Closing the Gap:
Near-Optimal Steiner Trees in Polynomial Time *

Jeft Griffith, Gabriel Robins, Jeffrey S. Salowe and Tongtong Zhang

Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442

Abstract

The minimum rectilinear Steiner tree (MRST) problem arises in global routing and wiring
estimation, as well as in many other areas. The MRST problem is known to be NP-hard, and the
best performing MRST heuristic to date is the Iterated 1-Steiner (I1S) method recently proposed
by Kahng and Robins. In this paper we develop a straightforward, efficient implementation of I1S,
achieving a speedup factor of three orders of magnitude over previous implementations. We also
give a parallel implementation that achieves near-linear speedup on multiple processors. Several
performance-improving enhancements enable us to obtain Steiner trees with average cost within
0.25% of optimal, and our methods produce optimal solutions in up to 90% of the cases for typical
nets. We generalize 11S and its variants to three dimensions, as well as to the case where all
the pins lie on k parallel planes, which arises in, e.g., multi-layer routing. Motivated by the goal
of reducing the running times of our algorithms, we prove that any pointset in the Manhattan
plane has a minimum spanning tree (MST) with maximum degree 4, and that in three-dimensional
Manhattan space every pointset has an MST with maximum degree of 14 (the best previous upper
bounds on the maximum MST degree in two and three dimensional are 6 and 26, respectively);
these results are of independent theoretical interest and also settle an open problem in complexity
in theory.

1 Introduction

The minimum rectilinear Steiner tree problem is central to VLSI physical-design phases such as global
routing and wiring estimation, where we seek low-cost topologies to interconnect the pins of signal nets

30] [37]:

The Minimum Rectilinear Steiner Tree (MRST) problem: Given a set P of n points, find a set
S of Steiner points such that the minimum rectilinear spanning tree (MST) over P U S has minimum

cost.

*Professor Gabriel Robins, Professor Jeffrey Salowe, and Ms. Tongtong Zhang are with the Department of Computer
Science, University of Virginia, Charlottesville, VA 22903-2442. Mr. Jeff Griffith is with the Department of Computer
Science, University of Tennessee, Knoxville, TN 37996-1301. All correspondence and code requests should be addressed
to the primary author: Professor Gabriel Robins, robins@cs.virginia.edu, phone: (804) 982-2207, FAX: (804) 982-2214.
Professor Robins was partially supported by NSF Young Investigator Award MIP-9457412. Professor Salowe was partially
supported by NSF grants MIP-9107717 and CCR-9224789.

The cost of a tree edge is the Manhattan distance between its endpoints, and the cost of a tree is
the sum of its edge costs. The terms points and pins are synonymous and are used interchangeably,

depending on the context (a netis a set of pins). Figure 1 shows an MST and an MRST for the same

four-pin net.

Figure 1: A minimum spanning tree (left) and MRST (right) for a fixed net; hollow dots
represent the original pointset P, while solid dots represent the set S of added Steiner points.

Research on the MRST problem has been guided by several fundamental results. First, Hanan [21]
has shown that there always exists an MRST with Steiner points chosen from the intersections of all
the horizontal and vertical lines passing through all the points in P (see Figure 2), and this result was
generalized by Snyder [42] to all higher dimensions. However, a second major result by Garey and
Johnson [16] establishes that despite this restriction on the solution space, the MRST problem remains

NP-complete; this has given rise to numerous heuristics as surveyed by Hwang, Richards and Winter

[27].

)
UV
A4

o— o—

Figure 2: Hanan’s theorem: there always exists an MRST with Steiner points chosen from
the intersections of all the horizontal and vertical lines passing through all the points.

In solving intractable problems, we often seek provably-good heuristics having bounded worst-
case error from optimal. Thus, a third important result is the discovery by Hwang [25] that the
rectilinear MST is a fairly good approximation to the MRST, with a worst-case performance ratio
of % < % This implies that any MST-based strategy that improves upon an initial MST

topology will also enjoy a performance ratio of at most % This has prompted a large number of Steiner

tree heuristics that resemble classic MST construction methods [23] [24] [26] [31] [32], all producing

Steiner trees with average cost 7% to 9% smaller than MST cost [27].

Unfortunately, all MST-based MRST constructions were recently shown by Kahng and Robins [29]
to have a worst-case performance ratio of exactly % This negative result has motivated research into
alternate schemes for MRST approximation, with the best performing among these being the Iterated
1-Steiner (I1S) algorithm [28] [38]. I1S always performs strictly better than % times optimal', and also
performs very well in practice, achieving almost 11% average improvement over MST cost, which is
on average less than 0.5% away from optimal [40]. The Iterated 1-Steiner method was generalized to
arbitrary weighted graphs by Alexander and Robins [1] [2], and is thus a suitable basis of a practical

global router which must handle congestion, obstacles, ete. [15].

The performance success of I1S was achieved at the expense of a high time complexity: although a
more efficient variant of I1S can be implemented to run within time O(n? logn) [28], the computational
geometric methods employed to achieve this time bound hide large constant factors and are also difficult
to code. Thus, actual previous implementations of I1S typically use a more straight-forward approach

which requires time O(n*logn).

The first contribution of this paper is a practical implementation of I1S that runs within time
O(n®). Our method is based on a dynamic minimum spanning tree update scheme, and establishes the
practicality and viability of the iterated 1-Steiner approach. For 100 points our new implementation is
about three orders of magnitude faster than the naive implementation, and the speedup over the naive
implementation increases with the number of points. This dramatic improvement in speed enables for

the first time the testing of I1S on nets containing several hundred pins.

Since a typical CAD environment consists of a network of workstations, exploiting the available
large-grain parallelism provides a natural and effective means of improving the performance of CAD
algorithms. With this in mind, a second contribution of our work is a parallel version of I1S that
achieves high parallel speedups. Since Steiner tree construction is a computationally expensive part of
global routing, our parallel implementation may be viewed as an important first step toward obtaining

a “Steiner engine”, i.e. an efficient tool for producing near-optimal Steiner trees.

1Recently, Berman and Ramaiyer [7] and Foessmeier, Kaufmann and Zelikovsky [6] [13] have extended the fundamental
work of Zelikovsky [46] [47] to yield a method similar to I1S (specifically, to the “batched” I1S method described below)
with performance ratio bounded by %; this work settles in the affirmative the longstanding open question of whether

there exists a polynomial-time rectilinear Steiner tree heuristic with performance ratio strictly smaller than % [25]. At the

time of this writing, Berman, Foessmeier, Karpinski, Kaufmann and Zelikovsky [13] further improved the performance
bound of their polynomial-time rectilinear Steiner heuristic to % =1.271.

Our third contribution entails several performance-improving enhancements to the I1S method.
Our methods rely on an approach that deviates from pure greed and instead employs randomness
in order to break ties during Steiner point selection. While being asymptotically no slower than the
original I1S variants, our methods afford improved average performance. Extensive simulationsindicate
that for uniformly distributed random nets of up to 8 pins, the average performance of our enhanced
I1S algorithm is only 0.25% away from optimal. Moreover, for 8-pin nets, our method produces the
optimal Steiner tree in 90% of all instances. We also propose a method of improving performance at

the expense of running time, allowing a smooth tradeoff between solution quality and efficiency.

Next, we generalize I1S and its variants to three dimensions, as well as to the intermediate case
where all pins lie on k parallel planes. This formulation has several applications, including multi-layer
routing [9] [20] [22], and the design of buildings [41]. Empirical testing suggests that this approach
is effective for three-dimensional Steiner routing, yielding up to 15% average improvement over MST

cost in three-dimensional Manhattan space.

Finally, in order to reduce the running time of the dynamic MST-maintenance component of our
algorithms, we prove the following results under the Manhattan metric: (1) every two-dimensional
pointset has an MST with maximum degree of at most 4; and (2) every three-dimensional pointset has
an MST with maximum degree of at most 14 (the best previously known bounds for two and three
dimensions were 6 and 26, respectively). Our results and algorithms on degree-bounded minimum
spanning trees are of significant independent theoretical interest [39], and settle several open issues in

complexity theory?.

The rest of the paper is organized as follows. In Section 2 we review the I1S method. Section 3
outlines our more efficient implementation of I1S, and Section 4 describes a variant of I1S with enhanced
performance. Section 5 generalizes I1S to three dimensions, and proposes an efficient method for three-
dimensional MST-maintenance. Section 6 proves tight bounds for the maximum MST degree in two
and three dimensions under the Manhattan metric, and discusses the implications of our results to a
problem in complexity theory. Section 7 outlines the parallel implementation, and Section 8 presents
extensive simulation results regarding performance, running times, and parallel speedups. We conclude
in Section 9 with directions for further research. A preliminary version of this work appeared in [3]

and in [4].

2Robins and Salowe [39] investigate the maximum MST degree for higher dimensions and other L, norms, and relate
the maximum MST degree to the so-called “Hadwiger” numbers.

2 Review of the Iterated 1-Steiner Method

We begin with a review of the Iterated 1-Steiner method of Kahng and Robins [28]. For two pointsets
P and S we define the MST savings of S with respect to P as AMST(P,S) = cost(MST(P)) —
cost(MST(P U S)). We use H(P) to denote the set of Hanan Steiner point candidates (i.e., the
intersections of all horizontal and vertical lines passing through points of P). For a pointset P, a
1-Steiner point & € H(P) maximizes AMST(P,{x}) > 0. The I1S method repeatedly finds 1-Steiner
points and includes them into S. The cost of the MST over P U S will decrease with each added
point, and the construction terminates when there is no with AMST(P U S,{z}) > 0. Although
a Steiner tree may contain at most n — 2 Steiner points [18], I1S may add more than n — 2 Steiner
points; therefore, at each step we eliminate any extraneous Steiner points having degree 2 or less in the

MST over PUS. Figure 3 illustrates a sample execution of I1S, and Figure 4 describes the algorithm

ﬂ C D_t J) ﬂ_@
(a) (b) ()
(d) (e)

Figure 3: Execution of Iterated 1-Steiner (I1S) on a 4-pin net. Note that in step (d) a degree-2
Steiner point is formed and is thus eliminated from the topology.

formally.

