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Abstract 

 
Parametric modeling is a statistical technique whereby a dependent variable is estimated based on the values of 

and the relationships between the independent variable(s).  The nature of the dependent variable can vary 

greatly based on one’s domain of interest.  In software engineering, parametric models are often used to help 

predict a system’s development schedule, cost-to-build, and quality at various stages of the software lifecycle.  

In this paper, we discuss the use of parametric modeling in software engineering and present a nine-step 

parametric modeling process for creating, validating, and refining software engineering parametric models.  

We illustrate this process with three software engineering parametric models.  Each of these models followed 

the nine-steps in different ways due to the research technique, the nature of the model, and the variability of the 

data.  The three models have been shown to be effective estimators of their respective independent variables.  

This paper aims to assist other software engineers in creating parametric models by establishing important 

steps in the modeling process and by demonstrating three variations on following the nine-step process. 

 

1 INTRODUCTION 

Parametric modeling is a statistical technique whereby a dependent variable is estimated based on the 

relationships between and the values of the independent variable(s) (Gallagher 1982).  The nature of the 

dependent variable can vary greatly based on one’s domain of interest.  The importance of predicting how 

phenomena will behave in the future ranges from convenience to life-critical.  Every time a person makes a 

decision on what he or she will do the next day based on the weather report, including serious predictions such 

as an impending hurricane, is relying on a type of parametric model (Coles and Tawn 1991).  Businesspeople 

make decisions about the stock market or how a project should proceed based on profit predictions that they 

receive.  In engineering and the sciences, research has been performed to establish parametric models to 

estimate everything from energy consumption (Hall 1997) to railway line capacity (Prokopy 1975) to the 

physics of approaching aircraft (Moen 1976).  Government agencies, such as the Department of Defense, along 

with the International Society of Parametric Analysts, use parametric analysis when creating proposals and has 

seen that it helps to improve cost predictions (International Society of Parametric Analysts 2003).    

In software engineering, parametric modeling has been used for prediction (Sherriff, Boehm et al. 2005), e.g. 

the costs of and resources for building software, such as the number of person-hours to complete a project 
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(Boehm, Horowitz et al. 2000) and the potential reliability of a system in an early stage (Nagappan 2005; 

Sherriff, Nagappan et al. 2005).  In this paper, we will discuss the use of parametric modeling in software 

engineering and present a nine-step parametric modeling process for creating, validating, and refining 

software engineering parametric models. The underlying concepts laid out in the process are intended as a basic 

guideline for those desiring to create their own parametric model in a software engineering domain.  These steps 

can and should be done iteratively, proceeding through the process once, and then revisiting steps and revising 

later once more information is available.  When the steps are revisited with more information, the model will 

improve.      

We illustrate the modeling process with three software engineering parametric models that have been created 

and validated using this nine-step process.  These three models are the Constructive Cost Model (COCOMO) II 

(Boehm, Horowitz et al. 2000) to estimate project costs; the Software Testing Reliability Early Warning model 

for Java (STREW-J) (Nagappan 2005) to estimate trouble reports (TR) (Mohagheghi 2004) per thousands of 

lines of code (KLOC); and the Software Testing Reliability Early Warning model for Haskell (STREW-H) 

(Sherriff, Nagappan et al. 2005) to estimate post-release defect density.  These three models help to show that, 

while the complexities of these three software engineering parametric models are vastly different, the 

underlying concepts behind these models are fundamentally domain independent.  Each of these models 

followed the nine-steps in different ways due to the research technique, the nature of the model, and the 

variability of the data.  The three models have been shown to be effective parametric models.       

The remainder of this paper is organized as follows.  Section 2 describes an overview of the current state of 

parametric modeling in software engineering.  Section 3 presents a nine-step parametric modeling process for 

software engineering.  Sections 4, 5, and 6 illustrate example parametric models that utilized the process 

described in this paper, while Section 7 summarizes these sections.  Section 8 presents conclusions and future 

work.  

