
I) Identzhing and
dealing with risks
early in development
lessens long-tem
costs and helps
prevent so@are
disasters.
It is easy t o begin
managing risks in
your environment.

Software Risk
Management:
Principles and
Practices
BARRY W. BOEHM,
Defense Advanced Research Projects Agency

their early stages, the software field has
had its share of project disasters: the soft-
ware equivalents of the Beauvais Cathe-
dral, the hWlS Titanic, and the “Gallop-
ing Gertie” Tacoma Narrows Bridge.
The frequency of these software-project
disasters is a serious concern: A recent
survey of 600 firms indicated that 35 per-
cent of them had at least one runaway
software project.’

Most postmortems of these software-
project disasters have indicated that their
problems would have been avoided or
strongly reduced if there had been an ex-
plicit early concern with identifylng and
resolving their high-risk elements. Fre-
quently, these projects were swept along
by a tide of optimistic enthusiasm during
their early phases that caused them to
miss some clear signals of high-risk issues
that proved to be their downfall later.

3 2 074B7459/91 /fl’lOfl/W32/$flI 00 D IEEE

Enthusiasm for new software capabil-
ities is a good thing. But it must be tem-
pered with a concern for early identifica-
tion and resolution of a project’s high-risk
elements so people can get these resolved
early and then focus their enthusiasm and
energy on the positive aspects of their
product.

Current approaches to the software
process make it too easy for projects to
make high-risk commitments that they
will later regret: + The sequential, document-driven
waterfall process model tempts people to
overpromise software capabilities in con-
tractually binding requirements specifi-
cations before they understand their risk
implications.

+ The code-driven, evolutionary de-
velopment process model tempts people to
say, “Here are some neat ideas I’d like to
put into t h ~ s system. I’ll code them up, and

J A N U A R Y 1 9 9 1

if they don’t fit other people’s ideas, we’ll
just evolve thmgs until they work.” This
sort of approach usually works fine in
some well-supported minidomains like
spreadsheet applications but, in more
complex application domains, it most
often creates or neglects unsalvageable
high-risk elements and leads the project
down the path to disaster.

At TRW and elsewhere, I have had the
good fortune to observe many project
managers at work firsthand and to try to
understand and apply the factors that dis-
tinguished the more successful project
managers from the less successful ones.
Some successfully used a waterfall ap-
proach, others successfully used an evolu-
tionary development approach, and still
others successfully orchestrated complex
mixtures of these and other approaches in-
volving prototyping, simulation, com-
mercial software, executable specifica-
tions, tiger teams, design competitions,
subcontracting, and various lands of cost-
benefit analyses.

O n e pattern that emerged very
strongly was that the successful project
managers were good risk managers. Al-
though they generally didn’t use such
terms as “risk identification,” “risk assess-
ment,” “risk-management planning,” or
“risk monitoring,” they were using a gen-
eral concept of risk exposure (potential
loss times the probability of loss) to guide
their priorities and actions. And their pro-
jects tended to avoid pitfalls and produce
good products.

The emerging discipline of software
risk management is an attempt to formal-
ize these risk-oriented correlates of success
into a readily applicable set of principles
and practices. Its objectives are to identi@,
address, and eliminate risk items before
they become either threats to successful
software operation or major sources of
sofixrare rework.

BASIC CONCEPTS

Webster’s dictionary defines “risk” as
“the possibility of loss or injury.” This def-
inition can be translated into the funda-
mental concept of risk management: risk
exposure, sometimes also called “risk im-

pact” or “risk factor.” Risk exposure is de-
fined by the relationship

RE = POJO) * L(U0)
where RE is the risk exposure, P(U0) is
the probability of an unsatisfactory out-
come and L(U0) is the loss to the parties
affected if the outcome is unsatisfactory.
To relate this definition to software pro-
jects, we need a d e h t i o n of “unsatisfac-
tory outcome.”

Given that projects involve several
classes of participants (customer, devel-
oper, user, and maintainer), each with dif-
ferent but hghly important satisfaction
criteria, it is clear that “unsatisfactory out-
come” is multidimensional:

+ For customers and developers,
budget overruns and schedule slips are
unsatisfactory.

+ For users, products with the wrong
functionality, user-interface shortfalls,
performance shortfalls, or reliability

shortfalls are unsatisfactory.
+ For maintainers, poor-quality soft

ware is unsatisfactory.
These components of an unsatisfac

tory outcome provide a top-level checkli:
for identifying and assessing risk items.

