
DevCOP: A Software Certificate Management System for Eclipse

Mark Sherriff and Laurie Williams
North Carolina State University
{mssherri, lawilli3}@ncsu.edu

Abstract

During the course of software development,
developers will employ several different verification
and validation (V&V) practices with their software.
However, these efforts might not be recorded or
maintained in an effective manner. We have built
Defect Estimation with V&V Certificates on
Programming (DevCOP), a software certificate
management system. With DevCOP, developers can
automatically track and maintain a persistent record of
the V&V practices used during development via
certificates. With this V&V information, developers
and managers can better manage their V&V efforts
within a system. Detailed information such as
coverage of particular V&V techniques over the system
or the amount of V&V performed on a single function
can be provided. Developers can also use this V&V
information post hoc to see which techniques were
more effective at removing defects. In our future work,
we are researching a parametric model which utilizes
these certificates to estimate defect density as
development proceeds.

1. Introduction

During software development, teams will use several
different methods to make a system more reliable [18].
However, the verification1 and validation2 (V&V)
practices used to make a system reliable might not
always be documented effectively, or this
documentation may not be maintained properly. This
lack of documentation can hinder other developers

1 The IEEE defines verification as “The process of evaluating a
system or component to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that
phase.”
2 The IEEE defines validation as “the process of evaluating a system
or component during or at the end of the development process to
determine whether it satisfies specified requirements.”

from knowing what V&V practices have been
performed on a given section of code. If developers
do not know where V&V has been used, extra time
could be spent re-verifying an already thoroughly-
verified section of code, or worse, a section of code
could go unverified. Further, this information could be
used post hoc to see what V&V techniques were used
on sections of code that have reported failures from
customers. Using this failure information could help
developers refine their V&V efforts for future projects.

A development team could benefit from a system
that provided a means of V&V evidence management.
In a software quality context, evidence management is
a means of gathering the artifacts and other forms of
evidence that a V&V technique was performed to
improve V&V documentation efforts [10]. This
evidence can take the form of log files, written
documentation, information in team management
software, or anything else that records V&V effort.

 A software certificate management system (SCMS)
can support this evidence management. A software
certificate management system provides an interface
and infrastructure to create, maintain, and analyze
software certificates [6, 19]. A certificate is a record of
a V&V practice employed by developers and can be
used to support traceability between code and the
evidence of the V&V technique used [6, 14].

Our objective is to provide an automated method
which allows developers to track and maintain a
certificate-based persistent record of the V&V
practices used during development and testing. These
records could then be leveraged to improve the
development process by monitoring V&V system
coverage and providing a V&V reference for software
maintenance and future projects. To accomplish this
objective, we have developed Defect Estimation with
V&V Certificates on Programming (DevCOP).
DevCOP is a SCMS which can be use for creating a
persistent record of V&V practices as certificates. The
DevCOP SCMS will enable us to achieve our longer-
term research objective of leveraging certificate
information to estimate the defect density of a
program.

We have developed the DevCOP SCMS as a plug-in
for the Eclipse3 integrated development environment
(IDE). In this paper, we describe our work in
developing and evaluating Version 0.2 of the DevCOP
SCMS Eclipse plug-in to support the creation and
maintenance of DevCOP certificates and the DevCOP
parametric model.

In Section 2, we describe the background of
DevCOP and related work. Section 3 provides an
overview and demonstration of the DevCOP SCMS
plug-in. Section 4 discusses our limitations. Sections
5 and 6 describe our future work and a summary of
what we have accomplished to date.

2. Background and Related Work

In this section, we will discuss the relevant
background work and methodologies used during our
research, including V&V techniques; SCMSs in
general, and one particular SCMS, Programatica,
which particularly influenced our work.

2.1 Types of V&V Techniques

During the creation of software, a development team
can employ various V&V practices to improve the
quality of the software [1]. For example, different
forms of software testing could be used to validate
and/or verify various parts of a system under
development. Sections of code can be written such
that they can be automatically proven correct via an
external theorem prover [18]. A section of a program
that can be logically or mathematically proven correct
could be considered more reliable than a section that
has “just” been tested for correctness.