Although a single 1-Steiner point may be found in O(n?) time using complicated techniques from
computational geometry [17] [28], such methods suffer from large constants in their time complexities,

and are notoriously difficult to implement. Thus, a batched variant of I1S is usually favored, which

Algorithm Iterated 1-Steiner (I1S) [28]

Input: A set P of n points

Output: A rectilinear Steiner tree over P

S=0

While T'= {z € H(P)|[AMST(PUS,{z})> 0} # 0 Do
Find z € T with maximum AMST(P U S, {z})
S=S5U{z}
Remove from S points with degree < 2 in M ST(P U S)

Output MST(P U S)

Figure 4: The Iterated 1-Steiner algorithm.

efficiently adds an entire set of “independent” Steiner points in a single round, thereby affording both

practicality and reduced time complexity [28] [38].

Following Hanan’s result, for each candidate Steiner point z € H(P) the Batched 1-Steiner (B1S)
variant computes the induced MST savings AMST(P, {z}). Next we select a maximal “independent”
set of Steiner points, where the criterion for independence is that no candidate Steiner point is allowed
to reduce the potential MST cost savings of any other candidate. More formally, a set S of Steiner
points is independent if AMST(P,S) >)7 .o AMST(P,{z}). The weight of set S is AMST(P,S),
and our goal is to find an independent set of maximum weight; the Steiner points in that independent

set are grouped together during a round of B1S.

Using a reduction from the NP-complete problem of finding a maximum independent set in a graph,
it is easy to show that our maximization problem is NP-complete also, even if the independent sets
obey the “inheritance property”, one of the axioms for matroids (see Cormen et al. [11]). Our inde-
pendent sets do not necessarily obey the inheritance property or the exchange property for matroids.
Nevertheless, we can use a greedy approximation, described in Figure 5, to approximate the weight of
a maximum independent set. Note that the greedy algorithm would find a maximum independent set
if the subset system was a matroid. This approximation is efficient and seems to work well in practice;

it would be interesting to prove nontrivial performance bounds.

Once an approximate maximum independent set S is determined, it is inserted into P, and we
iterate this process with P set to P U S until we reach a round that fails to induce a Steiner point.
The total time required by B1S is O(n*logn) per round (the number of rounds in practice is a small
constant independent of net size, i.e., less than 3 on average [28]). The B1S algorithm is summarized

in Figure 5.

Algorithm Batched 1-Steiner (B1S) [28]
Input: A set P of n points
Output: A rectilinear Steiner tree over P
While T'= {z € H(P)|]AMST(P,{z}) >0} # 0 Do
S=0
For z € {T in order of non-increasing AM ST} Do
HAMST(PUS {z}) > AMST(P,{z}) Then S = SU {z}
P=PUS
Remove from P Steiner points with degree < 2 in MST(P)
Output MST(P)

Figure 5: The Batched 1-Steiner (B1S) algorithm.

3 A New Faster Implementation

In speeding up the MST-savings computations, a key observation is that once we have computed an
MST over the pointset P, the addition of a single new point z into P can only induce a small constant
number of changes between M ST(P) and MST(P U{z}). This follows from the observation that each
point can have at most 8 neighbors in a rectilinear planar MST, i.e. at most one per octant [24]. Thus,
to update an MST with respect to a newly added point z, it suffices to consider only the closest point
to x in each of the 8 plane octants with respect to z (below we show that for each point it suffices to

examine at most 4 potential candidates for connection in the MST).

Thus we have the following linear-time algorithm for dynamic MST maintenance: connect the
new point z to each of its potential neighbors (i.e, the closest point to z in each of the O(1) octants
around), then delete the longest edge on any resulting cycle. This dynamic MST maintenance scheme
reduces the time complexity of each round of B1S from O(n*logn) to O(n?®), a substantial savings.
An execution example of this method is given in Figure 6, and Figure 7 describes it formally. Note
that dynamic MST maintenance can also be achieved in sub-linear time [14], but such methods seem
impractical due to their complicated description and large hidden constants. A similar method was
also used by Yao [45] to obtain a sub-quadratic MST algorithm in higher dimensions, but no attempt

was made to optimize the number of necessary regions, whereas we also optimize the number of regions.

We now show that only 4 regions suffice for dynamic MST maintenance, namely the 4 regions defined
by the two lines oriented at 45 and -45 degrees (Figure 8(a)); we call this the diagonal partition. We
couch the discussion in general terms so that we can later extend our terminology and techniques to

the three-dimensional case. We begin by defining the following key property for regions and partitions:

(c) (d)

Figure 6: Dynamic MST maintenance: adding a point to an existing MST entails connecting
the point to its closest neighbor in each octant, and deleting the longest edge on each resulting
cycle (the Euclidean metric has been used for clarity in this example).

The Uniqueness Property: Given a point p, a region R has the uniqueness property with respect

to p if for every pair of points u, w € R, either dist(w, u) < dist(w, p) or dist(u, w) < dist(u, p).

We use dist(u, w) to denote the Manhattan distance between the two points u and w. A partition of
space (i.e., into a finite set of mutually disjoint regions whose union covers the space) is said to have the
uniqueness property if each of its regions has the uniqueness property. Clearly, any partition scheme
having the uniqueness property can be used in dynamic MST maintenance, since each region having
the uniqueness property can contain at most one candidate for connection in the MST. Naturally,

simpler partition schemes (i.e., ones containing a smaller number of regions) are preferable to more

Dynamic MST Maintenance (DMSTM)
Input: A set P of n points, M ST(P), a new point &
Output: MST(P U {z})
T = MST(P)
For i =1 to #regions do
Find in region R;(z) the point p € P closest to «
Add to T the edge (p, z)
If T contains a cycle Then remove from 7' the longest edge on the cycle
Output 7T

Figure 7: Linear-time dynamic MST maintenance.

complicated ones. We now prove that the diagonal partition has the uniqueness property.

Lemma 3.1 Given a point p in the Manhattan plane, each region of the diagonal partition with respect

to p has the uniqueness property.

Proof: The two diagonal lines through p partition the plane into four disjoint regions R; through R4
(see Figure 8(a)). The boundary points between two neighboring regions may be arbitrarily assigned
to either region. Consider one of the 4 regions, say Ri, and let u,w € R; (Figure 8(b)). Assume
without loss of generality that dist(u, p) < dist(w, p) (otherwise swap u and w in this proof). Consider
the diamond D in R; with one corner at p, and with u on the boundary of D (see Figure 8(c)). Let ¢
be the center of D, so that ¢ is equidistant from all points on the boundary of D, and let a ray starting
at p and passing through w intersect the boundary of D at the point b. By the triangle inequality,
dist(w, u) < dist(w, b) + dist(b, ¢) + dist(e, u) = dist(w, b) + dist(b, ¢) + dist(e, p) = dist(w, p). Thus,
w is not closer to p than it is to u and the region R; therefore has the uniqueness property. The other

three regions are handled similarly. It follows that the diagonal partition has the uniqueness property.
O

A natural question is how to determine an optimal partitioning scheme for a given dimension and
metric, i.e., finding a partition scheme that contains the smallest possible number of regions, yet still
possesses the uniqueness property. The existence of pointsets in the Manhattan plane where the MST
is forced to have degree 4 (i.e., the 5 points corresponding to the center and four corners of a diamond)
establishes the optimality of the diagonal partition, in the sense that no partition of the Manhattan
plane into less than 4 regions can have the uniqueness property. Section 5 addresses the problem of

finding an optimal partition for three-dimensional Manhattan space.

Ry

(a) (b) ©

Figure 8: The diagonal partition of the plane into 4 regions with respect to a point p (a) has
the uniqueness property: for every two points u and w that lie in the same region (b), either
dist(w, u) < dist(w, p) or else dist(u, w) < dist(u, p) ().

We have shown above that in the Manhattan plane, the degree of any particular single MST node
can be made to be 4 or less. But note that this does not imply that the degrees of allnodes can be made
4 or less simultaneously, since decreasing the degree of one node can increase the degree of neighboring
nodes. Thus, it is not immediately obvious that in the Manhattan plane there always exists an MST

with maximum degree 4; this requires additional proof as detailed in Section 6 below.

4 A Variant With Improved Performance

At each iteration, the basic I1S heuristic uses pure greed to select a 1-Steiner point, and this may
unfortunately preclude additional savings in subsequent iterations. A similar phenomenon may occur
due to tie-breaking among 1-Steiner candidates that induce equal savings. For example, in Figure 9
we observe that an unfortunate choice for a 1-Steiner point can interfere with the savings of future

potential 1-Steiner candidates, resulting in a suboptimal solution.

Empirical tests indicate that ties in MST savings for the various 1-Steiner point candidates occur
very often. Therefore, in order to avoid breaking ties in ways that would preclude possible future
savings, we propose the following scheme: when an MST savings tie occurs among a number of 1-
Steiner candidates, rather than using a deterministic tie-breaking rule, we instead randomly select one
of the 1-Steiner candidates and proceed with the execution. We then run this randomized variant
of I1S m times on the same input, and select the best solution (i.e., the least costly of the m trees

produced), where m is an input parameter.