 

2 OVERVIEW OF PARAMETRIC MODELING 

The overall purpose of parametric models is to make an estimation or prediction based on current 

information.  In the general sense, a function y = f(x1, x2, x3, …) is created such that xi is an input to the 

function and y is the variable being estimated.  Some examples of the types of relationships in parametric 

modeling are (Boehm 2003): 

• Analogy: Outcome = f(previous outcome, difference) – used to make a prediction based on what 

happened before and then taking into account the differences in the scenario.  Examples: weather 

prediction; traffic patterns 

• Unit Cost: Outcome = f(unit costs, unit quantities) – used to make a prediction based on known 

production values.  Examples: potential profit based on units available to be sold. 

• Activity-Based: Outcome = f(activity levels, duration) – used to make a prediction based on time 

spent performing a specified activity.  Examples: training personnel costs 



• Relationship-Based: Outcome = f(parametric relationships) – used to make a prediction based on the 

relations and interactions of inter-dependant variables.  Examples: predicting heart disease based on 

height, weight, and family history; software size/cost models 

 Parametric models may be calibrated for use in a particular situation, organization, or even particular project 

(Gallagher 1982).  For example, while person-hours might be a heavy contributor to cost for one particular 

project, another project might rely more heavily on state-of-the-art technology, and thus technology 

expenditures might play a larger role in cost.  Some parametric models are robust enough or have been built 

with a large amount of data to be sufficient for use in many projects, such as COCOMO II (Boehm, Horowitz et 

al. 2000).  However, some models may remain domain- or context-dependant, such as STREW-J (Nagappan 

2005)and STREW-H (Sherriff, Nagappan et al. 2005), due to smaller amounts of data or to large differences in 

domains. 

 

3 PARAMETRIC MODELING PROCESS 

In this section, we present the nine-step process for parametric modeling, as shown in Figure 1.  The steps are 

shown in a general waterfall order.  However, feedback and concurrency between steps can and should occur, as 

the dashed arrows indicate.  The basic steps of the model involve: determining the model’s needs and purpose 

(Step one); deriving a set of candidate parameters from various sources (Steps two through five); and 

formulating and validating the basic model (Steps six through nine).  The remainder of this section will explain 

each individually. 

 



 
Figure 1.  Parametric Modeling Process for Software Engineering 

 
Step one: Determine model needs.  The general goal for creating a parametric model in software 

engineering is to help provide an estimation or prediction of an important product attribute early in the process 

so that development efforts can be directed accordingly.  Some specific goals might be: 

• To provide an estimate of post-release quality during the unit test phase without causing burden on the 

software engineers. 

• To provide an estimate of how many programmers are needed to complete the product by a given date. 

Similar to gathering requirements in requirements engineering, the goal of the model must be defined at the 

beginning of the model creation process.  First, the stakeholders in the success of the model need to be 

identified.  Stakeholders include such people as project managers, the users of the model, the data providers for 

the model, and the model developers.  Then, the model needs and specific success criteria must be identified.  

These criteria will provide the basis for showing that the model was created correctly and addresses the needs of 

the stakeholders.   

Step two: Analyze existing literature.  The estimation provided by the parametric model is based upon a set 

of metrics gathered from the project itself.  Model developers need to have a good understanding of the 

phenomenology of candidate metrics from the project which can be used to create the best model.  To gain this 

understanding, model developers conduct a literature search to find empirical and anecdotal evidence of factors 

that seem to influence the dependent variable to be estimated.  For example, if the parametric model is to 



provide an estimation of software cost, the model developers should have a deep understanding of each of the 

factors that can contribute to cost, such as person-hours, defect removal, and project management, and the 

metrics used to quantify these factors.   Appropriate and, preferably, verified metrics that have been shown to be 

indicators of the dependent variable become candidate metrics.  One way to approach the analysis of existing 

literature is through a systematic review (Kitchenham 2004).  A systematic review is a methodology by which 

research and references on a particular topic are evaluated and interpreted for use in other work.  The difference 

between a systematic review and a simple literature review is that a systematic review is a specific kind of 

literature review in which a predefined search strategy is followed and each resource is evaluated by set criteria 

to determine its value (Kitchenham 2004).  This process helps ensure that all proper references and information 

are examined in a methodical way and are considered appropriately. 

