
1

Identifying Fault-Prone Files Using Static Analysis
Alerts Through Singular Value Decomposition

Mark Sherriff1,2, Sarah Smith Heckman1,2, Mike Lake1, Laurie Williams2

1IBM, 3901 S. Miami Blvd., Durham, NC, USA

2NC State University, 890 Oval Dr., Raleigh, NC, USA

Abstract

Static analysis tools tend to generate more alerts
than a development team can reasonably examine
without some form of guidance. In this paper, we
propose a technique for leveraging field failures
and historical change records to determine which
sets of alerts are often associated with a field fail-
ure using singular value decomposition. We per-
formed a case study on six major components of
an industrial software system at IBM over six
builds spanning eighteen months of development.
Our technique identified fourteen alert types that
comprised sets of alerts that could identify, on
average, 45% of future fault-prone files and up to
65% in some instances.

1 Introduction
Static analysis is the process of evaluating a sys-
tem or component based on its form, structure,
content, or documentation [2] without execution
of the code. Static analysis tools search for im-
plementation problems identified by a predefined
set of rules of potential anomalies commonly
found in source code. The static analysis rule
types range from possible mistypes in the code
(e.g. = instead of ==) to more complex errors in
the system logic (e.g. memory leaks). We term
the use of static analysis tools as automated static
analysis (ASA). An ASA alert is a single report
from ASA, indicating an area of the code base

Copyright © 2007 Mark Sherriff, Sarah Smith Heck-
man, Mike Lake, Laurie Williams, and IBM Corp.
Permission to copy is hereby granted provided the
original copyright notice is reproduced in copies made.

that has broken an ASA rule. Each ASA alert has
an ASA alert type, which describes the ASA rule
that has been broken.

Our research goal is to provide a methodol-
ogy for highlighting files that contain groups of
static analysis alerts historically associated with
field failures. To address this goal, we have de-
veloped a technique that leverages historical field
failure information and change records in con-
junction with ASA alerts to generate ASA alert
signatures. An ASA alert signature is a set of
static analysis alert types that has historically been
associated to one or more field failures in a par-
ticular project. We generate ASA alert signatures
using singular value decomposition (SVD). SVD
provides a means for associating files with field
failures and ASA alerts with those files. A set of
files that has changed together is identified as
potentially failure-prone if a future version of the
set of files contains all of the alert types in an
ASA alert signature.

Our hypothesis is that automated static
analysis alert signatures generated from histori-
cal information through singular value decompo-
sition can be used to identify failure-prone files.
To test our hypothesis, we performed a post-hoc
experiment on six components of a large IBM
software system across six builds over a period of
eighteen months. We further investigate how the
data set size and values in the singular vectors
affect the efficacy of our technique

2 Automated Static Analy-
sis

Tools can be used to automate the process of per-
forming static analysis. ASA may be run through-

2

out the development process since this analysis
does not require execution [1]. However, static
analysis tools suffer from several problems. The
main problem with static analysis is that many of
these tools have a high rate of false positives due
to approximations made to the analysis [1]. Be-
cause ASA tool generates false positive alerts,
developers must inspect the alerts generated from
ASA tools to verify the accuracy of the alerts for
fault fixes [1].

3 ASA Alert Signatures
In this section, we will describe the steps in our
methodology for generating ASA alert signatures
from historical data. We will also describe how to
apply the generated alert signatures to a set of
ASA alerts types and system files of a future build.

3.1 Gathering Field Failure Data
and Performing SVD

We begin by gathering the source code change
records and fault information to populate a matrix
M that indicates when files have changed together
in response to a field failure. The rows and col-
umns of the matrix are comprised of every file in
the system. The values within the matrix indicate
the number of times that the files assigned to that
row and column have changed together to repair a
specific field failure.

After the change records and field failure in-
formation has been gathered and put into the ma-
trix M, we perform a SVD on the matrix to
determine what files tend to change together in
response to field failures. We are interested in
these associations because our overall goal is to
find out what sets of ASA alerts are correlated
with field failures. To detect the association be-
tween ASA alerts and field failures, we need to
analyze the files that are common between the
field failures and the ASA alerts.