In order to further avoid the pitfalls of a purely greedy strategy (i.e., getting trapped in local

10

Py
o) o) O I O b
@ O o) O l IPZ in J) (

P

)
\

(c)(L (L N N (d)

Figure 9: An unlucky tie-breaking choice for a 1-Steiner point may interfere with the savings
of other potential 1-Steiner candidates. If Py is selected in the first iteration (b), then the MST
savings of both Py and P3; vanish during the second iteration, yielding a suboptimal tree of
cost 7 (c); on the other hand, if P, is selected in the first iteration, then P3 may be selected in
the second iteration, yielding an optimal tree of cost 6 (d).

minima), we also propose a mechanism that allows I1S to select a 1-Steiner candidate if its MST
savings is within é units from that of the best candidate, where é is again an input parameter. This
strategy would enable the acceptance of a slightly suboptimal choice (with respect to the best immediate

possible savings), with the possibility of realizing greater savings in future iterations.

Finally, we note that performance may be further improved if instead of looking for individual
1-Steiner points, we search for pairs of Steiner candidates that offer maximum savings with respect
to other candidates or pairs of candidates. For example, such an Iterated 2-Steiner algorithm (12S)
will optimally solve the example pointset of Figure 9. Combining these three techniques of (1) non-
deterministic tie-breaking, (2) near-greedy search, and (3) k-Steiner selection, we obtain a new En-

hanced Iterated k-Steiner (EIkS) algorithm, as shown in Figure 10.

Note that the original I1S algorithm of Kahng and Robins [28] (see Figure 4) is equivalent to our
new EIkS algorithm with & = 1, m = 1, and é = 0. Our EIkS scheme can also be extended using a
“non-interfering” criterion as in [28], to yield an enhanced batched k-Steiner (EBkKS) algorithm, where
a maximal number of Steiner points are added during each round. The time complexity of EBkS is
O(m-n**=1).T(n)), where T(n) is the time complexity of B1S. For fixed m, EB1S runs asymptotically
within the same time as B1S, namely O(n3) per round. The EBkS method improves the quality of
the solutions at the expense of running time, allowing a smooth tradeoff between performance and

efficiency. Although EBKS is guaranteed to always yield optimal solutions for < k& 4 2 pins, its time

11

Algorithm Enhanced Iterated k-Steiner (EIkS)
Input: A set P of n points, parameters § > 0, k > 1, and m > 1
Output: A rectilinear Steiner tree over P
T =MST(P)
Do m times
S=0
While C = {X C H(P) | |X| <k, AMST(PUS,X) >0} # 0 Do
Find Y € C with maximum AMST(PUS,Y)
Randomly select Z € C' with AMST(PU S, Z) > AMST(PUS,Y) -6
S=5uZ7
Remove from S points with degree < 2 in MST(P U S)
If cost(MST(P U S)) < cost(T) Then T'=MST(P U S)
Output T

Figure 10: The Enhanced Iterated k-Steiner (EIkS) method.

complexity increases exponentially with k; thus in order to remain within polynomial time, & must be

fixed.

Finally, it was observed empirically that only a small fraction of the Hanan candidates have positive
MST savings in a given round of B1S; moreover, only candidates with positive MST savings in an
earlier round are likely to produce positive MST savings in subsequent rounds. Therefore, rather
than examine the MST savings of all Hanan candidates in a given round, we may consider only the
candidates that produced positive savings in the previous round. The empirical simulations described
in Section 8 indicate that this strategy significantly reduces the time spent during a round, without
degrading solution quality. We call this streamlined version of B1S the modified batched 1-Steiner
(MB1S) algorithm.

5 Steiner Routing in Three Dimensions

Three-dimensional packaging is emerging as a viable VLSI design technology [9] [20] [22]; however, most
existing CAD routing tools and techniques still implicitly address two dimensions only. In contrast,
the EIkS method readily generalizes to arbitrary dimensions. We distinguish between the general
three-dimensional version of the Steiner problem, and the less general (but more realistic) multi-layer
formulation, where the points of P lie on L parallel planes. Note that the unrestricted three-dimensional
version of the Steiner problem occurs in the limit when L = oo, and the standard two-dimensional

formulation is the case L = 1. The cost of routing between one layer and another (i.e., using vias) is

12

likely to be substantially higher than staying on the same single layer (i.e., in terms of manufacturing
expense, signal propagation delay, etc.), and this may be modeled by varying the distance between the

layers. In Section 8 we present simulation data for several combinations of values for L and n.

Our three-dimensional EIkS method may be implemented efficiently by using Snyder’s [42] gen-
eralization of Hanan’s theorem to higher dimensions. In particular, there always exists an optimal
Steiner tree whose Steiner points are chosen from the O(n?) intersections of all orthogonal planes (i.e.,
planes parallel to the coordinate axis) passing through all points in P. The three-dimensional ana-
log of Hwang’s result suggests that the maximum MST/MRST ratio for three dimensions is at most
% (this is a consequence of a more general conjecture for higher dimensions [19]), although there is
currently no known proof of this. An example consisting of six points located in the middles of the
faces of a rectilinear cube establishes that % is a lower bound for the worst MST/MRST performance
ratio in three dimensions. Thus, we expect the average performance of our heuristics, expressed as
percent improvement over MST, to be higher in three dimensions than it is in two dimensions; this is
indeed confirmed by our experimental results in Section 8. Also as expected, the average performance

improves as the number of layers L increases.

As noted above, once we have computed an MST over a pointset P, the addition of a single new
point p into P can only induce a small constant number of topological changes between M ST(P) and
MST(PU{p}). This follows from the fact that in a fixed dimension, each point can have at most O(1)
neighbors in a rectilinear MST, as noted above in Section 3. Thus, MST savings in three dimensions
may be efficiently calculated by partitioning the space with respect to the new point p into O(1)
mutually disjoint regions R;(p) having the uniqueness property, namely that only the closest point to
p in each region R;(p) may be connected to p in the MST(P). This implies that in three-dimensional

Manhattan space, linear time suffices to compute the MST savings of each 1-Steiner candidate.

Using similar arguments to those of Lemma 3.1, we can partition three-dimensional Manhattan
space into 14 regions, with the uniqueness property holding for each region. Such a partition corre-
sponds to the faces of a truncated cube (Figure 11(a)), i.e., a solid obtained by chopping off the corners
of a cube, yielding 6 square faces and 8 equilateral triangle faces (Figure 11(b)); this solid is known as
a “cuboctahedron” [34]. The 14 solid regions of this partition are induced by the 14 faces of the cuboc-
tahedron, namely the 6 pyramids with square cross-section (Figure 11(c)) and the 8 pyramids with

triangular cross-section (Figure 11(d)). Again, points located on region boundaries may be arbitrarily

13

assigned to any of the adjacent regions. We call this particular partition of space the cuboctahedral
partition, and refer to the two types of induced regions as square pyramids and triangular pyramids,

respectively. We now show that the cuboctahedral partition has the uniqueness property.

© ®

Figure 11: A truncated cube (a-b) induces a three-dimensional cuboctahedral space partition
where each region has the uniqueness property. The 14 induced regions consist of 6 square
pyramids (c), and 8 triangular pyramids (d). Using the triangle inequality, the uniqueness
property may be shown to hold for each region (e-f).

Theorem 5.1 Given a point p in three-dimensional space under the Manhattan metric, each of the 14

14

regions of the cuboctahedral partition of space with respect to p has the uniqueness property.

Proof: To show the uniqueness property for the square pyramids, consider one of the square pyramids
R with respect to p (Figure 11(c)), and let u, w € R. Assume without loss of generality that dist(u, p) <
dist(w, p) (otherwise swap the roles of u and w in this proof). Consider the locus of points D C R that
are distance dist(u, p) from p. (Figure 11(e)); D is the upper half of the boundary of an octahedron.
Let ¢ be the center of the octahedron determined by D, so that ¢ is equidistant from all points of
D. Let b be the intersection of the surface of D with a ray starting from p and passing through w.
By the triangle inequality, dist(w, u) < dist(w, b) + dist(b,¢) + dist(e, u) = dist(w, b) + dist(b,c) +
dist(e, p) = dist(w,p). Thus, w is not closer to p than it is to u and therefore the region R has the

uniqueness property. The other square pyramids are handled similarly.

To show the uniqueness property for the triangular pyramids, consider one of the triangular pyramids R
with respect to p (Figure 11(d)), and let u, w € R. Assume without loss of generality that dist(u,p) <
dist(w, p) (otherwise swap the roles of v and w). Consider the locus of points D in R that are distance
dist(u, p) from p (Figure 11(f)). Let b be the intersection of D with a ray starting from p and passing
through w. By the triangle inequality, dist(w,u) < dist(w,b)+ dist(b, u) < dist(w,b)+ dist(b,p) =
dist(w, p). Thus, w is not closer to p than it is to u and therefore the region R has the uniquenes

property. The other triangular pyramids are handled similarly. 0

We thus have the following:

Corollary 5.2 Given a pointset P in three-dimensional Manhattan space and an additional new point

p, there exists an MST over P U {p} where p has degree of at most 14 in the MST.

Proof: The cuboctahedral partition of space with respect to p yields 14 regions, each possessing the
uniqueness property. This implies that for any two points inside a region, one is closer to the other
rather than to the origin; thus only one point inside each region is a viable candidate for an MST
neighbor of p. Therefore, the degree of p (or any other single point) in the MST can be made 14 or

less. n

It is still an open question whether for three dimensions the cuboctahedral partition is optimal (i.e.,
whether the cuboctahedral partition has a minimum number of regions among all partitions having

the uniqueness property); we conjecture that it is. On the other hand, we can show that 13 is a lower

bound on the maximum MST degree in three-dimensional Manhattan Space:

Theorem 5.3 There are three-dimensional pointsets for which the mazimum degree of any MST s at

least 13.

Proof: Consider the pointset P = {(0,0,0), (£100,0,0), (0,£100,0),(0,0,+100), (47, —4, 49),
(=6, 49, 45), (—49,8,43), (4,47, —49), (=49, —6, —45), (8, —49, —43), (49,49, 2)}.

