# Reliable Evolutionary Tree Reconstruction: The Generalized Neighbor Joining Method



# Computer Science School of Engineering University of Virginia (434) 982-2207 Charlottesville, VA 22904



William Pearson Gabriel Robins Tongtong Zhang



Appeared in the Journal of Molecular Biology and Evolution

www.cs.virginia.edu/robins

# Background

#### Biological Sequences





#### **Evolutionary Tree Reconstruction**



NP-complete [Foulds & Graham 1982, Day 1987]

## Previous Approaches

Fitch - Margoliash [1967] Neighbor-Joining [1987] PHYLIP [1993] Split-Decomposition [1995] Quartet-Puzzling [1997] PAUP [1998]

All use greed & target best solution

# Challenges

#### Topologically distant low-cost solutions exist



Random starting trees + heuristics?

e.g. [Maddison 1991, Penny 1995, Swofford 1997]

Problem: getting trapped in local minima

Goal: given N taxa (sequences), find diverse low-cost evolutionary trees

# Our Solution: Generalized Neighbor-Joining

#### Traditional Neighbor-Joining

## Generalized Neighbor-Joining



## Parameters controlling the solution space sampling:

K: max # partial solutions maintained

Q (Quality): # candidates selected for low cost

D (Diversity): # candidates selected for variety

Tradeoff quality & topological diversity: K = Q + D

Time complexity:  $O(K \cdot N^3 \cdot (lg K + lg N))$ 

# Generalized Neighbor Joining: Experimental Results

#### Performance (N=8 leaves)



## Solution Cost (N=16 leaves)



## Solution Diversity (N=16 leaves)