Other V&V practices and techniques require more
manual intervention and facilitation. For instance,
formal code inspections [7] are often used by
development teams to evaluate, review, and confirm
that a section of code has been written properly and
works correctly. Pair programmers [20] benefit from
having another person review the code as it is written.
Some code might also be based on technical
documentation or algorithms that have been previously
published, such as white papers, algorithms, or
departmental technical reports. The extent of V&V
practices used in a development effort can provide
information about the estimated defect density of the
software prior to product release.

Balci categorized V&V techniques with regard to the
technique’s methodology for detecting defects [1].
Balci’s categorization of V&V techniques includes:

3 For more information, go to http://www.eclipse.org/.

• Manual – includes all manual checking, such as
pair programming [20] and code inspections [7];

• Static – includes automatic checking of code
before run-time, such as syntax and static
analysis;

• Dynamic – includes all automatic checking that
takes place during execution, such as black-box
testing;

• Formal – includes all strictly mathematical
forms of checking, such as lambda calculus and
formal proofs [18].

2.2 Software Certificate Management Systems

Different V&V techniques produce various kinds of
evidence of their execution, such as logs from test
cases, written records from code inspections, or
systems that can record pair programming efforts. The
evidence from these V&V techniques could be stored
manually in various forms of documentation.
However, manually recording static documentation
takes time away from development and produces
documents that are often not maintained after their
initial creation. If these V&V documents are not
maintained, they become obsolete and the effort is
wasted.

Software certificates provide a valuable resource for
developers to gather V&V information, in some cases
automatically, in a single format and to also increase
traceability between V&V techniques and sections of
code. This V&V information can be used for
maintenance purposes, for analysis of the effectiveness
of certain V&V practices, for future reference in reused
code, or for defect density estimation purposes.
Information about who performed various V&V
techniques could be useful for software maintainers as
they have a better idea who to talk to if they have
issues with a particular system. Developers could learn
about the effectiveness of their V&V practices if they
compare defect reports to the coverage of particular
V&V techniques. If numerous defects are found in
sections of code that have all been checked with a
certain V&V technique, developers might adjust the
use of that technique or spend time refining it. System
modules are also often reused in later projects within
an organization. Having an accurate record of the
V&V practices used on that code could help speed
development, as teams might not spend extra time
verifying a previously-verified section of code. In our
research, we are developing a method of estimating
defect density in a system based on its record of V&V
techniques.

While the creation of software certificates allows for
the collation of V&V information in a single place,

these certificates must be maintained so that they
accurately reflect the current code base. A SCMS
provides a range of services, including automatically
creating and maintaining certificates, enabling the
browsing of certificates in a system, and checking the
validity of certificates (e.g. automatically invalidating a
certificate upon a code change) [6, 19]. The goal of a
SCMS is to automate the management of certificate
information so that minimal overhead is added to the
development process. Research is being conducted by
various groups in how SCMSs can be used in the
development process [6, 8, 10, 19].

2.3 Programatica

 Programatica [10, 18] is a SCMS that has been in
development since 2003. This system is the inspiration
for the work mentioned in the previous section and for
our DevCOP work. The Programatica team at the
Oregon Graduate Institute at the Oregon Health and
Science University (OGI) and at Portland State
University (PSU) is working on a method for high-
assurance software development for the Haskell
programming language [10, 18]. The goals of the
Programatica team are to allow users to capture
evidence of V&V and to manage this evidence to help
guide future development efforts [10]. The
Programatica tool is built on the concept that specified
properties could be placed in the source code itself to
show that certain pieces of code have been verified or
validated through a particular V&V technique. These
properties can be derived from several different
sources, such as expert opinion, test cases, or external
theorem provers. These specified properties become
certificates, linking a validated property as evidence of
high-assurance with a piece of code.

Programatica allows various external tools to plug-in
to its certificate management module so that
Programatica can leverage the V&V evidence provided
by these tools. For example, Programatica gathers
V&V evidence from an external testing framework
called QuickCheck [4] and a theorem prover called
Alfa [10]. Developers can write and then certify code
as it becomes complete with these external tools.