The distance between every point and the origin is exactly 100 units, but the distance between any
two non-origin points is strictly greater than 100 units. Therefore, the MST over P is unique with a
star topology (i.e., all 13 points must connect to the origin in the MST) and thus the origin point has
degree 13 in the MST. 0O

A remaining open question is whether there exists a three-dimensional pointset where the maximum
MST degree is forced to be as high as 14. Given that each point can connect to at most 14 neighbors
in the MST, we obtain the following linear-time algorithm for dynamic MST maintenance (DMSTM)
in three dimensions: connect the new point in turn to each of its < 14 potential neighbors, then delete
the longest edge on each resulting cycle. This is a three-dimensional analog of the two-dimensional

method given in Figures 6 and 7.

6 On The Maximum MST Degree

As noted above, Lemma 3.1 does not imply that in the Manhattan plane the maximum MST degree
is 4, nor does Corollary 5.2 imply that the maximum MST degree in three dimensions is 14, since
reducing the MST degree of any one point may increase the MST degree of other points. It turns out,
however, that ties for connection during MST construction may always be broken appropriately so as

to keep the overall MST degree low. We begin by defining a strict version of the uniqueness property:

The Strict Uniqueness Property: Given a point p, a space region R has the strict unigueness prop-
erty with respect to p if for every pair of points u, w € R, either dist(w, u) < dist(w, p) or dist(u, w) <

dist(u, p).

Note that if a region has the strict uniqueness property it also has the (non-strict) uniqueness property.
Clearly each d-dimensional region satisfying the strict uniqueness property may contribute at most 1

to the maximum MST degree. We now prove that by breaking ties judiciously, the maximum MST

16

degree can be made no larger than the number of d-dimensional regions in a partition having the strict

uniqueness property:

Theorem 6.1 Given a partition of d-dimensional space into r regions, and given that only v < r of
these regions are d-dimensional and have the strict uniqueness property (the rest of the r — r' regions
being lower-dimensional, and are not required to have the uniqueness property), then the mazimum

MST degree in this space is v’ or less.

Proof: Given a pointset P, perturb the coordinates of each point by a tiny amount so that the lower-
dimensional regions with respect to each point do not contain any other points. This is always possible
to do, and yields a new perturbed pointset P’. Clearly, interpoint distances in P’ only differ by a
tiny amount from the corresponding interpoint distances in P, and therefore the cost of the MSTs
over P’ and P can differ by only a similarly tiny amount which can be made arbitrarily small. But
the MST over P’ has maximum degree r’, since only the r’ d-dimensional regions of the partition are
nonempty with respect to the points of P’. We now use the topology of the MST for P’ to connect

the corresponding points of P; this would induce an MST over P having maximum degree 7. n

Applications of this technique to 2 and 3 dimensions are immediate:
Corollary 6.2 Every pointset in the Manhattan plane has an MST with mazimum degree 4.

Proof: Modify the diagonal partition into a strict diagonal partition having a total of 8 regions: 4 two-
dimensional open wedges (i.e., not containing any of their own boundary points), and 4 one-dimensional
rays (i.e., the boundaries between the wedges). By arguments similar to those of Lemma 3.1, each of
the open wedges possesses the strict uniqueness property, and thus by Theorem 6.1 points lying on the
boundaries between wedges can be perturbed into the interiors of the wedges themselves. Thus the

maximum MST degree given such a strict diagonal partitioning scheme is 4. 0

The bound of 4 on the maximum MST degree in the Manhattan plane is tight, since there are
examples which achieve this bound (e.g., the center and vertices of a diamond). Note that the best
previously known upper bound for the maximum MST degree in the Manhattan plane was 6, as was

stated without proof in [24].

Corollary 6.3 Every pointset in three-dimensional Manhattan space has an MST with mazimum de-

gree 14.

17

Proof: Modify the cuboctahedral partition into a strict cuboctahedral partition having a total of 38
regions: 14 three-dimensional open pyramids (i.e., 8 triangular pyramids and 6 square pyramids, each
not containing any of their own boundary points), and 24 two-dimensional regions (i.e., corresponding
to all the boundaries between the pyramids). By arguments identical to those of Theorem 5.1, each of
the open pyramids possesses the strict uniqueness property, and thus by Theorem 6.1, points lying on
the boundaries between the 14 pyramids can be perturbed into the interiors of the pyramids themselves.
Thus, the maximum MST degree given such a strict cuboctahedral partition scheme is equal to the

number of three-dimensional regions of the cuboctahedral partition, i.e. 14. n

While Theorem 5.3 gives an example that illustrates that the maximum MST degree in three-dimensional
Manhattan space can be as large as 13, it is still open whether there exist examples in three-dimensional
Manhattan space that force an MST degree of 14. Note that the best previously known bound for the
maximum MST degree in three-dimensional Manhattan space was 26, as implied by a result from the

theory of sphere packing [12] [44].

Our results regarding MST bounds also settle some open questions in complexity theory, since it
is known that the problem of finding a degree-bounded MST is NP-complete, even when the degree
bound is fixed at 2 (yielding the Traveling Salesman Problem), or at 3 as shown by Papadimitriou
and Vazirani [36]. Corollary 6.2 implies that the degree-bounded MST problem in the Manhattan
plane is solvable in polynomial time when the degree bound is fixed at 4 or more, since we have shown
how to efficiently find an MST that meets these maximum degree constraints; this was previously
an open problem. Similarly, Corollary 6.3 implies that the degree-bounded MST problem in three-
dimensional Manhattan space is solvable in polynomial time when the degree bound is fixed at 14 or
more (since we have shown how to efficiently find an ordinary MST that meets such maximum degree
constraints). Monma and Suri [35] used a similar perturbation argument to prove that for any poinset

in the Euclidean plane, there is an MST with maximum degree of 5.

7 A Parallel Implementation

Since a typical CAD environment consists of a network of workstations, exploiting the available large-
grain parallelism provides a natural and effective means of improving the performance of CAD algo-
rithms. We therefore propose a parallel implementation of the Iterated 1-Steiner method that achieves

high parallel speedups. The I1S algorithm is highly parallelizable because each one of p processors can

18

compute independently and in parallel the MST savings of O(%Q) of the Steiner candidates. In our par-
allel implementation, all processors send their best candidate to a master processor, which selects the
best of these candidates for inclusion into the pointset. This procedure is iterated until no improving

candidates can be found (the B1S algorithm parallelizes similarly).

We used the Parallel Virtual Machine (PVM) system [5] [43] to control remote processors. PVM is a
widely-available software package that allows a heterogeneous network of parallel and serial computers
to be used as a single computational resource. The PVM system consists of two parts, a daemon
process and a user library, providing mechanisms for initiating processes on other machines and for
controlling synchronization and communication among processes. Using PVM as a framework for
parallelism alleviates the need to hand-code the synchronization and communication protocols from

scratch; for the specific details on how PVM manages the underlying system resources see [5] [43].

Each of the processors in our parallel implementation is a SUN workstation, communicating over
an Ethernet. The master processor sends to the p available processors equal-sized subsets of the Hanan
candidate set H(P); each slave process then determines from among the candidates that it received the
one with the best AMST, and returns the winner to the master process. Out of all the p candidates
received, the master process then determines the candidate with the highest MST savings and includes

it into the pointset. This parallel version of the Iterated 1-Steiner algorithm is shown in Figure 12.

To further increase the parallel execution speed, we implemented a load-balancing scheme in order
to mitigate any significant variations that may exist between the speeds of different processors (due
to a heavy CPU load, the underlying architecture type, swapping behavior, etc.) To this end, the
wall-clock response time of each processor is tracked. If any individual processor is determined to be
considerably slower than the rest, it is henceforth given smaller tasks to perform (i.e., it is sent less
Hanan candidates, in an amount proportional to its observed speed). If a processor does not complete
a task within reasonable time, it is sent an abort message, and its computation task is reassigned
altogether to the fastest idle processor available. This prevents individual slow (or crashed) processors

from seriously impeding the speed of the overall computation.

19

Algorithm Parallel Iterated 1-Steiner (PI1S)
Input: A set P of n points (assuming p processors available)
Output: A rectilinear Steiner tree over P

Master Process:
S=0
Do Forever
For : =1 to p Do
Send the i** processor P U S and %ﬁﬂ different Hanan candidates from H(P)
For : =1 to p Do
Receive from the i** processor the candidate h; with the largest AMST
Let z be the h; with the largest AMST(PUS,{h;}) forall 1 <i<p
It AMST(PUS,{z}) >0 Then
S=S5U{z}
Remove from S points with degree <2 in MST(P U S)
Else Output MST(P U S) and Stop
Slave Process:

Receive from the master process P U S and a set of Hanan candidates hi, ..., hg

Return the candidate h; with the largest AMST(P US, {h;})

Figure 12: The Parallel Iterated 1-Steiner algorithm. The master process sends each
one of p slave processors + of the Hanan candidates; a slave process then determines the
candidate with the best AMST and returns it to the master process. Out of all the p
candidates received, the master process then uses the candidate with the highest MST
savings for inclusion into the pointset. To further increase the parallel execution speed,
slower processes are sent smaller sets of candidates, in proportion to their observed speed
(for clarity, this simple load-balancing scheme is not shown in the above template).

8 Experimental Results

We have implemented both serial and parallel enhanced versions of the B1S algorithm, using C in the
SUN workstation environment. Qur code is available upon request. The serial B1S heuristic has been
benchmarked on up to 10000 instances of each net size. The instances were generated randomly by
independently choosing the coordinates of each point from a uniform distribution in a 10000 x 10000
grid; such instances are statistically similar to the pin locations of actual VLSI nets and are the standard
testbed for Steiner tree heuristics [27]. As is the convention in the Steiner approximation literature
[27], we evaluate the performance of our method by comparing the cost of our solutions to the MST
cost over the same inputs. Performance results are summarized in Table 1 and are illustrated in Figures

14(a) through 14(c). B1S yields Steiner trees with cost averaging almost 11% less than the MST cost.?

