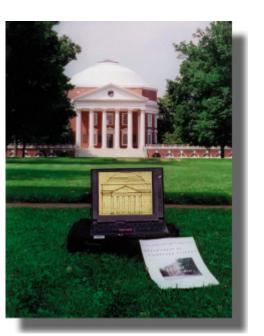
# Filling Algorithms and Analyses for Improved VLSI Manufacturability



## Computer Science School of Engineering University of Virginia (434) 982-2207 Charlottesville, Virginia 22904



Andrew Kahng Gabriel Robins Anish Singh Alex Zelikovsky



#### This research has appeared in:

Kahng, A. B., Robins, G., Singh, A., and Zelikovsky, A., Filling Algorithms and Analyses for Layout Density Control, to appear in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1999.

Kahng, A. B., Robins, G., Singh, A., Wang, H., and Zelikovsky, A., Filling and Slotting: Analysis and Algorithms, Proc. International Symposium on Physical Design, Monterey, California, April, 1998, pp. 95-102.

Kahng, A. B., Robins, G., Singh, A., and Zelikovsky, A., New and Exact Filling Algorithms for Layout Density Control, Proc. VLSI Design Conference, Goa, India, January 1999, pp. 106-110.

Kahng, A. B., Robins, G., Singh, A., and Zelikovsky, A., New Multi-Level and Hierarchical Algorithms for Layout Density Control, Proc. Asia and South Pacific Design Automation Conference, Hong Kong, January 1999, pp. 221-224; nominated for **Best Paper Award**.

www.cs.virginia.edu/robins

## Metal Filling

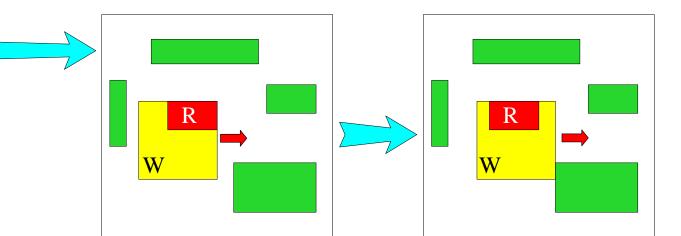
• VLSI manufacturing steps (e.g., CMP) have varying affect on device and interconnect features

## Extremal-Density Window Analyses

 $O(k^2)$  -time algorithm for k rectangles:

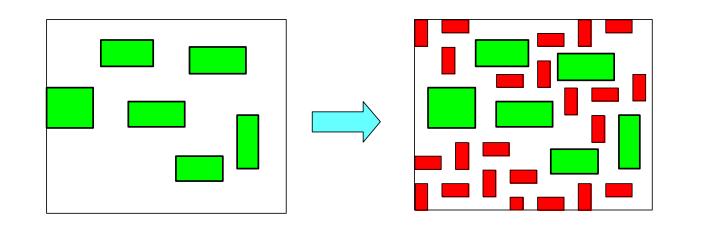
• For each pivot rectangle *R* do:

- Find the density of  $w \times w$  window W that abuts R on top and right • While *W* intersects *R* do:
  - slide *W* right untill intersection with next rectangle edge



and improve predictability

• Uniformity achieved by post-processing via *filling* i.e. insertion of features:



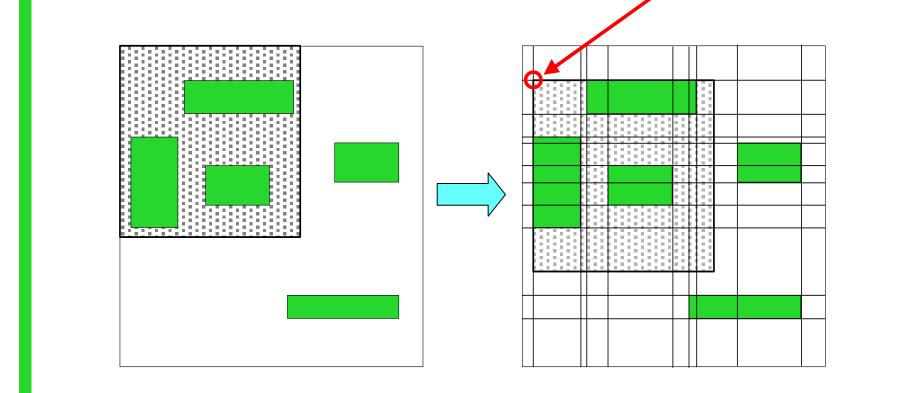
## Problem Formulation

**Given:** a design rule-correct geometry with:

- -k disjoint rectangles in  $n \times n$  layout region
- a minimum feature size c
- area density lower and upper bounds
- window size w < n