Managers can decide how much of the code base
needs to be certified at any given time, slowly
increasing this number as the system nears completion
[10, 18]. Programatica uses this idea of gradually
increasing the number of certificates since code is
usually more in flux at the beginning of a project, and a
developer’s time should not be spent recertifying code
that could change soon after recertification.

The DevCOP SCMS plug-in builds on the ideas
initiated in the Programatica project, but expands on
them in various ways. The main difference is that

DevCOP is written for Java rather than Haskell. The
Programatica tool is used in conjunction with a
developer’s programming environment of choice.
DevCOP, however, is directly integrated into the
Eclipse IDE. The plug-in can also interact directly
with the programming tools that the developer uses,
such as test case coverage tools like jcoverage4.
DevCOP also adds basic reporting tools, such as views
that provide information to the developer on V&V
certificate coverage.

3. The DevCOP SCMS Eclipse Plug-in

We have created the DevCOP Version 0.2 SCMS
Eclipse plug-in5 to handle the creation and
management of V&V certificates during the
development process [12, 17]. In this section, we will
describe early versions of the tool, our implementation
of software certificates, and the features of the plug-in.

3.1 Early Versions

DevCOP Version 0.1 SCMS Eclipse plug-in was
released in Spring 2005 as a beta version to several
industrial Java development teams for evaluation.
Figure 1 shows a screenshot of the plug-in. This
screenshot demonstrates how the DevCOP SCMS is
integrated into Eclipse. The background of the
screenshot shows the Eclipse Java Editor and the
DevCOP Certificate Browser view, along with the
Certificate Editing dialog. These features of DevCOP
will be explained further in later sections of this paper.

Version 0.1 focused on recording certificates that
normally do not produce artifacts that are stored with
the code. These certificates included such as manual
techniques like code inspections and pair
programming, and not automatic or programmatic
V&V, such as unit testing. Programmers could select
one or more functions for certification through the
Eclipse Package Explorer and the type of V&V
technique used (i.e. code inspection, pair
programming, bug fix, etc.). The certificate
information was then stored in an XML document that
was saved in the project’s workspace.

Anecdotal reports from the teams indicated that the
initial version of the plug-in did not contain enough
functionality to warrant inclusion into their
development cycle. There were also concerns about
problems that could arise from distributed code
development using an XML storage format and loose
integration with the Eclipse IDE. Further, the

4 Jcoverage can be found at http://www.jcoverage.com/.
5 The plug-in is available at http://agile.csc.ncsu.edu/devcop/.

developers indicated that detailed metrics about the
coverage of the different V&V techniques (e.g. how
much of the code was pair programmed vs. solo
programmed) would be useful in their development
efforts.

To address the concerns of our test Java developers,
we redesigned and enhanced the DevCOP SCMS plug-
in and have released the beta version of DevCOP
Version 0.2 SCMS Eclipse plug-in [16, 17]. The
architecture and methodology changed significantly in
this release to make the system more viable for
multiple-developer projects and to include external
V&V tools.

3.2 DevCOP Certificates

Based on the Programatica team’s work [18], we
decided that DevCOP certificates would be created for
functions (or methods), as opposed to classes or
individual lines of code. This decision was made
because a certificate for every line of code could be
overly difficult to manage and certificates for classes
only might not provide enough information to
developers. Each certificate contains the following:

• identifying information for the function it is
associated with including its name, signature,
class, and file location;

• identifying information for the developer that
created it;

• the type of V&V technique used; and
• a hash of the function’s abstract syntax tree

(AST).
The hash of the function’s AST is stored to ensure

that a certificate is valid at any given time. Eclipse’s
Java Development Toolkit enables the DevCOP SCMS
plug-in to gather a textual representation of a
function’s AST. The DevCOP SCMS then performs a
MD5 hash on this textual AST and stores it within a
certificate. A certificate is considered valid if, and
only if, a certificate’s AST hash matches a hash of the
AST of the current source code. This indicates that if a
function is modified after it has been certified, that
certification is no longer valid. If the code is changed
back to its previous state, the certificate becomes valid
again. Using a hash of a function’s AST allows the
DevCOP SCMS to ignore insignificant changes, such
as code formatting or comments. A certificate only
becomes invalid if the change in the code is significant