A fundamental risk-analysis paradigr
is the decision tree. Figure 1 illustrates
potentially risky situation involving th
software controlling a satellite experi
ment. The software has been under devel
opment by the experiment team, whic
understands the experiment well but is in
experienced in and somewhat casual aboi
software development. As a result, the sal
ellite-platform manager has obtained a
estimate that there is a probability P(UC
of 0.4 that the experimenters’ software wi
have a critical error: one that will wipe 01

the entire experiment and cause an associ
ated loss L(U0) of the total $20 millio
investment in the experiment.

FIGURE 1 DECISION TREE FOR WHFTHER TO PERFORM INOEPENDENTVALIOATION ANOVERIFICATION TO ELIMINA-

CRITICAL ERRORS IN A WTELLITEEXPERIMENT PROGRAM. UUO] IS THE LOSS ASSOCIATE0 W K H AN UNSATlSFAl

TORY OUTCOME, P[UOl IS THE PROBABILITY OFTHE UNSATISFACTORY OUTCOME, AN0 CE IS A CRKICAL ERROR

I E E E S O F T W A R E 3 3

Checklists

Decomposition

Performance d e k

FIGURE 2 SDFNARE RISK MANAGEMENT SlEPS

The satellite-platform manager identi-
fies two major options for reducing the
risk of losing the experiment:

+ Convincing and helping the experi-
ment team to apply better development
methods. This incurs no additional cost
and, from previous experience, the man-
ager estimates that this will reduce the
error probability P(U0) to 0.1.

+ Hiring a contractor to indepen-
dently verify and validate the software.
This costs an additional $500,000; based
on the results of similar IV&V efforts, the
manager estimates that this will reduce the
error probability P(U0) to 0.04.

The decision tree in Figure 1 then
shows, for each of the two major decision
options, the possible outcomes in terms of
the critical error existing or being found
and eliminated, their probabilities, the
losses associated with each outcome, the
risk exposure associated with each out-
come, and the total risk exposure (or ex-
pected loss) associated with each decision
option. In tlus case, the total risk exposure
associated with the experiment-team op-
tion is only$2 d o n . For the IV&Voption,
the total risk exposure is only $1.3 d i o n , so
it represents the more atmctive option.

Besides providing individual solution
for risk-management situations, the deci
sion tree also provides a framework fo
analyzing the sensitivity of preferred soh
tions to the risk-exposure parameter:
Thus, for example, the experiment-tear
option would be preferred if the loss due ti
a critical error were less than $1 3 millior
if the experiment team could reduce it
critical-error probability to less thai
0.065, if the IV&V team cost more thai
$1.2 million, if the IV&V team could nu
reduce the probability of critical error ti
less than 0.075, or if there were variou
partial combinations of these possibilities

This sort of sensitivity analysis help
deal with many situations in whch proba
bilities and losses cannot be estimated we1
enough to perfonn a precise analysis. l h
risk-exposure framework also support
some even more approximate hut still ver
useful approaches, like range estiniatioi
and scale-of-10 estimation.

RISK MANAGMENT

As Figure 2 shows, the practice of ri:
management involves two primary stef
each with three subsidiary steps.

The first primary step, risk assessment,
involves risk identification, risk analysis,
and risk prioritization:

+ Risk identification produces lists of
the project-specific risk items likely to
compromise a project’s success. Typical
risk-identification techniques include
checklists, examination of decision driv-
ers, comparison with experience (assump-
tion analysis), and decomposition.

+ Risk analysis assesses the loss proba-
bility and loss magnitude for each identi-
fied risk item, and it assesses compound
risks in risk-item interactions. Typical
techniques include performance models,
cost models, network analysis, statistical
decision analysis, and quality-factor (like
reliability, availability, and security) analy-
sis.

+ Risk prioritization produces a
ranked ordering of the risk items identi-
fied and analyzed. Typical techmques in-
clude risk-exposure analysis, risk-reduc-
tion leverage analysis (particularly
involving cost-benefit analysis), and Del-
phi or group-consensus techniques.

The second primaiy step, risk control,
involves risk-management planning, risk
resolution, and risk monitoring:

+ ask-management planning helps
prepare you to address each risk item (for
example, via information buying, risk
avoidance, risk transfer, or risk reduction),
including the coordination of the individ-
ual risk-item plans with each other and
with the overall project plan. Typical tech-
niques include checklists of risk-resolu-
tion techmques, cost-benefit analysis, and
standard risk-management plan outlines,
fonns, and elements.