**Goal:** add fill geometries into layout while:

- preserving circuit function & design rule-correctness
- all  $w \times w$  windows satisfy lower/upper density bounds



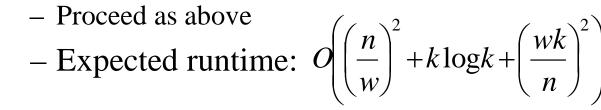
• Theorem (Hanan analogue): there is extremal

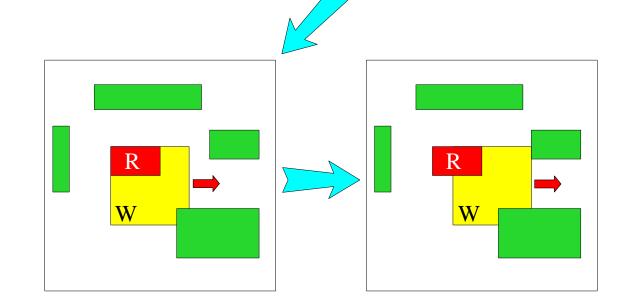
*w*×*w* window with a corner at Hanan gridpoint

- record changes in density as you go • Repeat for R, this time sliding up • Repeat for all other orientations of *W* 

#### • Speedup via *fixed preprocessing:*

– Partition layout into  $\frac{n}{w} \times \frac{n}{w}$  squares of size  $w \times w$  each - Record all rectangles intersecting each  $w \times w$  square

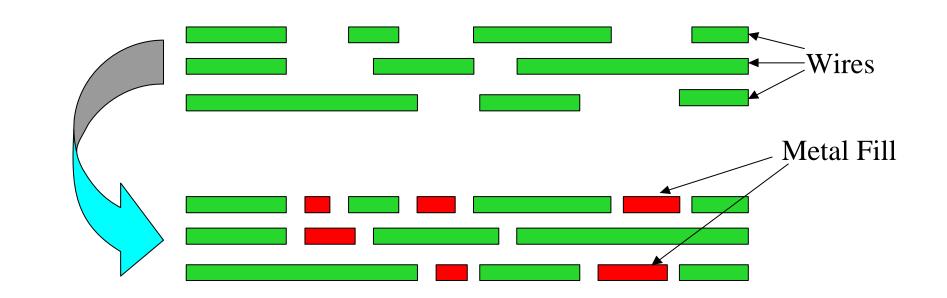




Metal Fill Types

#### Wiring Layers

- Density  $\leq 50\%$ -60% if separation  $\approx$  row width
- $O(k \log k)$  -algorithm for filling



Basket Weaving

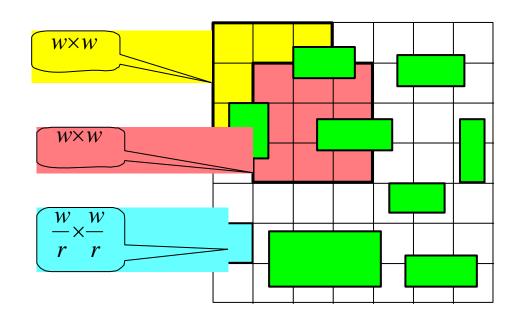
### **Given**: k rectangles in $n \times n$ layout **Find**: extremal-density *w*×*w* window

• Inclusion-exclusion -based  $O(n^2)$  -time algorithm:

- initialize boolean  $n \times n$  array B with 0's and 1's
- create integer  $n \times n$  array S[i, j] = # 1's in B[1..i, 1..j]
- density  $w \times w$  window at (i, j) = S[i+w, j+w] S[i, j+w] S[i+w, j] + S[i, j]