Figure 1. DevCOP SCMS Screenshot

enough to change the Java AST. If the developer
determines later that the change did not affect the
certification, he or she select that certificate and
revalidate it, which replaces the current AST hash
within the certificate with the AST hash of the changed
function. The certificate is then tagged as being
recertified and can be examined later to determine if
the recertification was correct

3.3 DevCOP Eclipse Views

The DevCOP SCMS Eclipse plug-in provides
several different options for recording and managing
V&V information within Eclipse. The three Eclipse
views include the Certificate Browser view, the
Certificate Coverage view, and the Certificate
Weighting view. We have also provided some initial
certificate recording mechanisms and an interface to
jcoverage, an external test case coverage tool. Figure 2
shows the design of the plug-in.

The certificate manager module serves as the central
point to the system and controls the interface to the
database which stores the certificates, replacing the
XML functionality in the DevCOP Version 0.1. This
module provides data for the three display components,
the Certificate Browser view, the Certificate Coverage
view, and the Certificate Weighting view. The
certificate manager accepts and processes new
certificates from the certificate creation interface. We
have also integrated the certificate manager module
into the Eclipse IDE such that it can update certificates
appropriately when the Eclipse refactoring tool is used.

DevCOP presents V&V information to the developer
within the Eclipse IDE. The main view is the
Certificate Browser, which allows developers to go
through a list of certificates, sorting by class or by

type. A picture of the Certificate Browser is shown on
the right hand side of Figure 1. The goal of this view
is to provide a simple tree structure to quickly find
certain certificates to review or edit its descriptive
information, such as general comments about the
certificate. The Certificate Browser also allows
developers to revalidate certificates that may still be
valid, but are marked invalid due to a change in the
code, as described in the previous section.

 The Certificate Coverage view provides developers
with a tabular representation of the V&V coverage in
their system, separated by the different V&V
techniques. A screenshot of this view can be found in
Figure 3. This view calculates basic system metrics
such as lines of code and number of methods and then
determines which methods are covered by V&V
techniques. Developers can see overall V&V coverage
by function, class, or system, or for each particular
V&V type. Developers and managers can use this
information as a quick reference to get an overall
picture of how much of the system their V&V
techniques are covering. This coverage information
can aid developers by isolating certain modules that
might not have been covered yet by any V&V
technique. The view also provides metrics for those
teams that want to track V&V usage, such as Extreme
Programming [2] teams that want to see how much of
the code based was pair programmed versus solo
programmed.

As Balci described in his work, V&V techniques can
be put into different categories based on their
methodology. We are adding this concept into
DevCOP by adding a weighting component to the
different V&V certificate types. Weights will be
determined via a regression equation on historical data
and will be used in our future work in predicting

Figure 2. DevCOP SCMS Plug-in Design

software defect density. Currently, we are using default
weights in DevCOP, which will be replaced in our
future empirical work. Cumulative weights can be
viewed in the Certificate Weighting view, a graphical
view in the DevCOP SCMS, as shown in Figure 4.
The graph in this view shows the sum of the weights of
the certificates for the given functions and classes in
the system. When a user clicks on any function in the
system, either in the Outline view or Package Explorer
view, the Certificate Weighting graph is shown for that
function. This weighting graph provides a simple view
of not only what V&V techniques have been used on
this function, but their relative effectiveness within the
system based on their regression constant as

determined by historical data. The weighting graph
can also provide similar information at the class and
system levels. This weighting information can provide
an overall snapshot of what functions have been
adequately covered and which have not. Figure 4.a
shows a weighting graph on a single function that has
two certificates. Figure 4.b shows a weighting graph
on a portion of the system, organized by class.

3.4 DevCOP Certificate Creation Methods

DevCOP includes a basic certificate creation

interface that can be utilized by various external V&V
tools to create certificates. We have provided two

 a.

b.