+ Risk resolution produces a situation
in which the risk items are eliminated or
otherwise resolved (for example, risk
avoidance via relaxation of requirements).
Typical techniques include prototypes,
simulations, benchmarks, mission analy-
ses, key-personnel agreements, design-to-
cost approaches, and incremental devel-
opment.

+ Risk monitoring involves tracking
the project’s progress toward resolving its
risk items and taking corrective action
where appropriate. Typical techniques in-
clude milestone tracking and a top-10
risk-item list that is highlighted at each

J A N U A R Y 1 9 9 1 3 4

weekly, monthly, or milestone project re-
view and followed up appropriately with
reassessment of the risk item or corrective
action.

In addition, risk management provides
an improved way to address and organize
the life cycle. Risk-driven approaches, like
the spiral model of the software process:
avoid many of the difficulties encountered
with previous process models like the wa-
terfall model and the evolutionary devel-
opment model. Such risk-driven ap-
proaches also show how and where to
incorporate new software technologies
like rapid prototyping, fourth-generation
languages, and commercial software prod-
ucts into the life cycle.

SIX STEPS

Figure 2 summarized the major steps
and techniques involved in software risk
management. This overview article covers

four significant subsets of risk-manage-
ment techniques: risk-identification
checkhsts, risk prioritization, risk-man-
agement planning, and risk monitoring.
Other techques have been covered else-
where.’~~

Risk-identification checklists. Table 1 shows
a top-level risk-identification checklist
with the top 10 primary sources of risk on
software projects, based on a survey ofsev-
era1 experienced project managers. Man-
agers and system engineers can use the
checklist on projects to help identify and
resolve the most serious risk items on the
project. It also provides a corresponding
set of risk-management techniques that
have been most successful to date in avoid-
ing or resolving the source of risk.

Ifyou focus on item 2 of the top-10 list
in Table 1 (unrealistic schedules and bud-
gets), you can then move on to an example
of a next-level checklist: the risk-probabil-

ity table in Table 2 for assessing the prob-
ability that a project will overrun its bud-
get. Table 2 is one of several such check-
lists in a n excellent US Air Force
handbook’ on software risk abatement.

Using the checklist, you can rate a
project’s status for the individual attributes
associated with its requirements, person-
nel, reusable software, tools, and support
environment (in Table 2 , the environ-
ment’s availability or the risk that the envi-
ronment will not be available when
needed). These ratings will support a
probability-range estimation of whether
the project has a relativelylow (0.0 to 0.3),
medium (0.4 to 0.6), or high (0.7 to 1.0)
probability of o v e e g its budget.

Most of the cnncal nsk items in the
checklist have to do with shortfalls in do-
main understanding and in properly scop-
ing the job to be done - areas that are
generally underemphasized in computer-
science literature and education. Recent

Risk item

Personnel shortfalls

Unrealistic schedules
and budgets

Developing the wrong
functions and properties

Developing the wrong
user interface

Gold-plating

Continuing stream
of requirements changes

Shortfalls in externally
furnished components

Shortfalls in extemally
performed tasks
Real-nme performance
shortfalls

Straining computer-science
capabilities

Risk-management technique

Staffing with top talent, job matching, team building, key personnel agreements, cross training

Detailed multisource cost and schedule estimation, design to cost, incremental development,
software reuse, requirements scrubbing.

Organization analysis, mission analysis, operations-concept formulation, user surveys and user
participation, prototyping, early users’ manuals, off-nominal performance analysis,
quality-factor analysis.

Prototyping, scenarios, task analysis, user participation.

Requirements scrubbing, prototyping, cost-benefit analysis, designing to cost.

High change threshold, information hiding, incremental development (deferring changes
to later increments).

Benchmarking, inspections, reference checking, compatibility analysis.

Reference checking, preaward audits, award-fee contracts, competitive design or prototyping,
team-building.

Simulation, benchmarking, modeling, prototyping, instrumentation, tuning.

Technical analysis, cost-benefit analysis, prototyping, reference checking.