Step three: Perform behavioral analysis.  Model developers can add to and refine the list of candidate 

metrics by doing a behavioral analysis of the variable to be estimated.  With an understanding of the 

background and phenomenology of the dependant variable, developers can theorize as to what different 

behaviors of various factors could have on the dependent variable.  This analysis of these behaviors is another 

way for model developers to triangulate on a set of candidate metrics.  For example, Table 1 demonstrates a 

behavioral analysis of software reliability based upon the practices of requirements specification and testing.  

Using the extremes of “very low” and “very high” reliability, a comparison of the typical characteristics of 

requirements specifications and testing practices that would yield a high or low reliability product is made.  

Through this comparison, the model developer can ensure the essential differences between good and bad 

“behavior” of the value to be estimated are captured in the candidate metrics.      

 
Table 1.  Behavior differences for required reliability levels. 

Rating Very Low Reliability Very High Reliability 
Requirements 
Specification 

• Little detail 
• Many open items 
• Little verification 
• Minimal quality assurance (QA) 

• Detailed verification standards 
• Detailed test plans and 

procedures 

Testing • No test procedures 
• Many requirements untested 
• Minimal QA 
• Minimal stress / off-nominal tests 

• Detailed test procedures and QA 
• Extensive stress / off-nominal 

tests 

 
Step four: Define relative significance.  Metrics are given a relative ranking, such as High, Medium, and 

Low, as to what effect they are expected to have on the model as a whole.  Based on previous research or 

anecdotal evidence, model developers should be able to theorize about what effect different levels of each 

metric will have on the estimate the model provides.  For example, model developers might consider how 

requirements volatility would affect defect density.      

The information generated from this step aids developers in prioritizing metrics.  For instance, the data 

providers could argue that a particular metric is overly difficult to gather.  If this metric has been identified in 

this step as potentially not contributing a significant amount to the overall model, the metric could be dropped.   



Step five: Gather expert opinion.   Domain experts can help refine the candidate metrics to add their 

experience to the model.  Qualifications for experts will vary between domains.  For example, the experts used 

in the studies presented in this paper had at least five years experience in their particular field, and were 

solicited from the domain community.  Specifications for who would qualify as an expert should be addressed 

at the beginning of this step.  Experts are likely to uncover factors that were not included, over- or under- 

emphasized, overlap with others, or are incorrect for this use.    

Step six: Formulate a priori model.  A rubric for evaluating and recording parameter values from actual 

projects can be created such that the initial version of the model may be proposed. This initial version of the 

model is not calibrated and cannot yet be used to generate an accurate prediction.  The most important part of 

this initial model is a detailed description of the techniques that will be used to gather each metric.  This 

detailed description should outline exactly what each metric is, what tools are used to gather each metric, and 

specific instructions as to how to perform the data gathering.   

Step seven: Gather project data.  Metrics can now be gathered on the software project.  This data should be 

gathered from similar projects within an organization.  These projects would ideally be in the same domain, 

with the same constraints, and a similar development team.  If optimal projects are not available, similar 

projects from other organizations, or internal projects of a somewhat similar domain with the same development 

team could be used.  The previous projects used in data gathering should be as similar as possible to the 

project(s) that the model will be used to estimate.  Data gathering should be a collaborative effort between the 

model developers and the data providers.  This collaboration will help clarify any ambiguities that were not 

eliminated during earlier steps in the process, and the data collection rubric can be refined (re-visiting step six).  

Depending on the complexity of the metrics, the number of projects, the development cycle of the project, and 

the ease of collecting the metrics, data gathering can take from one week to several months. 

Step eight: Calibrate a-posteriori model.  After the initial metric data and actual values for the dependent 

variable have been gathered, the parametric model can be calibrated to the organization utilizing the model.  

Various techniques have been used for model calibration, including Bayesian analysis (Gelman, Garlin et al. 