## **Fixed-Dissection Density Analysis**

Practical method: check / enforce density constraints only in  $w \times w$  windows of fixed dissection with  $\frac{w}{r} \times \frac{w}{r}$  tiles



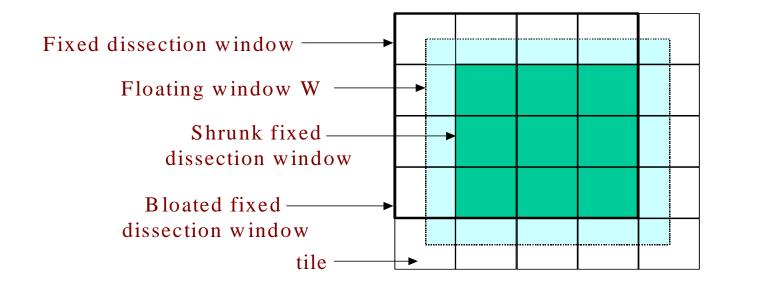
**Theorem:** If all fixed dissection  $w \times w$  windows has density between U and L, then any  $w \times w$  window has density in the range between  $L = \left(\frac{1}{r} - \frac{1}{4r^2}\right)$  and  $U = \left(\frac{1}{r} - \frac{1}{4r^2}\right)$ 

**Theorem:** If all fixed dissection  $\frac{w}{r} \times \frac{w}{r}$  tiles have density between L and U then any  $w \times w$  window has density in the range between  $\frac{(r-1)^2}{r^2} \cdot L + \frac{4(r-1)}{r^2} \cdot \max\{L - \frac{1}{2}, 0\} + \frac{4}{r^2} \cdot \max\{L - \frac{3}{4}, 0\}$ and  $\frac{(r-1)^2}{r^2} \cdot U = \frac{4(r-1)}{r^2} \cdot \max\{U = \frac{1}{2}, 0\} = \frac{4}{r^2} \cdot \max\{U = \frac{1}{4}, 0\}$ 

## Multi-Level Density Analysis

• Any floating window within a fixed dissection is contained within a • bloated  $w(1+\frac{1}{r}) \propto w(1+\frac{1}{r})$  window, and also contains a • window of size  $w(1-\frac{1}{r})$  by  $w(1-\frac{1}{r})$ 

• Maximum area of floating windows is bounded by that of a bloated window.



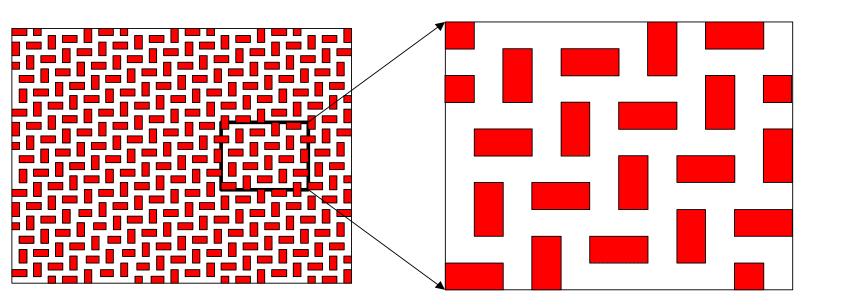
Input: *n* x *n* layout, window size and accuracy Output: maximum area density of w x w window

Accuracy =  $\infty$ ; r=1  $W_{U}W$ Surviving Tiles = all  $\frac{n}{r} \times \frac{n}{r}$  tiles while (*Accuracy* > desiredAccuracy)