I E E E S O F T W A R E

-

3 5

Cost drivers
Probability
Improbable (0.0-0.3) Probable (0.4-0.6) Frequent (0.7-1 .O)

Requirements
Size

Resource constraints

Application

Technology

Requirements stability

Personnel
Availability

Mix

Experience
Management environment

Reusable software
Availability
Modifications
Language

Rights

Certification

Tools and environment
Facilities
Availability

Rights

Configuration management

Small, noncomplex, or easily
decomposed

Little or no hardware-imposed
constraints

Nonreal-time, little system
interdependency

Mature, existent, in-house
experience

Little or no change to
established baseline

In place, little turnover

Good mix of software

High experience ratio
Strong personnel

expected

disciplines

management approach

Compatible with need dates
Little or no change
Compatible with system and
maintenance requirements

Compatible with maintenance

Medium to moderate

Some hardware-imposed

Embedded, some system

Existent, some in-house

Some change in baseline

complexity, decomposable

constraints

interdependencies

experience

expected

Available, some turnover

Some disciplines

Average experience ratio
Good personnel

management approach

expected

inappropriately represented

Delivery dates in question
Some change
Partial compatibility with

Partial compatibilitywith
requirements

Large, highly complex, or not
decomposable

Significant hardware-imposed
const"

Real-time, embedded, strong
interdependency

New or new application, little
experience

Rapidly changing,
or no baseline

Not available, high turnover
expected

Some disciplines
not represented

Low experience ratio
Weak personnel

management approach

Incompatible with need dates
Extensive changes
Incompatible with system or

maintenance requirements
Incompatible with maintenance

and competition requirements maintenance, some competition concept, noncompetitive
Verified performance, Some application-compatible Unverified, little test data

application compatible test data available available

Little or no modification Some modifications, existent Major modifications, nonexistent
In place, meets need dates

Compatible with maintenance Partial compatibility with Incompatible with maintenance

Some compatibilitywith need Nonexistent, does not meet
dates need dates

and development plans maintenance and and development plans
development plans

Fully controlled Some controls No controls

Sufficient financial resources Some shortage of financial Significant financial shortages,
resources, possible overrun budget overrun likely

initiatives, lke the Software Engineering
Institute's masters curriculum in software
engineering, are providing better cover-
age in these areas. The SEI is also initiat-
ing a major new program in software risk
management.

Risk adysis and prioritizcltion After using

3 6

all the various risk-identification check-
lists, plus the other risk-identification
techtuques in decision-driver analysis, as-
sumption analysis, and decomposition,
one very real risk is that the project will
identify so many riskitems that the project
could spend years just investigating them.
This is where risk prioritization and its

associated risk-analysis activities become
essential.

The most effective techtuque for risk
prioritization involves the risk-exposure
quantity described earlier. It lets you rank
the risk items identified and determine
which are most important to address.

One difficulty with the risk-exposure

J A N U A R Y 1 9 9 1

Unsatisfactory
outcome

Probability of Loss caused by Risk exposure
unsatisfactory outcome unsatisfactory outcome

A. Software error kills experiment

B. Software error loses key data

D. Monitoring software reports unsafe condition as safe

3-5

3-5

4-8

5

C . Fault-tolerant features cause unacceptable performance

E. Monitoring software reports safe condition as unsafe 5
E Hardware delay causes schedule overrun 6

G. Data-reduction software errors cause extra work 8

H. Poor user interface causes inefficient operation 6

I. Processor memory insufficient 1

J. Database-management software loses derived data 2

quantity, as with most other decision-anal-
ysis quantities, is the problem of m a h g
accurate input estimates of the probability
and loss associated with an unsatisfactory
outcome. Checkhsts like that in Table 2
provide some help in assessing the proba-
bility of occurrence of a given risk item,
but it is clear from Table 2 that its proba-
bility ranges do not support precise prob-
ability estimation.

Full risk-analysis efforts involving pro-
totyping, benchmarking, and simulation
generally provide better probability and
loss estimates, but they may be more ex-
pensive and time-consuming than the sit-
uation warrants. Other techniques, llke
betting analogies and group-consensus
techruques, can improve risk-probability
estimation, but for risk prioritization you
can often take a simpler course: assessing
the risk probabilities and losses on a rela-
tive scale of 0 to 10.

Table 3 and Figure 3 illustrate h s risk-
prioritization process by using some po-
tential riskitems from the satellite-experi-
ment project as examples. Table 3
summarizes several unsatisfactory out-
comes with their corresponding ratings
for P(UO), L(UO), and their resulting
risk-exposure estimates. Figure 3 plots
each unsatisfactory outcome with respect
to a set ofconstant risk-exposure contours.