We timed the execution of the serial and parallel versions of B1S, using both the naive O(n*logn)

3Recently, other Steiner heuristics with performance approaching that of I1S were proposed by Borah, Owens, and
Irwin [8], Chao and Hsu [10] and by Lewis, Pong and VanCleave [33].

20

implementation [28] and our new O(n®) implementation, which incorporates the efficient, dynamic
MST maintenance as described in Section 3. We observe that the number of rounds required by B1S
is always very small, and may therefore be considered a constant; for example, when n = 300, the

average number of rounds is only about 2.5, and we never observed B1S to require more than 5 rounds.

The parallel implementation uses 9 SUN 4/40 (IPC) workstations, with a SUN 4/75 (Sparc2)
as the master processor. The improvements in running time are dramatic: for n = 100 our fast
serial implementation is 247 times faster than the naive serial implementation (as measured by CPU
time), and our parallel implementation running on 10 processors is 1163 times faster than the naive
implementation (as measured by elapsed wall-clock time). It should be noted that for the serial
implementation, the CPU time and the elapsed wall-clock time are essentially identical, since we
report averages over hundreds of cases, and all of our algorithms are CPU-bound (i.e., swapping and
I/O time is negligible). Detailed execution timings for various cardinalities are given in Table 2, and
are illustrated in Figure 14(d). Note that most of the observed speedup over the naive implementation
stems from the fast serial implementation using the dynamic MST update scheme (i.e., as described in
Section 3). The parallel implementation only adds a speedup factor somewhat less than the number
of ‘processors/workstations available (10 SUNs in our case). The serial speedup grows as a function
of the net size, since our new serial implementation is asymptotically faster than the naive serial

implementation.

As noted by Ganley and Cohoon [15], most nets in actual VLSI designs have a small number of
pins (i.e., less than 10). It is therefore of particular interest to observe the behavior of our algorithms
on small nets. Even for small pointsets, our new implementations are considerably faster than the
previous, naive ones: for example, for n = 5 the new serial B1S is on average twice as fast as the
naive implementation, while for n = 10 it is 7 times as fast. Our parallel speedup increases with
problem size, reaching about 7.2 for n = 250 running on 10 processors. This enables us to examine
the asymptotic behavior of B1S for much larger pointsets than was previously possible: the output of

Batched 1-Steiner (B1S) for a random pointset of size 300 is shown in Figure 13.

We have also implemented the EIkS and the EBkS algorithms, and the following algorithms were

tested side-by-side on the same inputs:

e B1S - The Batched 1-Steiner method, with the code further streamlined for speed;

21

Figure 13: An example of the output of Batched 1-Steiner (B1S) on a random 300-point set
(hollow dots). The Steiner points produced by B1S are denoted by dark solid dots.

MBI1S - The “modified” B1S variant that uses only winning candidates from previous rounds;
EB1S - The enhanced version of B1S;

I2S - The Iterated 2-Steiner algorithm,;

EI2S - The enhanced version of 125;

META (B1S,MB1S) - The metaheuristic over heuristics B1S and MBI1S, i.e., the best solution

found by either of these heuristics;
META (EB1S,12S,EI2S) - The metaheuristic over EB1S, 12S, and EI2S;

META (B1S,MB1S,EB1S,I2S,EI2S) - The metaheuristic over B1S, MB1S, EB1S, 125, and

22

EI2S;

e OPT - The optimal Steiner tree algorithm of Salowe and Warme [40].

Recall from the discussion at the end of Section 4 that MBS is a more efficient version of BILS,
since it only examines a fraction of the Hanan candidates in a typical round (i.e., only the ones with
positive MST savings in the previous round). OPT is the fastest known optimal rectilinear Steiner
tree algorithm [40]. All variants have been benchmarked on up to 10000 random instances of each
net size. Figure 15(a) shows the performance comparison of MB1S, EI2S, and OPT, while Table 3
gives more detailed performance data. We observe that the average performance of our methods is
extremely close to optimal: for n = 8, EI2S is on average only about 0.11% away from optimal, and
solutions are optimal in about 90% of the cases. Even for n = 30, MB1S is only about 0.30% away from
optimal, and yields optimal solutions in about one quarter of all cases. Table 4 tracks the percentage
of cases where the various heuristics find the optimal solution, and this data is also depicted pictorially

in Figure 15(b).

Table 5 gives the average CPU times, in seconds, for each heuristic and net size. Our most time-
efficient algorithm is MB1S, requiring an average of 0.009 CPU seconds per 8-pin net, and an average
of 0.375 seconds per 30-pin net. Using EIkS (or EBkS) with values of k greater than 2 improves
the performance, but slows down the algorithm; it is easy to see that for arbitrary k£, EIkS (EBkS)
always yields optimal solutions for < k + 2 pins, but has time complexity greater by a factor of n2(¥=1)
than that of EB1S. This allows a smooth tradeoff between performance and efficiency. However, the

performance of the EBkS algorithm with £ = 2 is already so close to optimal, that in most applications

increasing k further is not likely to justify the incurred time penalty.

In three dimensions, we observed that the average performance of EB1S approaches 15% improve-
ment over MST cost, and the performance increases with the number of planes L. It is not surprising
that the average savings over MST cost in three dimensions is higher than it is in two dimensions,
since the worst-case performance ratio in three dimensions is higher also (i.e., g for three dimensions
vs. % for two dimensions). Figure 15(c) shows the performance of our method in three dimensions for
various values of the number of parallel planes L, including the unrestricted three-dimensional case,
corresponding to the limit when L approaches co. Table 7 gives statistics for three dimensions on the
number of Steiner points induced by B1S (see Figure 15(d)), as well as on the number of rounds that

occur in B1S before termination. As is the case in two dimensions, the number of rounds for B1S in

23

three dimensions is on average very small. Table 6 gives more detailed performance data. In all cases,
the L parallel planes were uniformly spaced in the unit cube (i.e., they were separated by % units apart,
where G = 10000 is the gridsize). Unfortunately, the OPT algorithm of Salowe and Warme [40] does
not easily generalize to higher dimensions; thus, we were not able to compare our three-dimensional

version of EB1S to optimal.

9 Conclusion

We have proposed enhanced serial and parallel implementations of the Batched 1-Steiner heuristic
(B1S), achieving speeds of up to three orders of magnitude faster than previous implementations.
Moreover, the speedup increases with the number of points. This has enabled the testing of B1S on
several hundred points for the first time, and we observed that for such large pointsets B1S consistently

improves 11% over MST cost.

Next, we enhanced B1S by using a near-greedy approach with random tie-breaking. Our method
enjoy the same asymptotic time complexity as B1S, yet offer improved average performance. We also
allow performance increase at the expense of running time, creating a smooth tradeoff between solution
quality and computational efficiency. Extensive simulations indicate that for typical nets, the average
performance of our methods is less than 0.25% away from optimal, and our solutions are actually

optimal for up to 90% of uniformly distributed nets of typical sizes.

We generalized B1S and its variants to three dimensions, as well as to the case where all the pins lie
on L parallel planes, which arises in, e.g., three-dimensional VLSI and multi-layer routing. Our methods
are highly parallelizable and generalize to arbitrary weighted graphs; thus, they are suitable to support
a multi-layer global router, where obstruction and congestion considerations affect routing. Since
Steiner tree construction is a computationally expensive component of global routing, our techniques

suggest the feasibility of a “Steiner engine” for efficiently computing near-optimal Steiner trees.

We reduced the running time of our algorithms through a dynamic MST-maintenance scheme, and
we proved that under the Manhattan metric: (1) in two dimensions we can always find an MST with
maximum degree 4; and (2) in three dimensions we can always find an MST with maximum degree 14.
The best previously known bounds for two and three dimensions were 6 and 26, respectively. These

results were used to decrease the running times of our algorithms, and moreover they have independent

24

[3.0+
7 0
= 1104 e
g 3
5 X o5
5 105 S
3 g
8 £
S 35 2.0
£ 100 <
S &
% T 5]
‘; 9.5+ <
A 4
g m
>
< gp . : : . . ‘ 1.0 T T T T T 1
@ 50 100 150 200 250 300 50 100 . 150 .200 250 300
m Pointset Size Pointset Size
(a) (b)
§ __3000]
© -) 0
2 150 3 opT
2 g P
c N
g B i NaiveB1S
o 7 20004 i i (serial)
g 1007 o D
D <
2]
5 E
o £ 1000
& 5 &1 Fast B1S
3 2 (sidl) “eagt B1S
= 3
< X (parallel)
c
E 0 - T T 1
o 0 T R o 0 100 200 300
o Pointset Size

Pointset Size

(©) (d)

Figure 14: (a) Average performance of B1S, shown as percent improvement over MST cost;
(b) Average number of rounds for B1S; (c) Average number of Steiner points induced by B1S
(vertical bars indicate the range of the minimum and maximum number of Steiner points
added); (d) Average execution times (in elapsed wall-clock seconds) for the serial and parallel
B1S, using both the naive MST implementation and our new incremental MST maintenance
scheme, over a wide range of net sizes; note that for the serial versions, the elapsed wall-clock
times are essentially the same as the CPU time, since the benchmarks represent average running
times over hundreds of cases (the algorithms are CPU-bound, so that swapping and I/O have
negligible effect on the running time).

theoretical significance; for example, our bounds on the maximum MST degree were used to settle an

open problem in complexity theory [39].

Remaining open research questions include finding an MRST heuristic with performance consis-

tently higher than EB1S (or MBI1S), but with a significantly better running time (note that it would

5 100

S 110- g OPT
o =

3 oPT & 801

48‘ 10.84 8

5 B g EI2S
o EI2S =

3 106- g

g B1S % B1S
—_ 40A

N 10.44 O

o 5

g 2 20

£ 102 g

3 5

g e,

I A M A 57 5 A %
[a] . .

