nally obtain

ln
G0

Gn

�
nX
i=1

li
lossk

=
loss(n)

lossk
(6)

ut
By Lemma 2, after all iterations terminate, the cost of the last tree Tlast will be at most

optk. We stop iterating when cost(Tn+1) < optk � cost(Tn) for some n. It can be show that we
can \partially" perform the (n+ 1)-st iteration so that cost(Tn+1) will coincide with optk. Then
G0 = mst� optk + lossk and Gn+1 = optk � optk + lossk = lossk. Finally,

Approx � cost(Tn+1) + loss(n+ 1) � optk + optk � ln
mst� optk + lossk

lossk

Acknowledgments

We thank Gruia Calinescu for reading earlier drafts of this paper and giving numerous helpful
suggestions.

9

References

[1] S. Arora, \Polynomial Time Approximation Schemes for Euclidean TSP and Other Geometric Problems",
Proceedings 37th Annual Symposium on Foundations of Computer Science (1996), 2{11.

[2] P. Berman and V. Ramaiyer, \Improved Approximations for the Steiner Tree Problem", J. of Algorithms,
17 (1994), 381{408.

[3] P. Berman, M. Furer and A. Zelikovsky, \Applications of the Matroid Parity Problem to Approximating
Steiner Trees", Tech. Rep. 980021, Computer Science Dept., UCLA, Los Angeles, 1998.

[4] M. Bern and P. Plassmann, \The Steiner Tree Problem with Edge Lengths 1 and 2", Information Pro-
cessing letters 32 (1989), 171{176.

[5] A. Borchers and D.-Z. Du, \The k-Steiner Ratio in Graphs", SIAM J. Computing 26 (1997), 857{869.

[6] A. Caldwell, A. Kahng, S. Mantik, I. Markov and A. Zelikovsky, \On Wirelength Estimations for
Row-Based Placement", Proceedings of the International Symposium on Physical Design, Monterey, Califor-
nia (1998), pp. 4{11.

[7] A. E. F. Clementi and L. Trevisan, \Improved Non-Approximability Results for Minimum Vertex Cover
with Density Constraints", Electronic Colloquium on Computational Complexity, TR96-016 (1996).

[8] M. R. Garey, D. S. Johnson. \The Rectilinear Steiner Problem is NP-Complete", SIAM J. Appl. Math., 32,
826-834, 1977.

[9] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang, Closing the Gap: Near-Optimal Steiner Trees
in Polynomial Time, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13
(1994), pp. 1351{1365.

[10] S. Hougardy and H. J. Pr�ommel, \A 1.598 Approximation Algorithm for the Steiner Problem in Graphs",
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (1999), 448{453.

[11] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem, North-Holland, 1992.

[12] B. Korte, H. J. Pr�omel, A. Steger. \Steiner Trees in VLSI-Layouts", In Korte et al.: Paths, Flows and
VLSI-Layout, Springer, 1990.

[13] A. B. Kahng and G. Robins, \A New Class of Iterative Steiner Tree Heuristics With Good Performance",
IEEE Transactions on Computer-Aided Design, 11 (7), 1992, pp. 893-902.

[14] A. B. Kahng and G. Robins, On Optimal Interconnections for VLSI, Kluwer Publishers, 1995.

[15] M. Karpinski and A. Zelikovsky, \New Approximation Algorithms for the Steiner Tree Problem", Journal
of Combinatorial Optimization, 1 (1997), 47{65.

[16] L. Lovasz and M. D. Plummer, Matching Theory. Elsevier Science, Amsterdam, 1986.

[17] I. I. Mandoiu, V. V. Vazirani and J. L. Ganley, \A New Heuristic for Rectilinear Steiner Trees",
manuscript.

[18] H. J. Pr�ommel and A. Steger, \RNC-Approximation Algorithms for the Steiner Problem", Proceedings
14th Annual Symposium on Theoretical Aspects of Computer Science (1997), 559{570.

[19] S. Rajagopalan and V. V. Vazirani, \On the Bidirected Cut Relaxation for Metric Steiner Problem",
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (1999), 742{757.

[20] H. Takahashi and A. Matsuyama, \An Approximate Solution for the Steiner Problem in Graphs", Math.
Jap. 24 (1980), 573{577.

[21] A. Zelikovsky, \An 11/6-Approximation Algorithm for the Network Steiner Problem", Algorithmica 9
(1993), 463{470.

[22] A. Zelikovsky, \Better Approximation Bounds for the Network and Euclidean Steiner Tree Problems",

Technical report CS-96-06, University of Virginia, 1996.

10