Three key points emerge from Table 3
and Figure 3:

+ Projects often focus on factors hav-
ing either a h g h P(U0) or a high L(UO),
but these may not be the key factors with a
high risk-exposure combination. One of
the hghest P(U0)s comes from item G

(data-reduction errors), but the fact that
these errors are recoverable and not mis-
sion-critical leads to a low loss factor and a
resulting low RE of 7. Similarly, item I
(insufficient memory) has a high potential
loss, but its low probability leads to a low
RE of 7. On the other hand, a relatively

10

8

7
9

30-50

24-40

28-56

45

15

24

8

30

7

4

low-profile item like item H (user-inter-
face shortfalls) becomes a relatively high-
priority risk item because its combination
of moderately high probability and loss
factors yield a RE of 30.

+ The RE quantities also provide a
basis for prioritizing verification and vali-

FIGURE 3. RISKEXPOSURE FACTORS AN0 CONTOURS FOR THE SATELLITE€XPERIMENT SOFTWARE. RE IS THE RISK

EXPOSURE, P(UO] THE PROBABILITY OF AN UNSATISFACTORY OUTCOME, AN0 L[UO] THE L E S ASSOCIATED WITH

THAT UNSATISFACTORY OUTCOME. THE GRAPH P O N E MAP THE TEMS FROM TABLE 3 WHOSE RISK EXPOSURE

ARE BEING ASSESSED

I E E E S O F T W A R E 3 7

1. Obkctives (the "why)
+ Determine, reduce level of risk of the softwore huh-tolerance features causing unacceptable performance,
+ Create o description of and o development plon for a set of lowrisk fault-tolerance features.
2. Deliverobles and milestones (the "what" and "when").

+By Week 3.
1. Evoluation of fault-tolerance options
2. Assessment of reusable components
3. Droft wokload characterization
4. Evaluation plon for prototype exercise
5. Description of prototype

6. Operational prototype with key foult-tolerance features.
7 Workload simulabn
8. Instrumentation and data reduction capabilities.
9. Draft description, plan forfault+hrance features.

10. Evaulation and iteration of prototype
1 1. Revised description, plan for fault-tolerance features

+By Week 7.

+By Week 10

3. Responsiblities (the "who" and "where")
+System engineer: GSmith

+lead programmer: [.lee

+ Progrommer: J.Wilson

Tasks 1,3,4,9,11. Support of tasks 5, 10

Tasks 5,6,7,10. Support of tasks 1,3

Tasks 2,8. Support of tosb 5,6,7,10
4. Approach (the "how")

+ Desigttwchedule prototyping effort
+Driven by hypotheses about fault-toleranceperformonte effects
+Use real-time operating system, add prototype fault-tolerance features
+ Evaluote performance with respect to representaiive workload
+Refine prototype based on results observed

S6OK - full-time system engineer, led programmer, progmmmer

SO- hree dedicated wokstahons (from project pwl)
SO - two target processors (from propct pool)
SO -one test coprocessor (from project pwl)
$1 OK - contingencies
$70K - total

5. Resources (the "how much")

(IO week;)*(3 stfl*SZk/staffweek)

X I R E 4. RISK-MANAGEMENT PLAN FOR FAULT-TOLERANCE PROTOTYPING

ition and related test activities by giving
ich error clas a significance weight. Fre-
uently, all errors are treated with equal
eight, putting too much testing effort
it0 finding relatively trivial errors.

4 There is often a good deal of uncer-
inty in estimating the probability or loss
sociated with an unsatisfactory outcome.
The assessments are frequently subjective
id are often the product of surveying sev-
.al domain experts.) The amount of un-
:rtainty is itself a major source of risk,
hich needs to be reduced as early as pos-
ble. The primary example in Table 3 and
igure 3 is the uncertainty in item C about
hether the fault-tolerance features are
ling to cause an unacceptable degrada-
3n in real-time performance. If P(U0) is
ted at 4, this item has only a moderate
E of 28, but if P(U0) is 8, the RE has a
ip-priority rating of 56.

One of the best ways to reduce h s
urce of risk is to buy information about
Le actual situation. For the issue of fault

tolerance versus performance, a good waj
to buy information is to invest in a proto-
type, to better understand the perfor-
mance effects of the various fault-toler-
ance features.

Risk-management planning. Once you d e
tennine a project's major risk items anc
their relative priorities, you need to estab-
lish a set of risk-control functions to bring
the risk items under control. The first stei
in thls process is to develop a set of risk-
management plans that lay out the activi-
ties necessary to bring the risk items undei
control.