N Pointset Size Pointset Size

(a) (b)

& 2
[
> g
o]
3 B 304
- k=
& %
& 5
[} #* 20
S 3
£ s
- Ko}
S g
e <
Q = 104
c
s L=2 =
3 1 a
g @
< T T T T T] [a) T T T T]
a 5 0 15 20 25 30 ® 10 20 30 40 50
™

Pointset Size Pointset Size

() (d)

Figure 15: (a) Average performance in two dimensions of EI2S, B1S, and OPT; note that
EI2S is only 0.25% (or less) away from optimal; (b) Percentage of all cases when the heuristics
find the optimal solution (note that EI2S yields optimal solutions a large percentage of the
time); (c) Average performance of EB1S in three dimensions for various values of L = number
of parallel planes; (d) Average number of Steiner points added by B1S in three dimensions for
L = .

not suffice to just find a heuristic with better performance but which runs more slowly, since increasing
the parameter k in EBkKS will achieve exactly that). On the theoretical front, it would be interesting to
determine whether the maximum MST degree in three dimensional Manhattan space is 13 or 14 and

extend such results to higher dimensions and to different L, norms.

26

10 Acknowledgments

We would like to thank Mr. Tim Barrera for his help with the coding, and the referees for their helpful

comments.

References

(1]

[10]

[11]

[12]

M. J. ALEXANDER AND G. ROBINS, An Architecture-Independent Unified Approach to FPGA
Routing, Tech. Rep. CS-93-51, Department of Computer Science, University of Virginia, October
1993.

M. J. ALEXANDER AND G. ROBINS, A New Approach to FPGA Routing Based on Multi- Weighted
Graphs, in Proc. ACM/SIGDA International Workshop on Field-Programmable Gate Arrays,
Berkeley, CA, February 1994.

T. BARRERA, J. GRIFFITH, S. A. McKEE, G. RoBINS, AND T. ZHANG, Toward a Steiner
Engine: Enhanced Serial and Parallel Implementations of the Iterated 1-Steiner Algorithm, in
Proc. Great Lakes Symp. VLSI, Kalamazoo, MI, March 1993, pp. 90-94.

T. BARRERA, J. GRIFFITH, G. ROBINS, AND T. ZHANG, Narrowing the Gap: Near-Optimal
Steiner Trees in Polynomial Time, in Proc. IEEE Intl. ASIC Conf., Rochester, NY, September
1993, pp. 87-90.

A. BEGUELIN, J. J. DONGARRA, G. A. GEIST, R. MANCHEK, AND V. S. SUNDERAM, A User’s
Guide to PVM: Parallel Virtual Machine, Tech. Rep. ORNL/TR-11826, Oak Ridge National
Laboratory, 1991.

P. BErRMAN, U. FOESSMEIER, M. KARPINSKI, M. KAUFMANN, AND A. Z. ZELIKOVSKY, Ap-
proaching the 5/ - Approzimation for Reclilinear Steiner Trees, Tech. Rep. WSI-94-06, Wilhelm
Schickard-Institut fur Informatik, 1994.

P. BERMAN AND V. RAMAIYER, Improved Approzimations for the Steiner Tree Problem, in Proc.
ACM/STIAM Symp. Discrete Algorithms, San Francisco, CA, January 1992, pp. 325-334.

M. BoraH, R. M. OWENS, AND M. J. IRWIN, An Edge-Based Heuristic for Rectilinear Steiner
Trees, Tech. Rep. CS-93-003, Department of Computer Science, Pennsylvania State University,
1993.

D. Braun, J. Burns, S. Devapas, H. K. Ma, K. M. F. RoMEO, AND A. SANGIOVANNI-
VINCENTELLI, Chameleon: A New Multi-Layer Channel Router, in Proc. ACM/IEEE Design
Automation Conf., 1986, pp. 495-502.

T. H. CHAO AND Y. C. Hsu, Rectilinear Steiner Tree Construction by Local and Global Refine-
ment, IEEE Trans. Computer-Aided Design, (1994), pp. 303-309.

T. H. CorMEN, C. E. LEISERSON, AND R. RIVEST, Introduction to Algorithms, MIT Press,
1990.

J. T. CrorT, K. J. FALCONER, AND R. K. Guy, Unsolved Problems in Geometry, Springer-
Verlag, New York, 1991.

27

[13] U. FOESSMEIER, M. KAUFMANN, AND A. Z. ZELIKOVSKY, Fast Approzimation Algorithms for
the Rectilinear Steiner Tree Problem, Tech. Rep. WSI-93-14, Wilhelm Schickard-Institut fur In-
formatik, 1993.

[14] G. N. FREDRICKSON, Data Structures for On-Line Updating of Minimum Spanning Trees, SIAM
J. Comput., 14 (1985), pp. 781-798.

[15] J. L. GANLEY AND J. P. CoHOON, Routing a Multi-Terminal Critical Net: Steiner Tree Con-
struction in the Presence of Obstacles, in Proc. IEEE Intl. Symp. Circuits and Systems, London,
England, May 1994.

[16] M. GAREY AND D. S. JoHNSON, The Rectilinear Steiner Problem is NP-Complete, SIAM J.
Applied Math., 32 (1977), pp. 826-834.

[17] G. GEORGAKOPOULOS AND C. H. PAPADIMITRIOU, The I-Steiner Tree Problem, J. Algorithms,
8 (1987), pp. 122-130.

[18] E. N. GILBERT AND H. O. PoLLAK, Steiner Minimal Trees, SIAM J. Applied Math., 16 (1968),
pp- 1-29.

[19] R. L. GRAHAM AND F. K. HwaNG, A Remark on Steiner Minimal Trees, Bull. Inst. Math. Acad.
Sinica, 4 (1976), pp. 177-182.

[20] A. HANAFUSA, Y. YAMASHITA, AND M. YAsuDA, Three-Dimensional Routing for Multilayer
Ceramic Printed Circuit Boards, in Proc. IEEE Intl. Conf. Computer-Aided Design, Santa Clara,
CA, November 1990, pp. 386-389.

[21] M. HANAN, On Steiner’s Problem With Rectilinear Distance, SIAM J. Applied Math., 14 (1966),
pPP- 255-265.

[22] A. C. HARTER, Three-Dimensional Integrated Circuit Layout, Cambridge University Press, New
York, 1991.

[23] N. HasaN, G. Vuiayan, aND C. K. WoNG, A Neighborhood Improvement Algorithm for Recti-
linear Steiner Trees, in Proc. IEEE Intl. Symp. Circuits and Systems, New Orleans, LA, 1990.

[24] J.-M. Ho, G. VuiavaNn, aNnD C. K. WoNaG, New Algorithms for the Rectilinear Steiner Tree
Problem, IEEE Trans. Computer-Aided Design, 9 (1990), pp. 185-193.

[25] F. K. HwaNG, On Steiner Minimal Trees with Rectilinear Distance, STAM J. Applied Math., 30
(1976), pp. 104-114.

[26] F. K. HwaNG, An O(n log n) Algorithm for Rectilinear Minimal Spanning Trees, J. ACM, 26
(1979), pp. 177-182.

[27] F. K. HwaNG, D. S. RicHARDs, AND P. WINTER, The Steiner Tree Problem, North-Holland,
1992.

[28] A. B. KauNGg aND G. RoBINS, A New Class of Iterative Steiner Tree Heuristics With Good
Performance, IEEE Trans. Computer-Aided Design, 11 (1992), pp. 893-902.

[29] A. B. KaHNG AND G. ROBINS, On Performance Bounds for a Class of Rectilinear Steiner Tree
Heuristics in Arbitrary Dimension, IEEE Trans. Computer-Aided Design, 11 (1992), pp. 1462—
1465.

28

[30] A. B. KaunG AND G. RoBINs, On Optimal Interconnections for VLSI Layout, Kluwer Academic
Publishers (to appear), Boston, MA, 1994.

[31] J. H. Lee, N. K. Bosg, anp F. K. HwaNG, Use of Steiner’s Problem in Sub-Optimal Routing
in Rectilinear Metric, IEEE Trans. Circuits and Systems, 23 (1976), pp. 470-476.

[32] K. W. LEE AND C. SECHEN, A New Global Router for Row-Based Layout, in Proc. IEEE Intl.
Conf. Computer-Aided Design, Santa Clara, CA, November 1990, pp. 180-183.

[33] F. D. Lewis, W. C. PoNG, AND N. VANCLEAVE, Local Improvement in Steiner Trees, in Proc.
Great Lakes Symp. VLSI, Kalamazoo, MI, March 1993, pp. 105-106.

[34] A. L. LoEB, Space Structures: Their Harmony and Counterpoint, Birkhauser, New York, 1991.

[35] C. MoNMA AND S. SURI, Transitions in geometric minimum spanning trees, Discrete & Compu-
tational Geometry, 8 (1992), pp. 265-293.

[36] C. H. PAPADIMITRIOU AND U. V. VAZIRANI, On Two Geomelric Problems Relating to the Trav-
eling Salesman Problem, J. Algorithms, 5 (1984), pp. 231-246.

[37] B. T. PrREAS AND M. J. LORENZETTI, Physical Design Automation of VLSI Systems, Ben-
jamin/Cummings, Menlo Park, CA, 1988.

[38] G. RoBINS, On Optimal Interconnections, Ph.D. Dissertation, CSD-TR-920024, Department of
Computer Science, UCLA, 1992.

[39] G. RoBINs AND J. S. SALOWE, On the Mazimum Degree of Minimum Spanning Trees, in Proc.
ACM Symp. Computational Geometry, Stony Brook, NY, June 1994.

[40] J. S. SALOWE AND D. M. WARME, An Ezact Rectilinear Steiner Tree Algorithm, in Proc. IEEE
Intl. Conf. Computer Design, Cambridge, MA, October 1993, pp. 472-475.