1995), regression analysis (Munson 1990), and exhaustive search through the set of all possible calibration 

values (Menzies, Port et al. 2005).  Bayesian analysis is a statistical technique that uses expert judgment along 

with sampling information to make an efficient model (Devnani-Chulani 1999).  Regression analysis yields a 

multiple coefficient of determination, R2, which provides a quantification of how much variability in the data 

can be explained by the regression model. One difficulty associated with regression analysis is multicollinearity 

among the metrics.  

An important question regarding model calibration is how many data points are required to successfully 

calibrate a parametric model.  Menzies et al. (Menzies, Port et al. 2005) found that improvements in predictions 

in COCOMO 81 (Boehm, Horowitz et al. 2000) begin leveling off after 5-10 projects, but that statistically 

significant improvements could continue up until 20 projects.  They devised their own method for calibration 

which entailed a simple exhaustive search through all the different possible values of the calibration parameters 

of COCOMO 81 to find the best fit for the model (Menzies, Port et al. 2005).  They used a model created by 



four projects and then used this model to predict person-hours in 56 other projects.  For general parametric 

models, calibration could continue until there is no significant improvement in the accuracy of the model.  The 

number of data points necessary could vary from model to model, depending on the number of parameters and 

the overall variability of the data.   

Step nine: Gather more data and refine model.  More data from other sources needs to be introduced to 

further refine the model.  For instance, data from projects that have had values estimated should be added to the 

model when actual values for the estimated variables are available.  These new data can prompt the return to 

any of the above steps to discover how the model might be changed so that it might be improved.  Model 

accuracy can be improved by adding new data.  Also, metrics might be identified at this stage that do not 

significantly add to the model and can thus be removed to minimize the number of metrics and decrease the 

overhead of metrics collection.  Also, if projects are added to the model that are somewhat different, the model 

could be more robust in the types of projects that can be estimated. 

 

In the next three sections, we illustrate these nine steps by explaining how each of the steps was applied in the 

development and refinement of three parametric models for software engineering.    

 

4 COCOMO II 

This section discusses the creation of COCOMO by Barry Boehm.  COCOMO (Boehm 1981) is a model for 

estimating cost, effort, and schedule when planning a new software development activity.  The COCOMO 

research has spawned other similar models, such as Constructive Commercial-of-the-shelf (COCOTS) Model 

(Abts, Boehm et al. 2000), Constructive Quality Model (COQUALMO) (Devnani-Chulani 1999), and 

Constructive System Engineering Model (COSYSMO) (Valerdi, Miller et al. 2004) which provide specialized 

information regarding commercial software development, software quality, and large-scale software and 

hardware projects, respectively.  In this section, we will show how the second iteration of COCOMO, 

COCOMO II, was created and how it evolved into its current form (Boehm, Horowitz et al. 2000).  COCOMO 

II consists of three sub-models, each one offering a more detailed view of a project based on how far along the 

development team is during design and coding (Boehm, Horowitz et al. 2000).  We will focus on the Post 

Architecture sub-model of COCOMO II, which is used when top-level design is complete and detailed 

information about the project is available. 

 

4.1 Step one:  Determine model needs 

  In 1971, Boehm noticed how the cost of software was slowly beginning to dominate that of hardware, and 

that this problem was only made worse by poor predictions of software costs.  This desire to improve software 

project cost prediction formed the basis for creating the initial version of COCOMO, COCOMO 81 (Boehm 

1981).  The COCOMO 81 model (Boehm 1981) was created and calibrated with 56 project data points in 1978.  

The model was able to produce estimates that were within 20% of the actuals 70% of the time for seven project 



data points collected in 1979.  COCOMO 81 was adapted and used by numerous major organizations around the 

world for estimating cost components of software development.   

