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Abstract 

 

Static analysis tools tend to generate more alerts 
than a development team can reasonably examine 
without some form of guidance.  In this paper, we 
propose a technique for leveraging field failures 
and historical change records to determine which 
sets of alerts are often associated with a field fail-
ure using singular value decomposition. We per-
formed a case study on six major components of 
an industrial software system at IBM over six 
builds spanning eighteen months of development.  
Our technique identified fourteen alert types that 
comprised sets of alerts that could identify, on 
average, 45% of future fault-prone files and up to 
65% in some instances. 

1 Introduction 
Static analysis is the process of evaluating a sys-
tem or component based on its form, structure, 
content, or documentation [2] without execution 
of the code.  Static analysis tools search for im-
plementation problems identified by a predefined 
set of rules of potential anomalies commonly 
found in source code.  The static analysis rule 
types range from possible mistypes in the code 
(e.g. = instead of ==) to more complex errors in 
the system logic (e.g. memory leaks).  We term 
the use of static analysis tools as automated static 
analysis (ASA).  An ASA alert is a single report 
from ASA, indicating an area of the code base 
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that has broken an ASA rule.  Each ASA alert has 
an ASA alert type, which describes the ASA rule 
that has been broken. 

Our research goal is to provide a methodol-
ogy for highlighting files that contain groups of 
static analysis alerts historically associated with 
field failures.  To address this goal, we have de-
veloped a technique that leverages historical field 
failure information and change records in con-
junction with ASA alerts to generate ASA alert 
signatures.  An ASA alert signature is a set of 
static analysis alert types that has historically been 
associated to one or more field failures in a par-
ticular project.  We generate ASA alert signatures 
using singular value decomposition (SVD).  SVD 
provides a means for associating files with field 
failures and ASA alerts with those files.  A set of 
files that has changed together is identified as 
potentially failure-prone if a future version of the 
set of files contains all of the alert types in an 
ASA alert signature.  

Our hypothesis is that automated static 
analysis alert signatures generated from histori-
cal information through singular value decompo-
sition can be used to identify failure-prone files. 
To test our hypothesis, we performed a post-hoc 
experiment on six components of a large IBM 
software system across six builds over a period of 
eighteen months. We further investigate how the 
data set size and values in the singular vectors 
affect the efficacy of our technique 

2 Automated Static Analy-
sis 

Tools can be used to automate the process of per-
forming static analysis. ASA may be run through-
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out the development process since this analysis 
does not require execution [1].  However, static 
analysis tools suffer from several problems.  The 
main problem with static analysis is that many of 
these tools have a high rate of false positives due 
to approximations made to the analysis [1].  Be-
cause ASA tool generates false positive alerts, 
developers must inspect the alerts generated from 
ASA tools to verify the accuracy of the alerts for 
fault fixes [1].   

3 ASA Alert Signatures 
In this section, we will describe the steps in our 
methodology for generating ASA alert signatures 
from historical data.  We will also describe how to 
apply the generated alert signatures to a set of 
ASA alerts types and system files of a future build. 

3.1 Gathering Field Failure Data 
and Performing SVD 

We begin by gathering the source code change 
records and fault information to populate a matrix 
M that indicates when files have changed together 
in response to a field failure.  The rows and col-
umns of the matrix are comprised of every file in 
the system.  The values within the matrix indicate 
the number of times that the files assigned to that 
row and column have changed together to repair a 
specific field failure.   

After the change records and field failure in-
formation has been gathered and put into the ma-
trix M, we perform a SVD on the matrix to 
determine what files tend to change together in 
response to field failures.  We are interested in 
these associations because our overall goal is to 
find out what sets of ASA alerts are correlated 
with field failures.  To detect the association be-
tween ASA alerts and field failures, we need to 
analyze the files that are common between the 
field failures and the ASA alerts. 

Performing SVD on the matrix M generates 
three matrices: U, S, and V.  The columns of the U 
and V matrices provide information as to the 
structure of the association clusters and the rows 
of U and V are the files in each cluster.  An asso-
ciation cluster is a group of files that tend to 
change together.  The SVD generates the same 
number of association clusters as the rank of the 
original matrix.  The singular values, found on the 
diagonal of the S matrix, represent the amount of 

variability each association cluster contributes to 
the original analysis matrix.  

