
Automated Fix Generator for SQL Injection Attacks

Fred Dysart and Mark Sherriff
Department of Computer Science, University of Virginia, Charlottesville, VA 22903

{ftd4q, sherriff}@virginia.edu
 

Abstract
 A critical problem facing today’s internet community
is the increasing number of attacks exploiting flaws
found in Web applications. This paper specifically
targets input validation vulnerabilities found in SQL
queries that may lead to SQL Injection Attacks
(SQLIAs). We introduce a tool that automatically
detects and suggests fixes to SQL queries that are found
to contain SQL Injection Vulnerabilities (SQLIVs).
Testing was performed against phpBB v2.0, an open
source forum package, to determine the accuracy and
efficacy of our software.

1. Introduction

According to the National Institute of Standards and
Technology, SQL Injection Vulnerabilities (SQLIVs)
amounted 14% of the total Web application
vulnerabilities in 2006 [3]. This statistic is surprising
due to the simple approach of using prepared statements
to write secure applications without injection
vulnerabilities. Our objective is to design a tool that
would allow developers to easily ascertain how secure
their applications were against SQLIVs and how to
immediately fix any vulnerabilities found.

The tool presented in this paper identifies potentially
vulnerable SQL queries and provides a new secure
solution using prepared statements. Prepared statements
separate the structure of an SQL statement from the data
that is provided by an outside entity. When used
properly, prepared statements can turn a previously
vulnerable query into one that is secure while
maintaining the same functionality. For this particular
version of our tool, we only targeted applications written
in PHP that interact with a MySQL database though
subsequent versions may expand upon the particular
programming language and database used.

2. Related Work
 Thomas et. al. introduced a solution that used
prepared statements to automatically remove
vulnerabilities from SQL queries [4]. He developed an
algorithm in Java that parsed Java files and created
functionally equivalent prepared statements for every
query that was found to be vulnerable to injection
attacks. Our technique improves upon Thomas’s work
by improving the algorithm for generating prepared
statements and by expanding the work to PHP. In

Thomas’s solution, any variable that defines a prepared
statement’s structure must be within the same scope as
the execution of that statement. Our solution does not
incur this limitation because the generation of the
prepared statement fix is not dependant on the actual
statement declaration in the code.

3. SecurePHP
 Our solution is called SecurePHP. It was written in
C# and utilized the .NET framework. There were two
main design decisions that guided us through
development. First, we wanted the tool to be easy to
use. While all applications should be simple for a user
to interact with, the reasoning behind our decision was
that the increasing amount of SQLIVs present in
software might be from legacy software that is not
maintained by a developer with experience fixing
security issues [1]. We wanted to provide a solution that
could be run against a source code repository and
quickly provide visual feedback to the developer on the
current state of their application.
 Second, we wanted the results presented in such a
manner that it is easy for the user to find and fix any
vulnerabilities found. The goal of this tool is to aid
developers in their maintenance of software, so the
speed at which the vulnerabilities could be found and
fixed was of great importance.

4. Algorithm Details
 SecurePHP has three main steps: vulnerability
detection, prepared statements creation, and report
generation. After the user has specified the root
directory of their application via SecurePHP’s GUI, as
seen in Figure 1, SecurePHP recursively scans every file
ending in the .php extension in that directory, including
those found in subsequent directories.

 
Figure 1: SecurePHP GUI

Vulnerability detection is accomplished by parsing
an SQL statement and identifying any variables used. If
these variables are used as part of the SQL structure
without having been previously validated, then the
query is marked as vulnerable. Once a vulnerable query
is detected, a SQLStmt object is created and the
following information is stored therein: the full SQL
query, position found in file, and the name of the file
where it was found.

Once the application completes the scan of every file,
it then creates a PreparedStmt object for each
SQLStmt. This manipulation incurs a bit of overhead
as there are now two objects stored in memory, a
SQLStmt and a PreparedStmt, for each
vulnerability found, but this is required to generate
adequate reports. A new query is then generated for the
PreparedStmt with an array of replaced parameters
and an array of integers corresponding to the parameter
locations.
 After the creation of the prepared statements is
completed, the user has the option to generate reports
for the files containing SQLIVs. Report generation
consists of creating a new directory in the application’s
root directory called [Application name]_Reports.
The reports folder will contain a text file corresponding
to each PHP file found to contain SQLIV(s). An
example of a section of code found in a report file can
be found in Figure 2.

Figure 2: Example Report

 The user also has the option of writing-back the
prepared statements to the .php source files. We chose
to create entirely new files for this action rather than
writing over the user’s original code. This allows the
user to revert back to their original code if for some
reason the change has some undesired effects on their
application.

5. Results
We used SecurePHP to examine phpBB, an open

source-source forum system, (www.phpbb.com) to

determine the efficacy of the developed solution.
PhpBB’s root directory contains seventy-seven .php
files and over 3 MB worth of code. SecurePHP was able
to parse and build the prepared statements in well under
one second (.421 and .0015 seconds for parsing and
prepared statement creation respectively). In total, over
37,000 lines of code were parsed and 663 SQL
statements were found. Out of these 663 SQL
statements, 328 were found to contain possible SQLIVs.
All of which had a prepared statement counterpart
generated.

While all of the 328 possible SQLIVs may not lead
to injection attacks, the purpose of our solution is to
notify the user of any possible weaknesses and suggest
fixes. PhpBB used older techniques to secure their
queries from injection attack, such as escaping
potentially dangerous characters. These techniques work
against protecting against injection attacks, but they
incur more processing on the application server. Also,
when a query is used more than once, prepared
statements can actually lead to an increase in
performance because the procedure is temporarily
stored on the MySQL server [2].

6. Conclusion and Future Work
 Having the ability to quickly obtain visual feedback
on the current state of security of one’s application
would help developers maintain their large code bases
easily. The reports can also be used as a metric to
display how secure one’s system is to managers or lead
developers.
 Future work could be done to build in more features
to SecurePHP. Currently it has difficulty tracking SQL
statements that are built conditionally through multiple
code paths. Also, more PHP projects could be tested to
further increase the SQL detection of SecurePHP due to
the varying nature of which developers can write SQL.
 It is also important to note that while this solution
specifically targets PHP and MySQL, the idea of
automated fix generation for SQLIAs can be extended to
any programming language that supports prepared
statements.

7. References
[1] S. Barnum, McGraw, G., “Knowledge for Software
Security,” Security and Privacy Magazine, IEEE, vol. 3, no. 2,
2005, pp. 74 – 78.
[2] Z. Greant & G. Richter, ext/mysqli: Part I – Overview and
Prepared Statements, 2004, http://devzone.zend.com/node/
view/id/686, accessed October 15, 2007.
[3] NIST, National Vulnerability Database, 2007,
http://nvd.nist.gov/, accessed January 16, 2007.
[4] S. Thomas and L. Williams, "Using Automated Fix
Generation to Secure SQL Statements," 3rd International
Workshop on Software Engineering for Secure Systems,
Minneapolis, Minnesota, USA, 2007, pp. 1-7.

