
Certification of Code During Development to Provide an Estimate of Defect Density

Mark Sherriff, Laurie Williams
Department of Computer Science, North Carolina State University, Raleigh, NC 27695

{mssherri, williams}@csc.ncsu.edu

Abstract
In industry, information on defect density of a product tends

to become available too late in the software development
process to affordably guide corrective actions. Our research
objective is to build a parametric model which utilizes a
persistent record of the validation and verification (V&V)
practices used with a program to estimate the program’s defect
density. The persistent record of the V&V practices are
recorded as certificates which are automatically recorded and
maintained with the code.

1. Introduction
The defect density of a software system is calculated by

measuring the number of failures divided by the size of the
system, using a size measure such as lines of code. In industry,
post-release defect density of a software system cannot be
measured until the system has been put into production and has
been used extensively by end users. Actual post-release defect
density information becomes available too late in the software
lifecycle to affordably guide corrective actions to software
quality. Correcting software defects is significantly more
expensive when the defects are discovered by an end user
compared with earlier in the development process [3].

Therefore, it would be beneficial if software developers
could receive any indication of the defect density of the system
during development. Further, if this defect density information
can be presented during the development process within the
environment where developers are creating the system, more
affordable corrective action can be taken to rectify defect
density concerns as they appear.

During software development, a development team will use
several different methods to ensure that a system is of high-
assurance [7]. However, the verification and validation (V&V)
practices used to make a system reliable might not always be
documented or this documentation may not be maintained.
This lack of documentation can hinder other developers from
knowing what V&V practices have been performed on a given
section of code. Further, if code is being reused from an
earlier project or code base, developers might spend extra time
re-verifying a section of code that has already been verified
thoroughly.

Research has shown that parametric models [4] using
software metrics, such as the Software Testing and Reliability
Early Warning (STREW) [5] suite, can be an effective means
to predict product quality. Our research objective is to build a
parametric model which utilizes a persistent record of the V&V
practices used during development and testing to estimate the
defect density of that program. To accomplish this objective,
we are developing a method called Defect Estimation with
V&V Certificates on Programming (DevCOP). This method

includes a mechanism for creating a persistent record of V&V
practices as certificates stored with the code base, a parametric
model to provide an estimate of defect density, and tool
support to make this method accessible for developers. A
DevCOP certificate is used to track and maintain the
relationship between code and the evidence of the V&V
technique used. We will build the parametric model using a
nine-step systematic methodology for building software
engineering parametric models based on work developed at the
Center for Software Engineering at the University of Southern
California [1]. This method has previously been used to build
other successful parametric models [2, 5].

2. DevCOP
We propose a parametric model which uses non-operational

metrics to estimate defect density based upon records of which
V&V practices were performed on sections of code during
development. We also wish to integrate our estimation directly
into the development cycle so that corrective action to reduce
defect density can take place early in the development process.
This is the basis for creation of the DevCOP method.

A V&V certificate in DevCOP contains information on the
V&V technique that was used to establish the certificate.
Different V&V techniques will provide a different level of
assurance as to how reliable a section of code is. For example,
a desk check of code would be, in general, considered less
effective than a formal proof of the same code.

We envision the defect density parametric model to take the
form of Equation 1. For each certificate type, we would sum
the product of a size measure (perhaps lines of code or number
of functions/methods) and a coefficient produced via
regression analysis of historical data. The calibration step of
the regression analysis would yield the constant factor (a) and a
coefficient weighting (cj) for each certificate type, indicating
the importance of a given V&V technique to an organization’s
development process.

)*(
_

1
�

=

+=
typeecertificat

j
jj SizecaDensityDefect (1)

The goal of the model is to provide an estimate of defect
density based on V&V certificates and the coefficient weights.
We anticipate that a model would need to be developed for
each programming language we would study. Our current
work involves the Java (object-oriented) and Haskell
(functional) languages.

We are working with industry partners to gather expert
opinion and our initial data sets. Developers on a small Java
team using Eclipse are recording their V&V efforts using the
DevCOP plug-in as the project progresses. During defect

removal and bug fixes, the team will also record these efforts
as a different type of certificate.
4. Limitations

In the creation of certificates, we are not assigning more
importance to certain functions or sections of code over others,
as is done with operational profile means of estimation. Nor
are we using the severity of defects detected to affect the
importance of some certificates over another. While this level
of granularity could be beneficial, one of our initial goals is to
make this method easy to use during development, and at this
time, we think that adding this level of information could be a
hindrance. Another granularity limitation is the granularity of
certificates. Based on the Programatica Team’s work [7] and
expert opinion, it was decided that methods (rather than
statements) would be the proper level of granularity for
certificates.

