
Using In-Process Metrics to Predict Defect Density in Haskell Programs

Mark Sherriff, Laurie Williams, Mladen Vouk
Department of Computer Science

North Carolina State University, Raleigh, NC 27695
{mssherri, lawilli3, vouk}@ncsu.edu

Abstract

 In late-stage phases of development, action to correct
defects can be cost prohibitive. Effective, efficient, and
expressive measures of reliability during the development cycle
could aid developers by providing early warning signs of
where the system might require modification or further testing.
To this end, this paper presents a method for estimating defect
density in a system using a suite of internal metrics for Haskell
programs. A feasibility study of this method was conducted by
analyzing the source code of seven released versions of the
Glasgow Haskell Compiler. Further studies are being
conducted to refine the metric suite and to examine the
potential of the method.

1. Introduction

Some profess that functional languages offer a good balance
between productivity and reliability, maintainability, and
efficiency [1]. Recently, research and projects have been
undertaken to take advantage of these benefits [3], specifically
of the Haskell language. Through our research, we aim to add
to the body of reliability knowledge for systems built with the
Haskell functional programming language. Our research
objective is to construct and validate an easy-to-measure,
internal, in-process method that can be used as an early
indication of an external measure of defect density.

Our proposed method uses a suite of internal, in-process
metrics to estimate defect density in a Haskell program. We
call the suite of metrics the Software Testing and Reliability
Early Warning for Haskell (STREW-H). The candidate
metrics selected for initial consideration in STREW-H range
from testing metrics to structural metrics to compiler warnings.
A feasibility study using a subset of the STREW-H metrics to
estimate defect density was performed using metrics from
seven versions of the open source Glasgow Haskell Compiler
source code. We believe our methods will aid engineers by
providing an early warning as to the defect density that might
be within their system.

2. STREW-H

Nagappan et al. are researching the early estimation of
reliability growth of Java programs using in-process testing
metrics. This early estimation provides feedback to developers
so that they can correct faults during the development process
and can increase the testing effort, if necessary, to provide
added confidence in the software. Nagappan’s method, the
Software Testing Reliability Early Warning for Java systems
(STREW-J) [2, 5], uses a suite of metrics that can be
automatically gathered and can be used to provide color-coded

feedback to programmers on the reliability of various parts of
their system and the thoroughness of their test effort. While
the STREW-J metric suite is still in development, early results
from a feasibility study and a structured experiment [2, 5] have
shown that a regression equation can be formed to provide a
practical estimate of software reliability.

Based on Nagappan's work [5], we propose the STREW-H
metric suite. Because of the differences in the language
paradigms, some of the metrics are not as applicable with
functional languages. For example, lines of code [4] is a
commonly used metric that is easy to gather with either
paradigm, while metrics related to class structures are not as
relevant in a functional programming environment.

We utilized the STREW-J metric suite as a starting point for
the STREW-H. We eliminated the metrics that were not
applicable for functional languages and made additions based
upon a review of the literature and upon expert opinion.
Expert opinion was gathered via interviews with 12 Haskell
researchers at Galois Connections, Inc.1 and with members of
the Programatica team2 at The OGI School of Science &
Engineering at OHSU (OGI/OHSU). Research was performed
to validate the inclusion of these potential metrics in the
STREW-H. From these sources, we propose an initial set of
metrics for the STREW-H version 0.1, as follows:

• number of test case asserts / source lines of code
• IO monadic lines of code / source lines of code
• number of type signatures / source lines of code
• number of overlapping patterns / source lines of code
• number of duplicate exports / source lines of code
• number of missing fields / source lines of code
• number of missing methods / source lines of code
• number of incomplete patterns / source lines of code
• number of missing signatures / source lines of code
• number of name shadowing / source lines of code
• number of unused binds / source lines of code
• number of unused imports / source lines of code
• number of unused matches / source lines of code
• number of test cases / number of requirements
• test lines of code / source lines of code

Through validation with multiple industrial projects, we will
refine the proposed metric suite by adding and deleting metrics
until we feel we have the minimal set of metrics needed to
accurately predict and explain product defect density.

1 http://www.galois.com/
2 http://www.cse.ogi.edu/PacSoft/projects/programatica/

3. Feasibility Study
A feasibility study was conducted to analyze the potential of

a using the STREW-H metric suite to estimate defect density.
While our ultimate objective is to use these metrics to estimate
reliability, actual reliability data was not available for our
feasibility study; defect density data was available. A subset of
the metrics from the STREW-H were analyzed. The open
source Glasgow Haskell Compiler3 (GHC) was chosen as the
initial test system, since there were seven versions available,
along with detailed documentation and defect logs.

