
Tool Support for Estimating Software Reliability in Haskell Programs

Mark Sherriff, Laurie Williams
Department of Computer Science, North Carolina State University, Raleigh, NC 27695

{mssherri, lawilli3}@ncsu.edu

Abstract
In late-stage phases of development, action to correct defects

can be cost prohibitive. Effective, efficient, and expressive
measures of reliability during the development cycle could aid
developers by showing early warning indications of where the
system might require modification or more testing. In this
paper, we present initial research in creating an Eclipse plug-
in that utilizes two methods for estimating reliability in-process
in a functional programming environment. One method is
based on testing and static code metrics that can be gathered
automatically during the coding process. A feasibility study
involving a subset of these metrics was performed. The other
method is based on the certification of individual lines or
sections of code. These certifications are used in conjunction
with the operational profiles of these lines or sections to
estimate overall system reliability.

1. Introduction
Some profess that functional languages offer a good balance

between productivity, reliability, maintainability, and
efficiency [1]. Recently, research and projects have been
undertaken to take advantage of the benefits that functional
languages present [5], specifically the Haskell language. This
paper adds to the body of reliability knowledge for systems
built with the Haskell functional programming language. Our
research objective is to construct and validate an Eclipse1
plug-in that will utilize two different, internal, in-process
methods to provide an early indication of system reliability.

The two methods that we propose in this paper utilize testing
and static code metrics that are gathered on a given program.
An Eclipse plug-in will be created to automate the gathering of
these metrics and the computation and presentation of the
reliability estimates within the same development environment
where code is developed. If reliability information can be
presented early in the development process, preferably while a
developer is working on the code, affordable corrective action
can be taken to rectify any reliability concerns as they appear.

2. STREW-H
Davidsson et. al. began work on the “Good Enough”

Reliability Tool for Java (GERT-J) [2] in 2003. Their tool
utilizes in-process testing metrics to estimate reliability. This
estimation provides early feedback to developers so that they
can correct faults during the development process and can
increase the testing effort, if necessary, to provide added
confidence in the software. The metrics underlying GERT-J

1 Eclipse is an open source integrated development environment. For more

information, go to http://www.eclipse.org/.

are those in the Software Testing Reliability Early Warning for
Java systems (STREW-J) [2, 6] metric suite. GERT-J
automates the collection and analysis of the STREW -J metrics
and provides visual feedback to programmers on the reliability
of various parts of the system and on the thoroughness of the
test effort. While the STREW -J metric suite is still in
development, early results from a feasibility study and a
structured experiment [2, 6] have shown that a regression
equation can be formed to provide a practical estimate of
software reliability.

Based on Nagappan's work [6], we propose the STREW -
Haskell (STREW -H) metric suite. We utilized the STREW -J
metric suite as a starting point for the STREW -H. We
eliminated the metrics that were not applicable for functional
languages and made additions based upon a review of the
literature and upon expert opinion. Expert opinion was
gathered via interviews with 12 Haskell researchers at Galois
Connections, Inc.2 and with members of the Programatica
team3 at The OGI School of Science & Engineering at OHSU
(OGI/OHSU). Research was performed to validate the
inclusion of these potential metrics in the STREW -H. From
these sources, we propose an initial set of metrics for the
STREW -H version 0.1, including the following:
• complexity metrics
• number test case asserts / source lines of code
• IO monadic lines of code / source lines of code
• number of type signatures / source lines of code
• number of overlapping patterns / source lines of code
• number of duplicate exports / source lines of code
• number of incomplete patterns / source lines of code
• number of missing signatures / source lines of code
• number of name shadowing / source lines of code
• number of test cases / number of requirements
• test lines of code / source lines of code
Through validation with multiple industrial projects, we will
refine the proposed metric suite by adding and deleting metrics
until we feel we have the minimal set of metrics needed to
accurately predict and explain product reliability.

A feasibility study involving a subset of the metrics was
conducted to analyze the potential of the STREW -H metric
suite. The open source Glasgow Haskell Compiler (GHC)4
was chosen as the system under study since there were multiple
versions available with detailed documentation and defect logs.
No time-dependent reliability was available so the study
focused on estimating a related measure, defect density. The
results showed that while there were not enough test cases to

2 http://www.galois.com/
3 http://www.cse.ogi.edu/PacSoft/projects/programatica/
4 http://www.haskell.org/ghc/

denote statistical significance, this method is an efficient
indicator of the defect density. More studies are in progress.

A limitation of the STREW -H method is that it is not based
on any operational profile of the system. While utilizing
operational profiles to estimate reliability would be beneficial,
it is often cost and time prohibitive. Rivers and Vouk have
shown that non-operational testing is related to field quality
[7], and thus there is potentially value in this method.