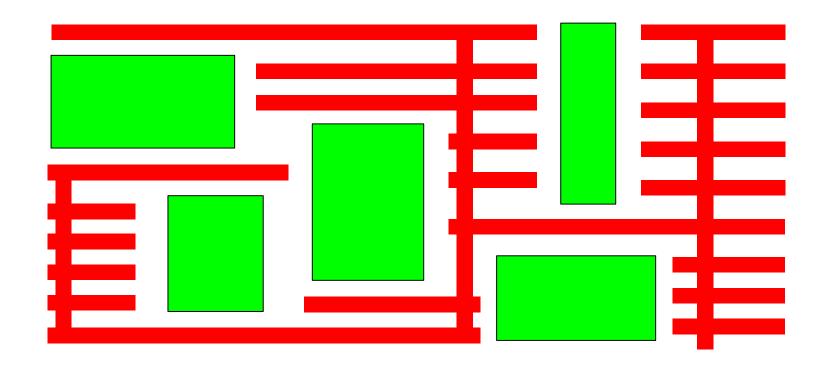
Find maximum standard window area using surviving tiles (*Max*) Find maximum bloated window area using surviving tiles (*BloatMax*) Delete tiles that do not belong to any bloated window with area > MaxAccuracy = BloatMax / Max r = 2r // replace surviving tiles by 4 sub-tiles

Output maximum window area = (BloatMax + Max)/2

• Fill pattern should not consist of regular grid geometries. • Idea: basket-weave pattern using modulo arithmetic:



Grounded Fill



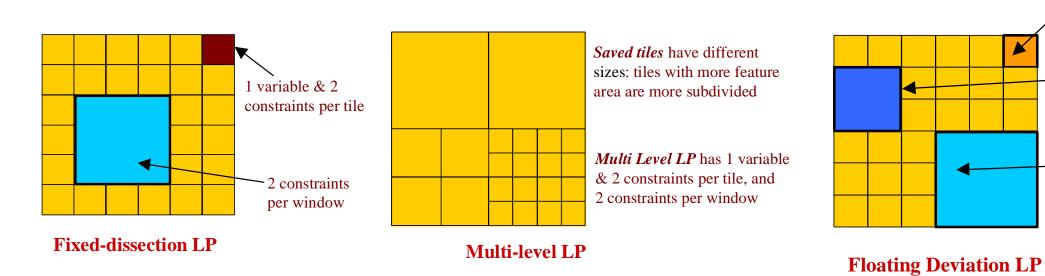
## **Computational Results**

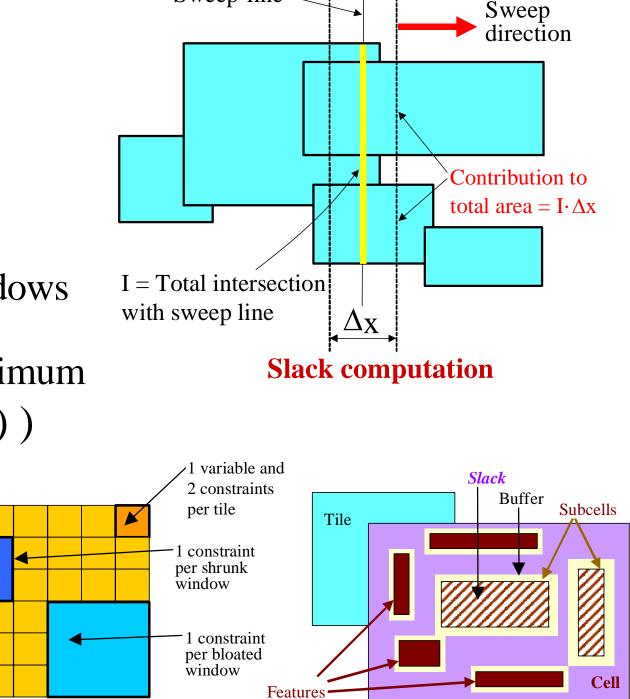
#### **VLSI Layer Benchmarks**

## Linear Programming Approach to Computing Optimal Fill Amount

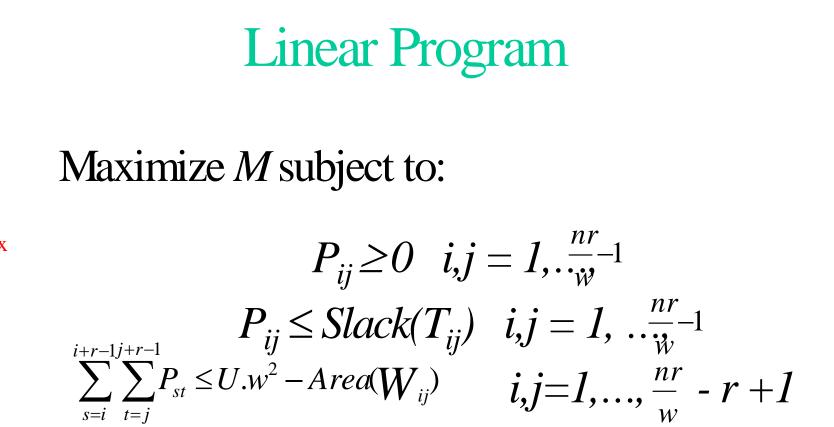
Sweep-line ~

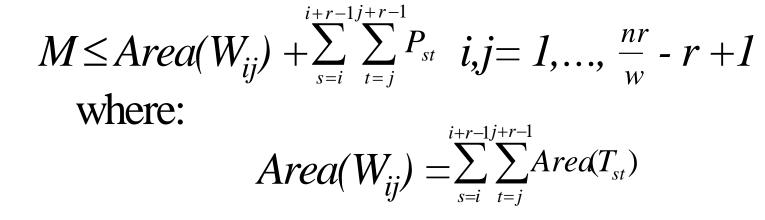
- Filling problem for a fixed r-dissection:
- Given r-dissection with tiles of size  $\frac{w}{r} \times \frac{w}{r}$
- Given Area and Slack of each tile  $(T_{ii})$
- The fill amount  $(P_{ii})$  in each tile should satisfy: •  $0 \le P_{ii} \le Slack(T_{ii})$ 
  - $\sum P_{ii} \le \max \{UW^2 \operatorname{area}(W), 0\}$  for all *wxw* windows
- Min variation formulation seeks to maximize the minimum window density: Maximize ( $\min(Area(T_{ii}) + P_{ii})$ )





**Hierarchical LP** 





| Benchmark | N=layout size | K= # rectangles | W= window size |
|-----------|---------------|-----------------|----------------|
| L1        | 12,500        | 49,506          | 31,250         |
| L2        | 11,200        | 76,423          | 28,000         |
| L3        | 11,120        | 133,201         | 28,000         |

#### **Fixed-Dissection Density Analysis** Max Density CPU Time Benchmark .2125 2.9 .2170 9.2 L1 .1791 4.5 L2 L2 .1791 14.5

#### **Multilevel Density Analysis**

.2895

.2910

8.0

25.1

L3

L3

| Benchmark | Accuracy | Max Density | CPU Time |  |
|-----------|----------|-------------|----------|--|
| L1        | 2%       | .2184       | 2.8      |  |
| L1        | 3%       | .2184       | 2.8      |  |
| L2        | 2%       | .1830       | 6.9      |  |
| L2        | 3%       | .1829       | 3.8      |  |
| L3        | 2%       | .2925       | 7.1      |  |
| L3        | 3%       | .2911       | 6.6      |  |

#### **Fixed Dissection LP Fill Generation**

| Benchmark | r | LP Generation | LP Solve | Μ     | Fill | Total |
|-----------|---|---------------|----------|-------|------|-------|
|           |   | CPU           | CPU      |       | CPU  | CPU   |
| L1        | 2 | 4.1           | 0.1      | .2192 | 3.3  | 7.6   |
| L1        | 4 | 4.0           | 0.4      | .2192 | 3.2  | 7.6   |
| L1        | 8 | 10.3          | 18.3     | .2189 | 3.3  | 31.9  |
| L2        | 2 | 2.8           | 0.1      | .1816 | 5.2  | 8.0   |
| L2        | 4 | 5.2           | 1.7      | .1704 | 5.0  | 11.9  |
| L2        | 8 | 15.8          | 41.5     | .1631 | 5.2  | 62.5  |
| L3        | 2 | 5.2           | 0.1      | .2640 | 8.3  | 13.5  |
| L3        | 4 | 9.4           | 0.8      | .2606 | 8.0  | 18.2  |
| L3        | 8 | 27.2          | 24.4     | .2553 | 8.1  | 59.7  |