Performing SVD on the matrix M generates
three matrices: U, S, and V. The columns of the U
and V matrices provide information as to the
structure of the association clusters and the rows
of U and V are the files in each cluster. An asso-
ciation cluster is a group of files that tend to
change together. The SVD generates the same
number of association clusters as the rank of the
original matrix. The singular values, found on the
diagonal of the S matrix, represent the amount of

variability each association cluster contributes to
the original analysis matrix.

3.2 Generating ASA Alert Sig-
natures through SVD

Once we know what files are strongly associated
with field failures, we can then determine how the
ASA alerts compare with these file clusters. In
this step, we will create a new matrix M. How-
ever, this matrix will be an asymmetric matrix
with the previously generated file clusters as the
columns and the different types of static analysis
alerts as the rows. The values in the matrix M
will be the difference in the number of ASA alerts
found between two builds. We are interested in
the difference between two baselines because this
will highlight any possible correlation between
the addition, removal, and change of ASA alerts
with the repair of field failures and visa-versa.

Performing a SVD on the new matrix M
yields another set of U, S, and V matrices. We
can interpret these matrices in much the same way
as before. However, now the columns of U indi-
cate clusters of ASA alerts and the rows of U in-
dicate alert types. We use the singular values
along the diagonal of the S matrix to identify the
most significant ASA alert signatures. In clusters
involving ASA alerts, a high singular value indi-
cates that that set of alerts appears numerous
times within the code base.

In some instances, however, an alert signa-
ture will be comprised of a single alert type with a
high singular value. This phenomenon is indica-
tive of an alert type that is so pervasive in the
code base that it can match with nearly every file,
thus eliminating much of the benefit of our tech-
nique. These types of alerts can be identified if
they appear in a signature by themselves and have
a singular value that is a factor of ten higher than
the next value. We eliminate these signatures
from our technique, since this would significantly
increase the number of potentially failure-prone
files identified by our technique that may not con-
tain actual faults.

An opposite problem can occur with ASA
alert signatures with low singular values. For
example, an ASA alert signature consisting of a
subset of alerts from another ASA alert signature
with a lower singular value can appear. In this
instance, the signature with the lower singular
value would match with fewer field failures, thus
identifying only a few files as being failure-prone.

3

Often, these files will have already been identified
by another ASA alert signature with a higher sin-
gular value. Thus, the goal then is to choose a set
of signatures that are distinct from each other, but
also not too general or pervasive (as indicated by
the singular value).

After the ASA alert signatures have been
generated and identified, each subset of ASA alert
types found in a given signature can be compared
to a full set of ASA alerts from a code base.
However, since these ASA alert signatures were
generated based on clusters of files, the signatures
need to be applied in a similar fashion. Thus, we
must finally build clusters of files based upon all
changes in the system on which to apply the sig-
natures.

4 IBM Case Study

We performed a case study of our technique on
six components of a large IBM software system.
In this section, we will discuss our research meth-
odology and results from the case study.

4.1 Case Study Setup
We performed our case study on six components
of a large software project over six builds. The
six builds span eighteen months of the develop-
ment of the system. We gathered builds two to
four months apart between October 2005 and
March 2007. An IBM internal ASA tool was run
on each build of the software post hoc, and we
gathered information on the files, alert types, and
line numbers where the alerts appeared.

The ASA tool used reports 74 different ASA
alerts and classifies the ASA alerts into five sepa-
rate categories: error, mistake, warning, security,
and portability. An ASA error alert is a high pri-
ority alert, with mistake and warning as medium
and low priority, respectively. Security alerts
indicate areas where the program may be sub-
verted, such as unverified inputs. Portability
alerts are for problems that would only appear if
the code is ported to another machine with a dif-
ferent bit depth (such as 32-bit to 64-bit). Each
classification of alert can be enabled or disabled
according to the developer’s preferences.

4.2 ASA Alert Signatures
We followed the steps outlined in Section 3 for
this experiment. We repeated our technique using

every combination (i.e. builds 1 and 3, 1 and 4, 2
and 4, etc.) of the six build dates to determine if
time or the number of change records affected our
technique. We generated a total of 74 ASA alert
signatures for each experiment set because there
are 74 alert types in the ASA tool we selected.
Nearly 95% of the overall variability in the origi-
nal matrix is found in the first five singular values.
We found that the first singular value is a factor of
ten greater than the second in nearly every case.
This large separation of values is an indication
that the ASA alert signature associated with the
first singular value would have an extremely high
match rate with sets of ASA alerts. An ASA alert
signature associated with the first and highest
singular value consisted of only one or two ASA
alerts that were pervasive in the system and would
not provide any value to the set of signatures for
minimizing the total number of files to examine.