Figure 4.a (top) Weighting for one function; 4.b (bottom) Weighting for multiple classes in the system

Figure 3. Images from the Certificate Coverage view

internal certificate creation modules (the basic
certificate module and the active certificate module)
and one external tool interface (the test case coverage
module utilizing jcoverage). Table 1 provides a list of
the certificates that can currently be created by
DevCOP.

The basic certificate module allows for the manual
creation of certificates on one or more functions using
Eclipse’s graphical interface. Developers can right-
click on any function (or group of selected functions)
in Eclipse’s Package Explorer or Outline view and
choose to add a certificate to that function from its
context menu. The user can then add more detailed
information about what V&V technique was used to
authorize the creation of this certificate. This basic
method of adding certificates allows developers to
target individual functions at any time for V&V
techniques that do not have external tools or an
automated certificate creation method, such as a
references to expert opinion or desk checking one’s
own code.

Developers, however, may wish to add multiple
certificates at once, across several files or even
projects, such as during a long pair programming
session or code review. Remembering or writing down
every “touched” function during these sessions could
be difficult and error prone and would make certificate
creation cumbersome and labor-intensive.

 To facilitate the creation of certificates using V&V
techniques like pair programming, we have created
what we call active certificates. An active certificate is
a means by which Eclipse will automatically identify
changed code during a programming session to be
certified by the developer. For example, if two
programmers were about to start pair programming on
a piece of code, they would click the active certificate
button before they began. Eclipse would then actively
record non-trivial changes to the system (i.e. changes
to the abstract syntax tree of the code, not commenting

or formatting changes) and will present the affected
functions to the developers for certification at the end
of the pair programming session. The concept of
active certificates can extend to several different types
of V&V activity, such as pair programming or bug
fixes. Active certificates allow developers to write or
modify code normally, without increasing their work
overhead.

While the basic and active certificate modules allow
for the collection of most manual V&V techniques, we
want to leverage the numerous automated V&V tools
that are currently available and are being used actively
in industry. Each of these tools aids developers in
different ways, looking at various aspects of the code
base.

The first tool we have created an interface for is
jcoverage. Jcoverage, licensed under the GNU General
Public License, is an extension to the Apache Ant build
tool. This tool instruments Java code to allow for the
collection of test case coverage in a system. We have
integrated the output from the jcoverage tool to allow
DevCOP to initiate jcoverage within the IDE and then
to collect metrics regarding test case coverage.
Currently, jcoverage uses JUnit test cases to compute
test case coverage, but we are expanding this feature to
allow developers to specify particular test case files.
DevCOP will automatically create a test case coverage
certificate for each function whose test case coverage
is above a particular threshold specified by the
development team. The test case coverage percentage
threshold can be changed in the DevCOP preferences,
and is recorded with each generated certificate. It is
important to note that currently DevCOP does not
support the accumulation of coverage as is done with
asynchronous testing such as block box function or
system testing. We are adding asynchronous testing
into the next version of DevCOP. We will add more
tool interfaces to DevCOP as it continues in
development, such as the ESC/Java2 static analysis

Table 1. Currently Available Certificate Types

Certificate Type Category DevCOP Certificate Creation Method
Code Inspection Manual

Code Review Manual

Desk Check / Walk-through Manual

Expert Opinion Manual

In Eclipse, right click on any function or group
of functions and click Add Certificate

Pair Programming Manual – Active Certificate

Bug Fixes Manual – Active Certificate

Click Begin Active Certification in the
Certificate Browser and Eclipse will record all
non-trivial code changes for certification at the
end of the certification session

JUnit test case coverage Dynamic Click the JUnit icon in the Certificate Browser
to launch jcoverage, which will in turn run the
system’s test suite

tool [5]. We are also developing an extensible
interface for other Eclipse plug-ins so that developers
can create a certificate creation interface for their own
V&V tools.