3.2 Generating ASA Alert Sig-
natures through SVD 

Once we know what files are strongly associated 
with field failures, we can then determine how the 
ASA alerts compare with these file clusters.  In 
this step, we will create a new matrix M.  How-
ever, this matrix will be an asymmetric matrix 
with the previously generated file clusters as the 
columns and the different types of static analysis 
alerts as the rows.  The values in the matrix M 
will be the difference in the number of ASA alerts 
found between two builds.  We are interested in 
the difference between two baselines because this 
will highlight any possible correlation between 
the addition, removal, and change of ASA alerts 
with the repair of field failures and visa-versa.  

Performing a SVD on the new matrix M 
yields another set of U, S, and V matrices.  We 
can interpret these matrices in much the same way 
as before.  However, now the columns of U indi-
cate clusters of ASA alerts and the rows of U in-
dicate alert types.   We use the singular values 
along the diagonal of the S matrix to identify the 
most significant ASA alert signatures.  In clusters 
involving ASA alerts, a high singular value indi-
cates that that set of alerts appears numerous 
times within the code base.   

In some instances, however, an alert signa-
ture will be comprised of a single alert type with a 
high singular value.  This phenomenon is indica-
tive of an alert type that is so pervasive in the 
code base that it can match with nearly every file, 
thus eliminating much of the benefit of our tech-
nique.  These types of alerts can be identified if 
they appear in a signature by themselves and have 
a singular value that is a factor of ten higher than 
the next value.  We eliminate these signatures 
from our technique, since this would significantly 
increase the number of potentially failure-prone 
files identified by our technique that may not con-
tain actual faults. 

An opposite problem can occur with ASA 
alert signatures with low singular values.  For 
example, an ASA alert signature consisting of a 
subset of alerts from another ASA alert signature 
with a lower singular value can appear.  In this 
instance, the signature with the lower singular 
value would match with fewer field failures, thus 
identifying only a few files as being failure-prone.  
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Often, these files will have already been identified 
by another ASA alert signature with a higher sin-
gular value.  Thus, the goal then is to choose a set 
of signatures that are distinct from each other, but 
also not too general or pervasive (as indicated by 
the singular value).   

After the ASA alert signatures have been 
generated and identified, each subset of ASA alert 
types found in a given signature can be compared 
to a full set of ASA alerts from a code base.  
However, since these ASA alert signatures were 
generated based on clusters of files, the signatures 
need to be applied in a similar fashion.  Thus, we 
must finally build clusters of files based upon all 
changes in the system on which to apply the sig-
natures. 

4 IBM Case Study 

We performed a case study of our technique on 
six components of a large IBM software system. 
In this section, we will discuss our research meth-
odology and results from the case study. 

4.1 Case Study Setup 
We performed our case study on six components 
of a large software project over six builds.  The 
six builds span eighteen months of the develop-
ment of the system. We gathered builds two to 
four months apart between October 2005 and 
March 2007. An IBM internal ASA tool was run 
on each build of the software post hoc, and we 
gathered information on the files, alert types, and 
line numbers where the alerts appeared.   

The ASA tool used reports 74 different ASA 
alerts and classifies the ASA alerts into five sepa-
rate categories: error, mistake, warning, security, 
and portability.  An ASA error alert is a high pri-
ority alert, with mistake and warning as medium 
and low priority, respectively.  Security alerts 
indicate areas where the program may be sub-
verted, such as unverified inputs.  Portability 
alerts are for problems that would only appear if 
the code is ported to another machine with a dif-
ferent bit depth (such as 32-bit to 64-bit).  Each 
classification of alert can be enabled or disabled 
according to the developer’s preferences. 

4.2 ASA Alert Signatures 
We followed the steps outlined in Section 3 for 
this experiment.  We repeated our technique using 

every combination (i.e. builds 1 and 3, 1 and 4, 2 
and 4, etc.) of the six build dates to determine if 
time or the number of change records affected our 
technique.  We generated a total of 74 ASA alert 
signatures for each experiment set because there 
are 74 alert types in the ASA tool we selected. 
Nearly 95% of the overall variability in the origi-
nal matrix is found in the first five singular values.  
We found that the first singular value is a factor of 
ten greater than the second in nearly every case.  
This large separation of values is an indication 
that the ASA alert signature associated with the 
first singular value would have an extremely high 
match rate with sets of ASA alerts.  An ASA alert 
signature associated with the first and highest 
singular value consisted of only one or two ASA 
alerts that were pervasive in the system and would 
not provide any value to the set of signatures for 
minimizing the total number of files to examine.   