Four metrics were chosen for the feasibility study. These
metrics were chosen based on expert recommendation and their
relation to the STREW-J metric suite. The metrics include:

• Monadic Code Instances / Source KLOC (T1)
• Test Cases / Source KLOC (T2)
• Test LOC / Source KLOC (T3)
• Type Signatures / Source KLOC (T4)

A multiple regression analysis4 was performed on these four
metrics to determine if they were indicative of the number of
defects that were found for each version. Six of the seven
versions of GHC were randomly chosen to formulate the
coefficients in the regression model, Equation 1. Equation 1
was used to predict the defect density of the seventh version.
The regression equation formed from the six versions was
found to be:

Defect Density (Defects/KSLOC) = .08 + .0113 * (T1) + .0002 * (T2)
+ .607 * (T3) – .0762 * (T4) (1)

Figure 1 shows a plot of the actual defect densities with the
regression equation used in the model. Using Equation 1, the
estimated defect density for the seventh version was 0.04
defects/KLOC, while the actual defect density was 0.07
defects/KLOC. This equation was shown to provide a good
estimate of defect density in other versions of the system.
While there were not enough test cases to denote statistical
significance, the initial results of the study indicate that this
method may be an efficient indicator of the defect density.

Figure 1. Results of multiple regression analysis.

3 http://www.haskell.org/ghc/
4 SPSS was used for to compute the regression equation.

Table 1. Collected data from seven versions of GHC.

Ver. Source
KLOC

Mon.
Inst.

Test
Cases

Test
LOC

Type
Sigs.

Defect
densiy

4.08 99.73 1023 226 1444 11737 0.49

5.00.2 140.67 2789 0 0 16739 0.33

5.02.2 157.84 2526 0 0 22338 0.29

5.04 211.42 6453 76 1749 28678 0.04

5.04.3 205.95 6453 76 1749 27991 0.08

6.0 213.04 6892 76 1749 28179 0.08

6.01 216.13 7258 76 1749 28600 0.07

A limitation of the STREW-H method of estimating defect
density is that it is not based on any operational profile of the
system. While utilizing operational profiles to estimate system
defect density would be beneficial, it is often cost and time
prohibitive. Rivers and Vouk [6] have shown that non-
operational testing is related to field quality, and thus there is
potentially value in this method.

4. Conclusions and Future Work
Having an early warning system to estimate defect density

would aid developers by giving them an indication as to
potential problems in the system. We can leverage metrics that
are readily available in any system to help provide this defect
density estimate. A method for estimating the defect density of
software written in a functional language environment has been
presented in this paper. The method utilizes in-process metrics
to estimate defect density. An automated tool is currently
being created to automatically gather this information and
provide it to developers while they are still implementing code
and can affordably make corrective actions. An initial
feasibility was performed using a subset of metrics from the
STREW-H. Results motivate further study.

Acknowledgements
This work is supported by the National Science Foundation.

References
[1] Breazu-Tannen, V., Buneman, O. P., and Gunter, C. A. “Typed

functional programming for rapid development of reliable
software.” In J. E. Gaffney, editor, Productivity: 18 Progress,
Prospects, and Payoff. June, 1988. pp. 115-125.

[2] Davidsson, M., Zheng, J., Nagappan, N., Williams, L., and
Vouk, M., “GERT: An Empirical Reliability Estimation and
Testing Feedback Tool,” International Symposium on Software
Reliability Engineering, 2004, To appear.

[3] Halgren, Thomas, “Tools from the Programatica Project,”
presented at ACM SIGPLAN Haskell Workshop, 2003.

[4] Khoshgoftaar, T. and Munson, J., “The Lines of Code Metric as
a Predictor of Program Faults: A Critical Analysis,” Computer
Software and Applications Conference, 1990, pp. 408-413.

[5] N. Nagappan, Williams, L., Vouk, M.A., “Towards a Metric
Suite for Early Software Reliability Assessment,” International
Symposium on Software Reliability Engineering, FastAbstract,
Denver,CO, pp.238-239, 2003.

[6] Rivers A. and Vouk, M.A., “Resource Constrained Non-
Operational Testing of Software,” Proceedings of ISSRE 98, 9th
International Symposium on Software Reliability Engineering,
Paderborn, Germany, 4-7 Nov., 1998.