One aid in doing thls is the top-I(
checklist in Figure 3 that identifies t h e
most successful risk-management tech-
niques for the most common risk items. A
an example, item 9 (real-time perfor-
mance shortfalls) in Table I covers the un-
certainty in performance effect of thc
fault-tolerance features. The correspond-
ing risk-management techmques include

simulation, benchmarking, modeling,
prototyping, instrumentation, and tuning.
Assume, for example, that a prototype of
representative safety features is the most
cost-effective way to determine and re-
duce their effects on system performance.

The next step in risk-management
planning is to develop risk-management
plans for each risk item. Figure 4 shows
the plan for prototyping the fault-toler-
ance features and determining their effects
on performance. The plan is organized
around a standard format for software
plans, oriented around answering the
standard questions of why, what, when,
who, where, how, and how much. Ths
plan organization lets the plans be concise
(fitting on one page), action-oriented, easy
to understand, and easy to monitor.

The final step in risk-management
planning is to integrate the risk-manage-
ment plans for each risk item with each
other and with the overall project plan.
Each of the other high-priority or uncer-
tain risk items will have a risk-manage-
ment plan; it may turn out, for example,
that the fault-tolerance features pro-
totyped for this risk item could also be
useful as part of the strategy to reduce the
uncertainty in items A and B (software er-
rors killing the experiment and losing ex-
periment-critical data). Also, for the over-
all project plan, the need for a 10-week
prototype-development and -exercise pe-
riod must be factored into the overall
schedule, to keep the overall schedule re-
alistic.

Risk resolution and momtoring. Once you
have established a good set of risk-man-
agement plans, the risk-resolution process
consists of implementing whatever proto-
types, simulations, benchmarks, surveys,
or other risk-reduction techniques are
called for in the plans. Risk monitoring
ensures that this is a closed-loop process
by tracking risk-reduction progress and
applying whatever corrective action is
necessary to keep the risk-resolution pro-
cess on track.

Risk management provides managers
with a very effective technique for keeping
on top of projects under their control:
Pmjkt top-1 0 rirk-item walking. This tech-
nique concentrates management atten-

3 8

~

J A N U A R Y 1 9 9 1

tion on the hgh-risk, high-leverage, criti-
cal success factors rather than swamping
management reviews with lots of low-pri-
ority detail. As a manager, I have found
that h s type of risk-item-oriented review
saves a lot of time, reduces management
surprises, and gets you focused on the
high-leverage issues where you can make a
difference as a manager.

Top-10 risk-item tracking involves the
following steps:

+ R a h g the project’s most signifi-
cant risk items.

+ Establishing a regular schedule for
higher management reviews of the
project’s progress. The review should be
chaired by the equivalent of the project
manager’s boss. For large projects (more
than 20 people), the reviews should be
held monthly. In the project itself, the
project manager would review them more
kequently.

+ Beginning each project-review
meeting with a summary of progress on

the top 10 risk items. (The number could
be seven or 12 without loss of intent.) The
summary should include each risk item’s
current top-10 r&g, its rank at the pre-
vious review, how often it has been on the
top-10 list, and a sumnary of progress in
resolving the risk item since the previous
review.

+ Focusing the project-review meet-
ing on dealing with any problems in re-
solving the risk items.

Table 4 shows how a top-10 list could
have worked for the satellite-experiment
project, as of month 3 of the project. The
project’s top risk item in month 3 is a crit-
ical staffing problem. Highlighting it in
the monthly review meeting would stimu-
late a discussion by the project team and
the boss of the staffing options: Make the
unavailable key person available, reshuffle
project personnel, or look for new people
witlun or outside the organization. This
should result in an assignment of action
items to follow through on the options

chosen, including possible actions by the
project manager’s boss.

The number 2 risk item in Table 4,
target hardware delivery delays, is also one
for which the project manager’s boss may
be able to expedite a solution - by cutting
through corporate-procurement red tape,
for example, or by escalating vendor-delay
issues with the vendor’s higher manage-
ment.
As Table 4 shows, some risk items are

moving down in priority or going off the
list, while others are escalating or coming
onto the list. The ones moving down the
list-like the design-verification and -Val-
idation staffing, fault-tolerance pro-
totyping, and user-interface prototyping
- still need to be monitored but &e-
quently do not need special management
action. The ones moving up or onto the
list - like the data-bus design changes
and the testbed-interface definitions -
are generally the ones needing higher
management attention to help get them