Across the fifteen experiment sets, we gath-
ered four signatures for each, for a total of 60 
ASA alert signatures.  The 60 alert signatures 
were comprised of only 14 of the 74 total alert 
types, providing some initial indication as to 
which alerts were most likely to be associated 
with field failures. We highlight these two signa-
tures to give examples as to how a grouping of 
ASA alerts can provide an indication of the poten-
tial field failures in the system.   

4.2.1  ASA Alert Signature 1: Taking a 
Wrong Turn 

This ASA alert signature was common among 14 
of the 15 experiment sets and often had the sec-
ond or third highest singular value.  This set of 
ASA alerts focuses on missing parts of an execu-
tion path.  The signature consists of four alert 
types.  The alert types are as follows: 

• Warning 9: Return value of function is not 
used 

• Mistake 5: Expression always evaluates true 
or false 

• Warning 14: Possible type mismatch 
• Warning 15: then/else/loop not surrounded 

by braces 

4.2.2  ASA Alert Signature 2: Memory 
Leaks 

This set of three ASA alert types focuses on 
memory leaks and appeared in approximately half 
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of the experiment sets.  The alert types are as fol-
lows: 

• Error 23h: Heap memory leak 
• Warning 2: Value of variable with local 

scope is never used 
• Mistake 21: Advisory has been issued for this 

function 

4.3 Applying the Signatures 
 
Once we built our ASA alert signatures, we ap-
plied them to ASA alerts associated with clusters 
of files generated from all changes in the system 
found up until the current set of changes in the 
system to predict future field failures.  When we 
examined each ASA alert signature’s precision 
and accuracy independently, we determined that 
86% of the failure-prone files identified by the 
signatures were identified by more than one sig-
nature.  Each signature did identify new failure-
prone files that were not identified by the other 
signatures.  However, there was a point of dimin-
ishing returns as new signatures with lower singu-
lar values were applied.  Using the ASA alert 
signatures, our technique reduced the total raw 
number of ASA alerts to examine by 74% and the 
total number of files to examine by 43%.  The set 
of identified potentially failure-prone files by the 
ASA signatures encompassed 40% of the actual 
failure-prone files. If a development team exam-
ined every file that contained at least one static 
analysis alert, only 79% of the field failures 
would be detected.  

The main limitation of our technique is in se-
lecting an appropriate data source.  The analyst 
must be convinced that when a set of changes are 
attributed to repairing a given fault or failure, 
those changes are indeed associated with that fault 
or failure and are not associated with another set 
of changes.  Traceability from field failures to the 
files they affect is required to build the failure 
trends that are then associated with ASA alerts. 
Another limitation of this technique is that even at 
its optimal rate at identifying failure-prone files, it 
cannot exceed the overall number of failure-prone 
files that could be found by the static analysis tool 
selected. Further, our technique is specifically 
based on historical data.  Therefore, files that are 
recently created and have little to no change his-
tory or files that have not in the past been failure-

prone cannot be isolated effectively through our 
technique 

5 Conclusions 
In this paper, we have presented a technique for 
combining a project’s historical field failure in-
formation, change records, and static analysis 
alerts to generate ASA alert signatures.  These 
alert signatures consist of groupings of ASA alert 
types that have been directly linked to field fail-
ures in previous builds.  By applying these signa-
tures to a current set of ASA alerts, developers 
can isolate specific files and alert types that his-
torically have been associated with field failures.  

Acknowledgements 

Partial funding was provided for NCSU authors 
by the National Science Foundation. 

About the Author 

Mark Sherriff is a fifth year PhD candidate at NC 
State University.  His email address is 
mark.sherriff@ncsu.edu. 
 
Sarah Smith Heckman is a third year PhD student 
at NC State University and a Software Engineer 
interning at IBM.  Her email address is 
sarah_heckman@ncsu.edu. 
 
Mike Lake is a Senior Technical Staff Member 
working as a software architect in IBM Tivoli 
Monitoring.   
 
Laurie Williams is an Associate Professor in the 
Computer Science department at NC State Uni-
versity. Her email address is wil-
liams@csc.ncsu.edu.   

References 
[1] Chess, B. and West, J., Secure Programming 

with Static Analysis. Upper Saddle River, NJ: 
Addison-Wesley, 2007. 

[2] IEEE, "IEEE Standard 610.12-1990, IEEE 
Standard Glossary of Software Engineering 
Terminology," 1990. 

 