4. Limitations

In the creation of certificates, we are not assigning
more importance to certain functions or sections of
code over others, as is done with operational profile-
[11] based V&V. Nor are we using the severity of
defects detected to affect the importance of some
certificates over another. While this level of
granularity could be beneficial, one of our initial goals
is to make this method easy to use during development,
and at this time, we think that adding this level of
information could be a hindrance. Another limitation
is the granularity of certificates. Based on the
Programatica Team’s work [18] it was decided that
methods would be the proper level of granularity for
certificates. Finally, programmers can manually add or
change certificates within the system, so the system is
not completely objective and/or audit-safe. If a
developer recertifies a certificate, functionality needs
to be in place to force the user to justify changes to a
certificate.

5. Future Work: The DevCOP Parametric
Model

DevCOP Version 1.0 will include defect density

estimation via a parametric model [13] which utilizes
the certificates stored in the DevCOP SCMS [12, 15].
Parametric models relate dependent variables to one or
more independent variables based on statistical
relationships to provide an estimate of the dependent
variable with regards to previous data [9]. The goal of
a parametric model in software engineering is to
provide an estimated answer to a software development
question earlier in the development lifecycle.

We have worked together with the Center for
Software Engineering at the University of Southern
California [3] to create a parametric modeling process
specifically for software engineering research [13].
This process, illustrated in Figure 5, shows the steps
that can be followed to create an effective parametric
model. More information on the individual steps can
be found in [13].

We are integrating our estimation directly into the
development cycle using the DevCOP SCMS plug-in
so that developers may take corrective measures and
perform more V&V earlier in the development
lifecycle. The goal of the model is to provide an
estimate of defect density based on V&V certificates

and the coverage of each certificate type. We
anticipate that a model would need to be developed for
each programming language we would study.

We envision the defect density parametric model to
take the form of Equation 1. For each certificate type,
we would sum the product of a size measure (perhaps
lines of code or number of functions/methods) and a
weight coefficient produced via regression analysis of
historical data. The calibration step of the regression
analysis would yield the constant factor (a) and a
coefficient weighting (cj) for each certificate type,
indicating the importance of a given V&V technique to
an organization’s development process.

)*(
_

1
�

=

+=
typeecertificat

j
jj SizecaDensityDefect (1)

To validate our parametric model and significance
weight coefficients, we will perform a causal analysis
with our industry partners on Java projects currently in
development. Once four to six months of field failure
information is available, we can compute an actual
defect density and compare it with our estimate. We
can also perform causal analysis to provide more
information about the efficacy of certain techniques
under particular circumstances.

6. Summary

We have created and are currently evaluating a
SCMS plug-in for Eclipse. The DevCOP SCMS plug-
in allows developers to easily record their V&V
activities within the development environment with
minimal increase in overhead. By utilizing a SCMS,
V&V information is stored in a single format in a
single location and is maintained automatically. Using
a SCMS can significantly reduce the time required to
record and maintain V&V information, while also
providing reporting tools to leverage this information
during the development cycle.

The DevCOP plug-in currently allows for the
creation and management of manual and JUnit test
case coverage V&V certificates and provides
developers with reporting tools to evaluate their V&V
efforts. The integration into the Eclipse IDE enables
developers to leverage the mechanisms already in
Eclipse to automatically create certificates through our
active certificate method. There is also a basic
mechanism for incorporating other automated V&V
tools, such as code coverage tools like jcoverage,
which will be improved in future versions.

Three Eclipse views are provided for developers to
examine their V&V efforts. These views allow
developers to manage certificates, view V&V
technique coverage over the system, and to see what

V&V techniques have been performed on single
functions or classes. The V&V information could be
used in-process to show what areas of the system
might need to be verified more, or the information
could be used post hoc to analyze the effectiveness of
V&V techniques or for software maintenance. We are
also developing a method for a development team to
estimate software defect density in-process using this
V&V information. We will continue our work to
improve the plug-in based on developer suggestions
and to gather data to validate the DevCOP parametric
model.

7. Acknowledgements

We wish to give our most sincere thanks to Dr. Mark
Jones at Portland State University and rest of the
Programatica team for their input on the various parts
of this work. This work was funded by the National
Science Foundation.