[41] J. M. SMiTH AND J. S. LIEBMAN, Steiner Trees, Steiner Circuits and the Interference Problem
in Building Design, Engineering Optimization, 4 (1979), pp. 15-36.

[42] T. L. SNYDER, On the Ezact Location of Steiner Points in General Dimension, SIAM J. Comput.,
21 (1992), pp. 163-180.

[43] V. S. SUNDERAM, PVM: A Framework for Parallel Distribuied Computing, Concurrency: Practice
and Experience, 2 (1990), pp. 315-339.

[44] G. F. TOTH, New Results in the Theory of Packing and Covering, Convexity and its Applications,
1983.

[45] A. C. C. Yao, On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related
Problems, STAM J. Comput., 11 (1982), pp. 721-736.

[46] A. Z. ZELIKOVSKY, An 11/6 Approzimation Algorithm for the Network Steiner Problem, Algo-
rithmica, 9 (1993), pp. 463-470.

[47] A. Z. ZELIKOVSKY, A Faster Approzimation Algorithm for the Steiner Tree Problem in Graphs,
Information Processing Letters, 46 (1993), pp. 79-83.

29

Batched 1-Steiner (B1S) Performance Results
Performance Number of SPs Number of rounds Ave #SPs per round

n Min Ave Max | Min Ave Max | Min Ave Max 1 2 3 4
4 0.00 8.83 27.19 0 2.10 4 0 0.97 2 1.14 0.37 0.00 0.00

5 0.00 9.35 23.59 0 2.59 5 0 1.08 3 1.51 0.46 0.06 0.00
6 0.00 9.83 25.99 0 3.09 6 0 1.15 3 1.91 1.42 0.03 0.00

7 0.41 9.82 23.44 2 3.52 7 1 117 3 2.32 0.59 0.02 0.00
8 0.00 9.92 20.93 0 3.99 8 0 1.23 3 2.73 0.96 0.17 0.00
9 1.04 10.07 20.62 2 4.48 7 1 1.31 3 3.12 1.16 0.19 0.00
10 1.26 10.24 20.03 3 4.95 8 1 1.34 4 3.56 1.11 0.10 0.01
11 2.01 10.32 20.81 3 5.42 10 1 1.33 3 4.01 1.01 0.03 0.00
12 1.85 10.32 18.83 2 5.88 10 1 1.43 4 4.31 1.28 0.09 0.00
13 2.06 10.27 19.74 3 6.39 11 1 1.46 4 4.80 1.23 0.09 0.04
14 3.01 10.28 19.56 3 6.82 11 1 1.48 4 5.18 1.25 0.14 0.07
15 2.78 10.41 18.10 4 7.27 12 1 1.49 4 5.59 1.33 0.12 0.00
16 2.47 10.42 18.45 4 7.76 13 1 1.52 4 6.01 1.33 0.13 0.00
17 3.00 10.58 17.94 5 8.33 14 1 1.56 3 6.50 1.38 0.27 0.00
18 3.62 10.46 18.19 5 8.70 14 1 1.58 4 6.85 1.52 0.26 0.01
19 3.71 10.37 18.05 5 9.14 14 1 1.61 5 7.21 1.58 0.10 0.01
20 4.35 10.39 17.90 5 9.63 15 1 1.60 4 7.68 1.58 1.00 0.00
30 6.49 10.64 14.73 9 13.47 20 1 1.85 4 11.61 1.75 0.21 0.01
40 6.28 10.68 14.55 12 18.10 26 1 1.98 5 15.95 2.47 0.23 0.00
50 7.25 10.72 15.28 15 23.70 33 1 2.04 4 19.97 2.78 0.56 0.00
60 8.67 10.77 14.29 19 27.53 37 1 2.12 5 23.88 3.81 0.58 0.00
70 7.80 10.82 13.55 23 32.26 42 1 217 4 28.02 3.52 0.62 0.00
80 7.34 10.83 12.88 28 36.99 50 1 2.20 4 32.07 4.66 0.64 0.01
90 7.99 10.84 13.52 32 41.61 56 1 2.24 4 36.18 5.14 1.17 0.04
100 8.78 10.86 13.60 35 46.30 59 1 2.25 4 40.21 5.55 1.31 0.01
110 8.04 10.86 12.86 40 50.98 67 1 2.28 4 44.96 5.77 0.53 0.08
120 7.83 10.86 12.62 44 55.59 68 1 2.29 5 48.64 715 1.02 0.00
130 8.25 10.85 12.63 47 60.03 73 1 2.34 4 52.87 7.22 0.82 0.00
140 8.45 10.84 12.57 51 64.97 79 1 2.38 5 56.94 8.12 1.07 0.22
150 9.07 10.92 12.63 57 69.85 87 1 2.39 4 59.92 8.28 1.13 0.00
200 9.39 10.97 12.32 79 93.10 107 2 2.47 4 80.04 11.68 1.48 0.50
250 10.26 10.98 11.68 103 116.32 131 2 2.57 4 100.00 14.53 0.82 0.00
300 9.76 10.97 12.18 131 137.67 145 2 2.50 4 121.85 16.85 1.33 0.00

Table 1: Batched 1-Steiner (B1S) statistics: the performance figures denote percent improvement over
MST cost. Also given are statistics regarding the number of Steiner points produced, the number of
rounds, and the number of Steiner points produced in each round.

30

Batched 1-Steiner (B1S) Average Execution Speeds (CPU Seconds)
Serial Parallel Speedup overall
old new ratio old new ratio old new gain
n A B A/B [¢] D Cc/D A/C B/D A/D
4 0.01 0.01 1.00 0.16 0.15 1.07 0.06 0.07 0.07
5 0.04 0.02 2.00 0.20 0.19 1.05 0.20 0.11 0.27
6 0.10 0.04 2.50 0.21 0.20 1.05 0.48 0.20 0.53
7
8

0.20 0.06 3.33 0.24 0.22 1.09 0.83 0.27 0.91
0.37 0.09 4.11 0.27 0.24 1.13 1.37 0.38 1.54
9 0.63 0.12 5.25 0.39 0.27 1.44 1.62 0.44 2.33
10 1.02 0.16 6.38 0.51 0.29 1.76 2.00 0.55 3.52
12 2.28 0.26 8.77 1.06 0.35 3.03 2.15 0.74 6.51
14 4.69 0.44 10.66 1.57 0.41 3.83 2.99 1.07 11.44
16 8.40 0.61 13.77 2.07 0.47 4.40 4.06 1.30 17.87
18 14.67 0.81 18.11 4.14 0.57 7.26 3.54 1.42 25.73
20 24.07 1.09 22.08 5.57 0.61 9.13 4.32 1.79 39.46
30 151 3.80 39.74 40.2 1.79 22.46 3.75 2.12 84.36
40 522 8.59 60.77 126 3.23 39.01 4.14 2.66 161.61
50 1130 16.1 70.19 200 5.03 39.76 5.65 3.20 224.65
60 2745 28.1 97.69 753 8.03 93.77 3.65 3.50 341.84
70 5520 41.9 131.74 | 1002 12.1 82.81 5.51 3.46 456.20
80 10350 62.2 166.40 | 2084 17.1 121.87 | 4.97 3.64 605.26
90 15450 87.5 176.57 | 2582 16.5 156.48 | 4.97 5.30 936.36
100 | 28140 114 246.84 | 4748 24.2 196.20 | 5.93 4.71 1162.81

120 232 40.5 5.73
140 344 58.6 5.87
160 376 79.67 4.72
180 571 103 5.54
200 801 129 6.21
250 1528 212 7.21
300 1800 447 4.03

Table 2: Execution times for Batched 1-Steiner (B1S): the serial execution times are given in CPU
seconds, while the parallel execution times are elapsed wall-clock times. Both the serial and parallel
versions were tested with the old naive implementation, as well as the new faster implementation. The
overall gain is the ratio of the old serial time to the new parallel time. The parallel implementation
uses 9 SUN 4/40 (IPC) workstations, with a SUN 4/75 (Sparc2) as the master processor.

Average Performance Results in Two Dimensions (% Improvement over MST)
(1) (2) (3) (4) (5) Meta Meta Meta
nets B1S MB1S EB1S 128 EI2S | (1-2) (3-5) (1-5) | OPT
10000 8.54 8.54 8.54 8.54 8.54 8.54 8.54 8.54 8.54
10000 9.34 9.34 9.39 9.44 9.45 9.37 9.46 9.46 9.47
10000 9.79 9.78 9.85 9.90 9.92 9.82 9.93 9.93 9.97
5000 10.04 10.03 10.12 10.15 10.19 | 10.08 10.21 10.21 | 10.27
5000 10.06 10.06 10.15 10.17 10.22 | 10.11 10.24 10.24 | 10.33
5000 10.16 10.14 10.25 10.27 10.33 | 10.20 10.34 10.34 | 10.47
5000 10.19 10.16 10.27 | 10.28 10.34 | 10.22 10.36 10.36 | 10.52
12 5000 10.24 10.24 10.34 10.33 10.39 | 10.29 10.41 10.41 | 10.58
14 5000 10.33 10.33 10.42 10.40 10.47 | 10.37 10.49 10.49 | 10.70
16 5000 10.33 10.32 10.42 10.40 10.47 | 10.37 10.49 10.49 | 10.73
18 4000 10.51 10.51 10.61 10.58 10.66 | 10.56 10.67 10.67 | 10.93
20 3000 10.51 10.51 10.61 10.56 10.64 | 10.55 10.66 10.66 | 10.92
25 2000 10.47 10.48 10.57 | 10.53 10.61 | 10.52 10.62 10.62 | 10.90
30 100 10.45 10.59 10.76 10.55 10.62 | 10.51 10.63 10.63 | 10.89
50 500 10.89 10.89 10.99 10.93 11.03 | 1093 11.04 11.05
70 100 10.73 10.77 10.86 10.76 10.88 | 10.80 10.91 10.91

—
S © w0 o sB

Table 3: Performance statistics: the figures denote average percent improvement over MST cost.