However, as new software development techniques arose, it became clear that many of the assumptions 

underlying the original COCOMO 81 model were not well matched to the new ways that software was being 

developed.  New technologies and techniques such as specialized development methodologies and module reuse 

were not handled adequately in the COCOMO 81 parameters.  The organizations around the world that had 

been using COCOMO 81 needed to have an updated version of the model to continue to make project cost 

decisions in the future.  These essential model stakeholders, including the model developers and representatives 

from organizations that were affiliates of the Center for Software Engineering5 at the University of Southern 

California, began the COCOMO II (Boehm, Horowitz et al. 2000) project in 1997 to update COCOMO 81 for 

the future.  The model developers aimed to provide a new version of COCOMO that was better tuned to current 

and likely future software practices, while preserving the open nature of COCOMO's internal algorithms and 

external interfaces.   

The main goals for COCOMO II were to provide cost and schedule estimates for current and future software 

projects and to be  flexible enough to be tailored to a specific organization (Boehm, Horowitz et al. 2000).  

Success would be determined by the accuracy of these predictions. 

 

4.2 Step two:  Analyze existing literature 

The first step in modifying the first iteration of COCOMO, COCOMO 81, to COCOMO II was to perform a 

comparative analysis of the software development approaches taken by the leading commercial software cost 

models.  The model developers also performed a forecast of future software development processes, which 

indicated that cost models would need to address projects using a mix of process models.  Other concepts and 

technologies that would need to be addressed included sophisticated forms of reuse, COTS integration, GUI 

builders, object-oriented methods, and Internet-based distributed development. 

For COCOMO II, twenty-two parameters were determined based on data from the usage of the COCOMO 81 

model and research that had been performed on it in previous years (Boehm, Horowitz et al. 2000).  First, the 

COCOMO 81 parameters were analyzed to determine if they would be retained in the COCOMO II model.  

Eleven parameters were directly translated to the new model.  Other parameters were then combined or 

modified to adjust for the newer development techniques that COCOMO II would address beyond COCOMO 

81.  Finally, new parameters were added to complete the assessment of the newer development techniques.   

 

4.3 Step three:  Perform behavioral analysis 

A behavioral analysis was then performed to determine if there were other cost factors that had not been 

addressed.  Overall categories were derived to classify the different cost factors.  For COCOMO II, the effects 

of each of the 22 COCOMO II factors on productivity were analyzed qualitatively and classified (Devnani-

Chulani 1999).  The detailed results of this analysis can be found in (Devnani-Chulani 1999).  The results of 
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this study indicated that the model developers had sufficiently addressed the different factors in predicting 

project cost.  The initial set of predictor parameters was then derived and is shown in Table 2.   

 
Table 2.  Initial set of COCOMO II parameters.  (Devnani-Chulani 1999; Boehm, Horowitz et al. 2000) 

Category COCOMO II and Cost Model Drivers 
Platform Required Software Reliability (RELY) 

Data Base Size (DATA) 
Required Reusability (RUSE) 
Documentation Match to Life-Cycle Needs (DOCU) 
Product Complexity (CPLX) 

Product Execution Time Constraint (TIME) 
Main Storage Constraint (STOR) 
Platform Volatility (PVOL) 

Personnel Analyst Capability (ACAP) 
Programmer Capability (PCAP) 
Applications Experience (AEXP) 
Platform Experience (PEXP) 
Language and Tool Experience (LTEX) 
Personnel Continuity (PCON) 

Project Use of Software Tools (TOOL) 
Multisite Development (SITE) 
Required Development Schedule (SCED) 

Scale Factors Precedentedness (PREC) 
Development Flexibility (FLEX) 
Architecture/Risk Resolution (RESL) 
Team Cohesion (TEAM) 
Process Maturity (PMAT) 

 
4.4 Step four:  Define relative significance 

The relative significance of each cost driver on productivity was determined for COCOMO II (Devnani-

Chulani 1999).  The COCOMO II parameters and the factors that form the parameters were rated from low to 

high as to their effect on the development effort.  For example, requirements understanding (indicated as 

RELY) was rated as high, while process maturity (indicated as PMAT) was rated from low to medium.  These 

efforts gave the model developers an early indication of how the model parameters of which parameters might 

be emphasized in the model and how they might interact together to provide a cost estimate for software 

engineers. 