Risk item
This Last No. of months
Monthlv ranking Risk-resolution progress

~

Replacing sensor-control software 1 4 2

Target hFdware delivery delays 2 5 2

developer

Sensor data formats undefined 3 3 3

Staffing of design V&V team 4 2 3

Software fault-tolerance may 5 1 3

Accommodate changes in data bus 6 -

compromise performance

1
design

Test-bed interface definitions 7 8 3

User interface uncertainties 8 6 3
- TBDs in experiment operational 7 3

Uncertainties in reusable monitoring - 9 3

concept

software

Top replacement canddate unavailable

Procurement procedural delays

Action items to software, sensor teams; due next
month

Key reviewers committed; need fault-tolerance
reviewer

Fault-tolerance prototype successful

Meeting scheduled with data-bus designers I
Some delays in action items; review meeting scheduled

User interface prototype successful

TBDs resolved

Required design changes small, successfully made

I E E E S O F T W A R E

Risk-management driven
evaluation criteria, activities

Developmh p h ’ ’ “
Development risk-management plan
Risk-item evaluation information

t Risk-management tailored document plan
I Evaluation, I

source selection

Implement Monitor development plan, Update, implement:
Life-cytle plan development Development plan
Life-cycle risk-management plan, Development risk-management plan
risk-management plan

I I r I

t 4 Acceptance, installation I
1

Operations and maintenance 1

FIGURE 5 FRAMEWORK FOR LIFE-CYCLE RISK MANAGEMENT

resolved quickly.
As tlus example shows, the top-1 0 risk-

item list is a very effective way to focus
higher management attention onto the
project’s critical success factors. It also uses
management’s time very efficiently, unlike
typical monthly reviews, which spend
most of their time on things the hgher
manager can’t do anythmg about. Also, if
the hgher manager surfaces an additional
concern, it is easy to add it to the top-10
risk item list to be hghlighted in future
reviews.

IMPLEMENTING RISK MANAGEMENT

Implementing risk management in-
volves inserting the risk-management
principles and practices into your existing
life-cycle management practices. Full im-
plementation of risk management in-
volves the use of risk-driven sofiware-pro-
cess models &e the spiral model, where
risk considerations determine the overall
sequence of life-cycle activities, the use of
prototypes and other risk-resolution tech-
niques, and the degree of detail of plans
and specifications. However, the best im-
plementation strategy is an incremental
one, which lets an organization’s culture
adjust gradually to risk-oriented manage-

~~

ment practices and risk-driven process
models.

A good way to begin is to establish a
top-IO risk-item tracking process. It is easy
and inexpensive to implement, provides
early improvements, and b e p s establish-
ing a familiarity with the other risk-man-
agement principles and practices. Another
good way to gain familiariq7 is via books
like my recent tutorial on risk manage-
ment,3 which contains the Air Force risk-
alsatenient pamphlet’ and other useful ar-
ticles, and Robert Charette’s recent good
book on risk management.’

An effective next step is to identifjr an
appropriate initial project in which to i n -
plement a top-level life-cycle risk-mnan-
agement plan. Once the organization has
accuniulated some risk-nlanagement ex-
perience on this initial project, successive
steps can deepen the sophistication ofthe
risk-management techniques and broaden
their application to wider classes of proj-
ects.

Figure 5 provides a scheme for iniple-
menting a top-level life-cycle risk-rnan-
agement plan. It is presented in the context
of a contractual software acquisition, but you
can tailor it to the needs of an intemal devel-
opment organization as well.

You can organize the life-cycle risk-

management plan as an elaboration of the
“why, what, when, who, where, how, how
much” framework of Figure 4. %le this
plan is primarily the customer’s responsi-
bility, it is very useful to involve the devel-
oper community in its preparation as well.

Such a plan addresses not only the de-
velopment risks that have been the prime
topic of this article but also operations and
maintenance risks. These include such
items as staffing and training of mainte-
nance personnel, discontinuities in the
switch from the old to the new system,
undefined responsibilities for operations
and maintenance facilities and functions,
and insufficient budget for planned life-
cycle improvements or for corrective,
adaptive, and perfective maintenance.

Figure 5 also shows the importance of
proposed developer risk-management
plans in competitive source evaluation and
selection. Emphasizing the realism and ef-
fectiveness of a bidder’s risk-management
plan increases the probability that the
customer will select a bidder that clearly
understands the project’s critical success
factors and that has established a develop-
ment approach that satisfactorily ad-
dresses them. (If the developer is a non-
competitive internal organization, it is
equally important for the internal
customer to require and review a devel-
oper risk-management plan.)

e most important thing for a project T to do is to get focused on its critical
success factors.