Across the fifteen experiment sets, we gath-
ered four signatures for each, for a total of 60
ASA alert signatures. The 60 alert signatures
were comprised of only 14 of the 74 total alert
types, providing some initial indication as to
which alerts were most likely to be associated
with field failures. We highlight these two signa-
tures to give examples as to how a grouping of
ASA alerts can provide an indication of the poten-
tial field failures in the system.

4.2.1 ASA Alert Signature 1: Taking a
Wrong Turn

This ASA alert signature was common among 14
of the 15 experiment sets and often had the sec-
ond or third highest singular value. This set of
ASA alerts focuses on missing parts of an execu-
tion path. The signature consists of four alert
types. The alert types are as follows:

• Warning 9: Return value of function is not
used

• Mistake 5: Expression always evaluates true
or false

• Warning 14: Possible type mismatch
• Warning 15: then/else/loop not surrounded

by braces

4.2.2 ASA Alert Signature 2: Memory
Leaks

This set of three ASA alert types focuses on
memory leaks and appeared in approximately half

4

of the experiment sets. The alert types are as fol-
lows:

• Error 23h: Heap memory leak
• Warning 2: Value of variable with local

scope is never used
• Mistake 21: Advisory has been issued for this

function

4.3 Applying the Signatures

Once we built our ASA alert signatures, we ap-
plied them to ASA alerts associated with clusters
of files generated from all changes in the system
found up until the current set of changes in the
system to predict future field failures. When we
examined each ASA alert signature’s precision
and accuracy independently, we determined that
86% of the failure-prone files identified by the
signatures were identified by more than one sig-
nature. Each signature did identify new failure-
prone files that were not identified by the other
signatures. However, there was a point of dimin-
ishing returns as new signatures with lower singu-
lar values were applied. Using the ASA alert
signatures, our technique reduced the total raw
number of ASA alerts to examine by 74% and the
total number of files to examine by 43%. The set
of identified potentially failure-prone files by the
ASA signatures encompassed 40% of the actual
failure-prone files. If a development team exam-
ined every file that contained at least one static
analysis alert, only 79% of the field failures
would be detected.

The main limitation of our technique is in se-
lecting an appropriate data source. The analyst
must be convinced that when a set of changes are
attributed to repairing a given fault or failure,
those changes are indeed associated with that fault
or failure and are not associated with another set
of changes. Traceability from field failures to the
files they affect is required to build the failure
trends that are then associated with ASA alerts.
Another limitation of this technique is that even at
its optimal rate at identifying failure-prone files, it
cannot exceed the overall number of failure-prone
files that could be found by the static analysis tool
selected. Further, our technique is specifically
based on historical data. Therefore, files that are
recently created and have little to no change his-
tory or files that have not in the past been failure-

prone cannot be isolated effectively through our
technique

5 Conclusions
In this paper, we have presented a technique for
combining a project’s historical field failure in-
formation, change records, and static analysis
alerts to generate ASA alert signatures. These
alert signatures consist of groupings of ASA alert
types that have been directly linked to field fail-
ures in previous builds. By applying these signa-
tures to a current set of ASA alerts, developers
can isolate specific files and alert types that his-
torically have been associated with field failures.

Acknowledgements

Partial funding was provided for NCSU authors
by the National Science Foundation.

About the Author

Mark Sherriff is a fifth year PhD candidate at NC
State University. His email address is
mark.sherriff@ncsu.edu.

Sarah Smith Heckman is a third year PhD student
at NC State University and a Software Engineer
interning at IBM. Her email address is
sarah_heckman@ncsu.edu.

Mike Lake is a Senior Technical Staff Member
working as a software architect in IBM Tivoli
Monitoring.

Laurie Williams is an Associate Professor in the
Computer Science department at NC State Uni-
versity. Her email address is wil-
liams@csc.ncsu.edu.

References
[1] Chess, B. and West, J., Secure Programming

with Static Analysis. Upper Saddle River, NJ:
Addison-Wesley, 2007.

[2] IEEE, "IEEE Standard 610.12-1990, IEEE
Standard Glossary of Software Engineering
Terminology," 1990.