 

4.5 Steps five and six:  Gather expert opinion & formulate a-priori model 

For COCOMO II, steps 5 and 6 were combined, as an a-priori model was initially formed, and then presented 

to experts in a Delphi process (Boehm 1981).  Using the parameters given in Table 2, the model developer and 

his team gathered data from eight experts from the field of software estimation.  These experts each had at least 

ten years experience with industrial project cost estimation.  The experts participated in a two-round Delphi 

process to assess the quantitative relationships, their potential ranges of variability, and to refine the factor level 

definitions (Chulani, Boehm et al. 1999).  During this Delphi process, the eight experts were asked to provide 

an estimate of the numeric value of each of the COCOMO II parameters.  



The data from this first round was collected and refined.  The experts were then presented with an opportunity 

to revise their numbers based on the submissions of the other experts during the second round of the Delphi 

process.  The detailed results of this study (Devnani-Chulani 1999) show that the initial set of parameters 

described in Table 2 were acceptable and were representative of real-world phenomena in the development of 

software systems (Chulani, Boehm et al. 1999). 

A rubric was defined for each of the COCOMO II parameters for the surveys that would be used to gather the 

data.  Model developers and industry experts took each parameter in Table 2 and defined six levels that could be 

measured for each.  The goal was to create a survey that could be easily understood by the different project 

managers and cost experts that would be taking the survey to provide the data for COCOMO II.  An example 

set of parameters can be seen in Table 3. 

 
Table 3.  Survey rubric of three COCOMO II parameters (Boehm 2003). 

Parameter Very Low Low Nominal High Very High Extra High 
PREC Thoroughly 

unprecedented 
Largely 

unprecedented 
Somewhat 

unprecedented 
Generally 
familiar 

Largely 
familiar 

Thoroughly 
familiar 

FLEX Rigorous Occasional 
relaxation 

Some 
relaxation 

General 
conformity 

Some 
conformity 

General 
goals 

RESL 20% 40% 60% 75% 90% 100% 
 

 
4.6 Step seven:  Gather project data 

From 1994 to 1997, data was gathered from 83 projects from commercial, aerospace, government, and non-

profit organizations (Devnani-Chulani 1999).  These organizations were affiliates of the Center for Software 

Engineering at the University of Southern California.  A survey form (Devnani-Chulani 1999) was used to 

gather and record the data.  This survey contained between 33 and 59 questions that varied by how much code 

reuse an organization had (Clark, Devnani-Chulani et al. 1998).  All the data that was collected was from 

completed projects.  Data collectors gathered this information through phone interviews, site visits, or through 

submission of completed forms.  Overall, the 83 data points ranged from 2 to 1300 KLOC in size, 6 to 11,400 

person months, and were completed over 4 to 180 months (Clark, Devnani-Chulani et al. 1998).  While this 

initial iteration of COCOMO II included these 83 projects, the total dataset currently for COCOMO II 

calibration exceeds 200 projects (Boehm, Horowitz et al. 2000).   

 

4.7 Step eight:  Calibrate a-posteriori model 

Using the data from the 1997 surveys of 83 completed projects, COCOMO II was calibrated using a multiple 

regression analysis (Clark, Devnani-Chulani et al. 1998; Devnani-Chulani 1999).  The value being estimated 

was human resources, in terms of person months, as a linear function of the various parameters mentioned in 

Section 4.2.  Equation 1 shows the regression equation created for COCOMO II: 
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where, A = Baseline multiplicative calibration constant; B = Baseline Exponential calibration constant, set at 

1.01 for the 1997 calibration; Size = Size of the software project measured in terms of KLOC or Function 

Points; SF = Scale Factor; and EM = Effort Multiplier (Devnani-Chulani 1999; Boehm, Horowitz et al. 2000).  

This particular iteration of the COCOMO II model was shown to be able to provide estimates within 30% of the 

actual human resource usage 60% of the time (Chulani, Boehm et al. 1999). 