5. Tool Support with Eclipse
We are in the process of automating the DevCOP method

with little additional overhead for developers. Ease of use,
along with the added benefit of being able to calculate V&V
and defect information with a defect density estimate, should
make the DevCOP method practical for practicing engineers.
We have created the DevCOP Eclipse1 plug-in v. 1.1 to handle
the creation and management of V&V certificates during the
development process2[6]. The plug-in allows developers to
create certificates during the development process within the
integrated development environment (IDE) so that this
information can be utilized throughout the code’s lifetime.

 Programmers can select one or more functions for
certification through the Eclipse Package Explorer. They
assign the type of certificate (i.e. Code Inspection, Pair
Programming, Bug Fix, etc.) and the weight coefficient
associated with it. The certificate information is then stored in
an XML document that is saved in the project’s workspace.
The Eclipse plug-in reads and writes to this XML document as
certificates are created and edited.

We have made the certificate creation process as easy and
transparent as possible, and will continue to improve it in later
iterations as we receive more developer feedback. The primary
method in which we accomplish this method of certificate
creation is through what we call Active Certificates. An Active
Certificate is a means by which Eclipse will automatically
identify changed code during a programming session to be
certified by the developer. For example, if two programmers
were about to start pair programming on a piece of code, they
would click the Active Certificate button before they began.
Eclipse would then actively record non-trivial changes to the
system and will present these changes to the developers for
certification at the end of the pair programming session. This
concept can extend to several different types of V&V activity,
such as code inspections or bug fixes.

1 For more information, go to http://www.eclipse.org/.
2 The plug-in is available at http://arches.csc.ncsu.edu/sherriff/devcop/.

6. Conclusions and Future Work
We have created and are validating a method for managing

and leveraging the effort put into V&V by a development team
to provide an estimate of software defect density in-process. If
corrective actions can be taken earlier in the software
development life cycle to isolate and repair software defects,
overall maintenance costs can decrease.

The DevCOP method that we are proposing will aid
developers by providing defect information along with other
V&V management information early in the software
development process. First, after a set of certificates has been
created, an overall estimate of defect density can be created
based on the V&V weightings using a parametric model. We
are gathering data from numerous industrial programs to
calibrate our method to the general case.

DevCOP also allows developers to manage the effort that is
put into V&V in a place where all developers can see what
measures have been taken to ensure a piece of code is reliable
and to treat it accordingly. The DevCOP method assists
developers in identifying and analyzing sections of code that
have not yet been certified, or to concentrate their efforts on a
particularly critical section of code.

This information can also be used to provide a V&V history
for particular code segments. Development teams can see what
efforts were used to verify the code, even if a different team
was working on the system or if poor documentation was
available. If the code is found to be error-prone, the certificate
information can provide guidance as to what techniques might
need to be improved in the organization.

7. Acknowledgements
This work is supported by the National Science Foundation.

8. References
[1] Boehm, B. W., "Building Parametric Models," International

Advanced School of Empirical Software Engineering, Rome,
Italy, September 29, 2003.

[2] Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark, B.,
Steece, B., Brown, A. W., Chulani, S., and Abts, C., Software
Cost Estimation with COCOMO II. Upper Saddle River, NJ:
Prentice Hall, 2000.

[3] Dolbec, J. and Shepard, T., "A Component Based Software
Reliability Model," Conference of the Centre for Advanced
Studies on C, 1995.

[4] International Society of Parametric Analysts, "Parametric
Estimating Handbook." Available Online. Online Handbook.
http://www.ispa-cost.org/PEIWeb/Third_edition/newbook.htm.

[5] Nagappan, N., "A Software Testing and Reliability Early
Warning (STREW) Metric Suite," PhD Dissertation, North
Carolina State University, 2005.

[6] Sherriff, M., Williams, L., "Tool Support For Estimating
Software Reliability in Haskell Programs," Student Paper, IEEE
International Symposium on Software Reliability Engineering,
St. Malo, France, 2004, pp. 61-62.

[7] The Programatica Team, "Programatica Tools for Certifiable,
Auditable Development of High-Assurance Systems in Haskell,"
High Confidence Software and Systems, Baltimore, MD, 2003.