8. References

[1] Balci, O., "Verification, Validation, and Accreditation

of Simulation Models," Winter Simulation Conference,
1997, pp. 125-141.

[2] Beck, K., Extreme Programming Explained: Embrace
Change, Second ed. Reading, Mass.: Addison-Wesley,
2005.

[3] Boehm, B. W., "Building Parametric Models,"
International Advanced School of Empirical Software
Engineering, Rome, Italy, September 29, 2003.

[4] Classen, K. and Hughes, J., "QuickCheck: A
Lightweight Tool for Random Testing of Haskell
Programs," International Conference on Functional
Programming, Montreal, Canada, Sept. 18-20, 2000, pp.
268-279.

[5] Cok, D. and Kiniry, J., "ESC/Java2: Uniting ESC/Java
and JML - Progress and issues in building and using
ESC/Java2," Construction and Analysis of Safe, Secure
and Interoperable Smart devices Workshop, Marseille,
France, March 10-13, 2004, pp. 108-128.

[6] Denney, E. and Fischer, B., "Software Certificate and
Software Certificate Management Systems," Workshop
on Software Certificate Management, Long Beach, CA,
Nov 8, 2005, pp. 1-6.

[7] Fagan, M., "Design & Code Inspections to Reduce
Errors in Program Development," IBM Systems Journal,
vol. 15, no. 3, pp. 182-211, 1979.

[8] Hutter, D., "Software Certification Management: How
Can Formal Methods Help?" Workshop on Software
Certificate Management, Long Beach, CA, Nov 8, 2005,
pp. 47-50.

[9] International Society of Parametric Analysts,
"Parametric Estimating Handbook," Department of
Defense, Online Handbook, April 16, 2005. Available
online: http://www.ispa-
cost.org/PEIWeb/Third_edition/newbook.htm

[10] Jones, M., "Evidence Management in Programatica,"
Workshop on Software Certificate Management, Palm
Beach, California, 2005.

[11] Musa, J., Software Reliability Engineering: McGraw-
Hill, 1998.

Figure 5. Parametric Modeling Process for Software Engineering

[12] Sherriff, M., "Using Verification and Validation
Certificates to Estimate Software Defect Density,"
Doctoral Symposium, Foundations of Software
Engineering, Lisbon, Portugal, September 6, 2005,
2005.

[13] Sherriff, M., Boehm, B. W., Williams, L., and
Nagappan, N., "An Empirical Process for Building and
Validating Software Engineering Parametric Models,"
North Carolina State Univeristy CSC-TR-2005-45,
October 19 2005.

[14] Sherriff, M. and Williams, L., "A Method for
Verification and Validation Certificate Management in
Eclipse," Workshop on Software Certificate
Management, Long Beach, CA, Nov 8, 2005, pp. 19-22.

[15] Sherriff, M. and Williams, L., "Certification of Code
During Development to Provide an Estimate of Defect
Density," Fast Abstract, International Symposium on
Software Reliability Engineering, Chicago, IL, Nov 8,
2005, pp. 447-448.

[16] Sherriff, M. and Williams, L., "Defect Density
Estimation Through Verification and Validation," The
6th Annual High Confidence Software and Systems
Conference, Lithicum Heights, MD, April 17-19, 2006,
pp. 111-117.

[17] Sherriff, M., Williams, L., "Tool Support For Estimating
Software Reliability in Haskell Programs," Student
Paper, IEEE International Symposium on Software
Reliability Engineering, St. Malo, France, 2004, pp. 61-
62.

[18] The Programatica Team, "Programatica Tools for
Certifiable, Auditable Development of High-Assurance
Systems in Haskell," High Confidence Software and
Systems, Baltimore, MD, 2003.

[19] Whalen, M., "Certificate Management: A Practitioner's
Perspective," Workshop on Software Certificate
Management, Long Beach, CA, Nov 8, 2005, pp. 23-26.

[20] Williams, L. and Kessler, R., Pair Programming
Illuminated. Boston: Addison-Wesley, 2002.