31

Percent of the Cases When Solution Was Optimal

(1) (2) (3) (4) (5) Meta Meta Meta
nets B1S MB1S EBI1S 128 EI2S (1-2) (3-5) (1-5) OoPT
10000 | 100.00 100.00 100.00 | 100.00 100.00 | 100.00 100.00 100.00 | 100.00
10000 94.29 93.96 96.53 98.42 99.04 95.30 99.26 99.27 100.00
10000 90.34 90.00 93.68 94.92 96.91 91.98 97.46 97.46 100.00
5000 85.20 84.75 89.96 90.72 93.77 87.45 94.75 94.75 100.00
5000 79.62 78.77 85.26 84.73 89.87 82.13 90.94 90.95 100.00
5000 75.80 74.88 82.23 81.70 86.86 78.64 87.92 87.92 100.00
5000 72.03 70.44 79.12 77.01 82.92 75.09 84.49 84.49 100.00
12 5000 65.15 63.98 73.01 70.41 TTA7 68.49 78.72 78.72 100.00
14 5000 57.86 58.73 66.69 62.84 70.73 62.31 72.33 72.33 100.00
16 5000 50.36 49.92 60.17 54.84 63.92 54.99 65.73 65.73 100.00
18 4000 44.90 45.02 55.65 49.33 58.85 49.45 61.02 61.02 100.00
20 3000 42.87 42.00 53.20 45.70 55.47 47.00 58.23 58.23 100.00
25 2000 31.25 31.70 41.45 34.15 44.30 35.60 45.90 45.90 100.00
30 100 27.00 26.00 41.00 32.00 45.00 31.00 47.00 47.00 100.00

—
o © ®WNo o AP

Table 4: Optimality Percentages: figures denote the percent of the cases where the various heuristics
found the optimal solution.

Average CPU Time Per Net (CPU Seconds)

(1) (2) (3) (4) (5) Meta Meta Meta
BIS MBIS EBIS | 128 EI?S | (1-2) (3-5) (1-5) | OPT
0.002 0.001 0.054 0.001 0.072 | 0.003 0.127 0.130 | 0.006
0.004 0.002 0.107 | 0.003 0.068 | 0.006 0.178 0.184 | 0.010
0.006 0.004 0.184 0.006 0.128 | 0.010 0.318 0.328 | 0.018
0.009 0.006 0.287 | 0.012 0.231 | 0.015 0.530 0.545 | 0.031
0.013 0.009 0.432 0.019 0.384 | 0.022 0.835 0.857 | 0.046
0.019 0.012 0.571 0.030 0.634 | 0.031 1.235 1.266 | 0.066
0.025 0.016 0.806 0.046 0.951 | 0.041 1.803 1.844 | 0.090
12 | 0.043 0.026 1.324 0.096 1.967 | 0.069 3.387 3.456 | 0.158
14 | 0.066 0.041 2.127 | 0.180 3.623 | 0.107 5.930 6.037 | 0.268
16 | 0.096 0.059 3.288 0.317 6.372 | 0.155 9.977 10.13 | 0.405
18 | 0.134 0.081 4.216 0.540 9.700 | 0.215 14.46 14.68 | 0.774
20 | 0.181 0.115 6.440 0.833 15.87 | 0.296 23.14 23.44 | 1.618
25 | 0.341 0.220 11.94 2.050 48.09 | 0.561 62.08 62.64 | 13.88
30 | 0.569 0.375 18.93 4.184 86.10 | 0.944 109.2 110.1 | 495.8
50 | 2.732 1.694 79.78 35.91 764.6 | 4.426 880.3 884.7
70 | 6.664 4.236 255.4 150.3 5668 10.90 6074 6085

—
S © w0 o sB

Table 5: Average execution times, in CPU seconds, for each of the heuristics.

Average Performance of EB1S in Three Dimensions (% Improvement over MST)
L=2 L=3 L=4 L=5 L=7 | L=10 | L=14 | L=20 L=c0
8.01 9.51 9.72 10.11 | 10.24 10.65 10.26 10.63 10.66
9.47 10.66 | 11.14 | 11.80 | 12.33 12.39 12.17 12.01 12.57
10.42 | 11.46 | 12.46 | 12.48 | 13.12 13.26 13.48 13.45 13.61
10.66 | 12.16 | 13.07 | 13.24 | 13.95 13.91 14.19 14.20 14.23
10.14 | 12.86 | 13.64 | 14.22 | 13.54 15.33 14.26 14.34 15.26
10.53 | 12.20 | 13.25 | 13.77 | 14.38 14.70 14.27 14.77 14.84
10.19 | 12.10 | 13.48 | 13.37 | 14.25 14.95 14.74 14.84 14.97
30 | 10.33 | 11.23 | 11.92 | 13.21 | 13.82 14.52 15.02 15.04 15.24
50 | 10.28 | 10.20 | 11.31 | 13.01 | 13.49 14.49 15.14 15.08 15.16

[
S o Uk wB

Table 6: Average percent improvement of EB1S over MST cost in three dimensions for L planes equally
spaced in the unit cube. The unrestricted three-dimensional case occurs when L = oo (last column).

32

#SPs and #rounds for B1S in 3D
#SPs #rounds
n | min ave max | min ave max
3 0 0.90 1 1 1.90 2
4 0 1.53 2 1 2.18 3
5 1 2.25 3 2 2.33 4
7 1 3.63 6 2 2.60 5
10 2 5.63 8 2 2.92 7
14 5 8.22 11 2 3.18 6
20 9 12.14 15 2 3.26 5
30 15 18.99 22 3 3.53 6
50 29 32.86 35 3 4.14 6

Table 7: Statistics regarding the number of Steiner points induced by B1S in the unrestricted three-
dimensional case (i.e., L = o). Also given are the number of rounds executed by B1S. Shown are the
minimum, average, and maximum values.

33

Jeff Griffith received his Bachelor’s degree in Mathematics in 1992 from the University of Virginia
in Charlottesville. He is presently working on his Ph.D. in computer science at the University of
Tennessee in Knoxville. His areas of interest include physical design for VLSI circuits, as well as

scientific computing.

Gabriel Robins received the Ph.D. degree in 1992 from the UCLA Computer Science Department,
where he won the Distinguished Teaching Award and held an IBM Graduate Fellowship. Currently, Dr.
Robins is Assistant Professor of Computer Science at the University of Virginia in Charlottesville, where
he recently won the NSF Young Investigator Award. His primary areas of research are VLSI CAD and
geometric algorithms, with recent work focusing on performance-driven routing, Steiner tree heuristics,
computational geometry, motion planning, pattern recognition, and computational biology. Dr. Robins
is the author of a Distinguished Paper at the 1990 IEEE International Conference on Computer-Aided
Design, and his Ph.D. dissertation was nominated for the ACM Distinguished Dissertation Award. He

is a member of ACM, IEEE, MAA | and SIAM.

Jeffrey S. Salowe received the B.A. Degree in mathematics from the University of Virginia, Char-
lottesville, VA, in 1983, and the M.S. and Ph.D. degrees in computer science from Rutgers University,
New Brunswick, NJ, in 1985 and 1987, respectively. Currently, he is an Assistant Professor of Computer
Science at the University of Virginia, Charlottesville, VA. His research interests include the analysis of

algorithms, computational geometry, data structures, and graph algorithms.

Tongtong Zhang studied at the University of Beijing, China for three years and received her Bach-
elor’s degree in 1992 from Bridgewater College, Virginia. She is currently working on her Ph.D. in
computer science at the University of Virginia in Charlottesville. Her areas of interest include physical

design for VLSI circuits and computational biology.

34

Footnotes

Professor Gabriel Robins, Professor Jefferey Salowe, and Ms. Tongtong Zhang are with the Department
of Computer Science, University of Virginia, Charlottesville, VA 22903-2442.

Mr. Jeff Griffith is with the Department of Computer Science, University of Tennessee, Knoxville, TN
37996-1301.

Professor Gabriel Robins, Professor Jeffrey Salowe, and Ms. Tongtong Zhang are with the Department
of Computer Science, University of Virginia, Charlottesville, VA 22903-2442. Mr. Jeff Griffith is
with the Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301. All
correspondence and code requests should be addressed to the primary author: Professor Gabriel Robins,
robins@cs.virginia.edu, phone: (804) 982-2207, FAX: (804) 982-2214. Professor Robins was partially
supported by NSF Young Investigator Award MIP-9457412. Professor Salowe was partially supported
by NSF grants MIP-9107717 and CCR-9224789.

Footnote 1: Recently, Berman and Ramaiyer [7] and Foessmeier, Kaufmann and Zelikovsky [6] [13]
have extended the fundamental work of Zelikovsky [46] [47] to yield a method similar to I1S (specifically,
to the “batched” I1S method described below) with performance ratio bounded by %; this work settles
in the affirmative the longstanding open question of whether there exists a polynomial-time rectilinear
Steiner tree heuristic with performance ratio strictly smaller than % [25]. At the time of this writing,
Berman, Foessmeier, Karpinski, Kaufmann and Zelikovsky [13] further improved the performance

bound of their polynomial-time rectilinear Steiner heuristic to % =1.271.

Footnote 2: Robins and Salowe [39] investigate the maximum MST degree for higher dimensions and

other L, norms, and relate the maximum MST degree to the so-called “Hadwiger” numbers.

Footnote 3: Recently, other Steiner heuristics with performance approaching that of I1S were pro-

posed by Borah, Owens, and Irwin [8], Chao and Hsu [10] and by Lewis, Pong and VanCleave [33].

36