For various reasons, including the in-
fluence of previous document-driven
management pdelines, projects get fo-
cused on activities that are not critical for
their success. These frequently include
writing boilerplate documents, exploring
intriguing but peripheral techcal issues,
playing politics, and tqmg to sell the “ul-
timate” system.

In the process, critical success factors
get neglected, the project fails, and no-
body wins.

The key contribution of software risk
management is to create tlus focus on crit-
ical success factors - and to provide the
techques that let the project deal with
them. The risk-assessment and risk-con-
trol techques presented here provide the

___.

J A N U A R Y 1 9 9 1 4 0

foundation layer of capabilities needed to
implement the risk-oriented approach.

However, risk management is not a
cookbook approach. To handle all the
complex people-oriented and technology-
driven success factors in projects, a great
measure of hunian judgement is required.

Good people, with good skills and
good judgment, are what make projects
work. Risk management can provide you
with some of the skills, an emphasis on
getting good people, and a good concep-
tual framework for sharpening your
judgement. I hope you can find these use- + ful on j7our next project.

REFERENCES
1. J. Rothfeder, “It’s Late, Costly, and hcompe-

tent - But Tiy Firing a Computer System,”
Bu.ri7zes.r Week, Nov. 7 , 1988, pp. 164-165.

2. B.W Boehm, “A Spiral Model of Software
Development and Enhancement,” Cmputm,
hfay 1988,pp.61-72.

3 , B.U! Boehm, Software Risk Management, CS
Press, Los Alamitos, Calif., 1989.

4. R.N. Charette, Sojinare Engineering Risk Anal-
p r and .\.fa??agemmt, McGraw-Hill, New
York, 1989.

5 . “Software Risk Abatement,” AFSC/.4FIdC
pamphlet 800-48, US Air Force Systems Com-
mand, Andrews .4FB, Md., 1988.

Barry W. Boehm is dircctor
of the Defense Advanced Re-
search Project Agency‘s Infor-
mation Science and Technol-

government’s largest com-
puter/communications re-
search organization. In his
previous position as chief sci-
cndst for TRLV”‘ Defense
Systems Group, he was in-

ogy Office, the us

volved in applying risk-management principles to large
projects, including the National Aeronautics and Spacc
r\dnunistration’s space station, the Federal .biation
hdininistration+ Advanced Automanon System, and
the Dcfmsc Dept.i Sa;rtc$c Defcnse I~utiative.

Boehm received a BA in mathematics from Har-
vard Univcrsity and an ALA and PhD in mathematiis
from UCL.L

,Address questions ahout this arnclc to the author
at D .WA ISTO, 1400 ililson Blvd.. Arlington,
22?09-?108.

The Premier Electronics Industry
Conference of the Northwest
October 1-3, 1991 in Portland, Oregon

Northcon is bringing this CompTehenSjve
electronics mference andexhibitkm to
&dd, Oregon, w h ” e t h a n S m
electronics engineekg professionals -
design, test and mufacmng engineers,
specliers, #wrchasirg specialists,
engimngmanagmt R & D d
corporate personnel, quality speciaikts
and corporate exeahves - wit gather to
leam about the latest electronics products
and technology.

Papets forpresentation in the technical
sessions sye requested in five areas:

2. ComputerHar&ar&We

3. Research and Develqm”
4. Quality and Reliability
5. Regulations and EnM;rc;nment

1. D e s l ~ e s ~ t i o ~ m t

Advances

For a pqmr to be consider&, a lcKxF
w d s u m t y must be subm’tted that
states the ctyective of t h e w , the new
conbihtim, and the ccmcluion that MI
be made. Reviously publishedmterials
are not acceptable.

Abstracts must be mailed or faxed no later
than Much 15, 199 1 to be considwed for
evaluation.

Rease w h t abstracts to:
Jon S. ports
Technical Rograms Chair
do NC
81 10AirportBoulevard
LosArgeles, C4 900453194

(213) 215-3976, ext. 251
(soo) 87i-2668 (x

F M : (213) 64 1-5 1 17

is a joint venm of:

Pdandandseafie
sections of the
Institute of ELecaical
and Electronics
Er&een, IEEE

e0
cascade chapter d
the Electronics
Representatives
Assodation. ERA