3. COPPER
Research has shown that breaking up a larger system into

components is an effective means of estimating reliability [5].
However, most of these methods look at system components as
being individually-running programs or classes unto
themselves. This concept does not translate well to functional
languages, and thus adjustments have to be made for the idea
of components to be valid in this environment.

The Programatica team at OGI/OHSU is working on a
method for high-assurance software development [4].
Programmers can create certificates on individual functions or
lines of code in a program. The certificates are tied to a
specific type of evidence that shows that the functions or lines
of code are of high-assurance. The evidence is based on the
verification and validation practices (testing, formal proofs,
and development practices) used on that part of the code.

We build upon OGI/OHSU’s work and propose a
certification-based method of estimating reliability. We call
this method the Certificates with Operation Percentages for
Providing an Estimate of Reliability (COPPER) method.
COPPER extends OGI/OHSU’s work by associating a
reliability measure with each certificate that is placed on a per-
function basis. Then, a program profiler calculates the
operation percentage, the percentage of processor time each
function consumes during normal operation, for each certified
function when the system is run with a representative set of test
cases. The reliability of the system as a whole can be
estimated based on the reliability of the certified functions
multiplied by their operation percentage. The difference with
this method is that most other component-based reliability
methods require that each component is a working system unto
itself. The proposed COPPER method goes to more atomic
levels in the code, down to individual functions and lines of
code, than other component-based methods, utilizing several
different means of ensuring that a piece of code is reliable.

4. Eclipse Plug-In
Eclipse is an open-source development environment built

around the concept that every component of the system is a
plug-in, each building off another to increase functionality.
Despite Eclipse being primarily a Java tool, developers have
successfully implemented plug-ins to allow other languages to
be used in the environment, including Haskell. Work began
earlier this year by Frenzel et. al. [3] to create a Haskell
development plug-in for Eclipse. While still in its early stages,
this plug-in provides syntax highlighting, a build system,
module viewer, basic error checking, and others. Later
versions of the plug-in will expand on this and include more
functionality. Our efforts will build upon this system.

We began incorporating STREW -H and COPPER into an
Eclipse plug-in earlier this year to embed these methods
directly into the programmers’ development process. The
Eclipse framework can facilitate the automatic gathering of the
various metrics needed along with calculating the required
estimates. The graphical nature of Eclipse will also allow us to
create a certificate structure so that the certificates described in
the COPPER model will be able to be shown in-line with the
code, providing visual feedback to developers.

5. Summary and Future Work
Having an early warning system to estimate reliability would

aid developers by giving them an indication as to potential
problems in the system. We can leverage metrics that can be
gathered in any system with some effort to help provide this
reliability estimate. An Eclipse plug-in utilizing two methods
for estimating the reliability of software written in a functional
language environment have been proposed in this paper. The
plug-in gathers metrics and records certificates and calculates
the system reliability estimate based on the two methods
presented in this paper. Reliability growth information is
provided to developers while they are still implementing code
and can affordably make corrective actions.

Currently, further feasibility studies are underway for both
methods using code from an ASN.1 compiler system
developed in Haskell. Twenty-three different development
versions with defect information are available and will be used
to help verify the findings in the original feasibility study. The
initial feasibility study will also be performed on the COPPER
method using this data set.

Acknowledgements
This work is supported by a grant from the National Science

Foundation.

References
[1] Breazu-Tannen, V., Buneman, O. P., and Gunter, C. A. ”Typed

functional programming for rapid development of reliable
software.” In J. E. Gaffney, editor, Productivity: 18 Progress,
Prospects, and Payoff. June, 1988. pp. 115-125.

[2] Davidsson, M., Zheng, J., Nagappan, N., Williams, L., and
Vouk, M., “GERT: An Empirical Reliability Estimation and
Testing Feedback Tool,” International Symposium on Software
Reliability Engineering, 2004. To appear.

[3] Frenzel, L., “Haskell support for Eclipse.”
http://eclipsefp.sourceforge.net/ . 2004.

[4] Halgren, T., "Tools from the Programatica Project," presented
at ACM SIGPLAN Haskell Workshop, 2003.

[5] Hamlet, D., Mason, D., and Woit, D., "Theory of Software
Reliability Based on Components," International Conference on
Software Engineering, 2001, pp. 361-370.

[6] Nagappan, N., Williams, L., Vouk, M.A., "Towards a Metric
Suite for Early Software Reliability Assessment," International
Symposium on Software Reliability Engineering, FastAbstract,
Denver, CO, pp.238-239, 2003.

[7] Rivers A. and Vouk, M.A., “Resource Constrained Non-
Operational Testing of Software,” International Symposium on
Software Reliability Engineering 1998, Paderborn, Germany, 4-
7 Nov., 1998.