The results of this study showed that some parameters were highly correlated, and it was decided to combine 

them to reduce the effort need to use the model.  These parameters included Analyst Capability and 

Programmer Capability (correlation coefficient of .7339), which were aggregated into Personnel Capability 

(PERS); and Time Constraints and Storage Constraints (correlation coefficient of .686), which were aggregated 

into Resource Constraints (RCON) (Devnani-Chulani 1999).  The next highest correlation (0.62) was between 

Precedentedness (PREC) and Development Flexibility (FLEX).  These two variables were not combined 

because the threshold value for combining parameters was a correlation coefficient of at least 0.65 (Clark, 

Devnani-Chulani et al. 1998; Boehm, Horowitz et al. 2000). 

 

4.8 Step nine:  Gather more data and refine model 

Based on the cost model review and technology forecast, a series of iterations began with the organizations 

involved with the development of COCOMO II to continue to gather data to converge on a set of functional 

forms and baseline cost drivers for the model.  The parameters themselves were deemed acceptable, but the 

model could be improved through a larger data set and with a better calibration technique.  To improve the 

calibration process, Devnani-Chulani investigated calibrating COCOMO II using Bayesian analysis (Devnani-

Chulani 1999).  During Bayesian analysis, initial data is used to create a post-data model that “learns” as more 

data is added back into it, using Bayes’ theorem.  This calibration technique provided a different set of 

coefficients for the parameters in the model.  More data was gathered from industry and government partners to 

create a new data set of 161 data points in 2000 (Devnani-Chulani 1999). 

 

4.9 Step eight:  Calibrate a-posteriori model – iteration 2 

Using the data collected from the latest set of surveys taken in 2000, the next iteration of COCOMO II 

(COCOMO II.2000 (Boehm, Horowitz et al. 2000)) was calibrated using a Bayesian analysis, as opposed to the 

regression analysis used in the previous iteration (Chulani, Boehm et al. 1999).   

For regression analysis to calibrate models with over twenty parameters, such as COCOMO II, with 

somewhat noisy software project data, it is likely that some of the determined parameters have weak statistical 

significance.  In such cases, if one also has the means and variances of the parameter values resulting from an 

expert-group Delphic process, a Bayesian combination of the data regression results and the expert Delphic 

results can produce a more robust result.  With the Bayesian combination, the a-posteriori parameter value will 

be closer to the more strongly-determined of the data-determined and expert-determined parameter values. 

COCOMO II.2000 has been shown to produce person month estimates within 30% of the actual value 75% of 

the time. However, if the model is calibrated specifically to a particular organization’s major sources of project 



data, the resulting model produces estimates within 30% of the actual value 80% of the time.  The models 

produced with COCOMO II.2000 are a significant improvement over the first iteration of COCOMO II, which 

could provide estimates within 30% of the actual values 60% of the time (Chulani, Boehm et al. 1999).   

 

5 STREW-J 

In this section, we illustrate the nine-step parametric modeling process by explaining the creation of the 

Software Testing Reliability Early Warning metric suite for Java (STREW-J).  At the time of its initial creation, 

the developers of this model were not aware of early versions of the parametric modeling process.  In a 

retrospective analysis, we find that the developers of this model created an effective model for estimating 

trouble reports in software and did, in fact, follow most of the steps of the parametric modeling process. As will 

be shown, several of the steps were revisited before a stable model was verified.   

 

5.1 Step one:  Determine model needs 

In early 2003, Nagappan et al. began work on utilizing various software testing metrics to provide an estimate 

of software defect density.  In industry, software defect density information becomes available too late in the 

development process to affordably guide corrective action.  Further, actual defect density cannot be measured 

until a product has been completed and then provided to the customer for use.  The longer a defect remains in a 

system, from design to coding to maintenance, the more expensive it becomes to correct the problem (Boehm 

1981).  Therefore, it would be highly beneficial for developers to receive information about software defect 

density earlier in the process.  

The main stakeholders for STREW-J include the model developers and the developers and managers from the 

project teams that were involved in this study.  The main goal of STREW-J is to provide an early estimate of 

software quality so that corrective action can be taken earlier in the development process to help improve 

overall software quality.  The success criteria for the STREW-J model was that it should be able to predict 

defect density within 5% of actuals. The metrics of STREW-J focus on aspects of the system such as testing, 

complexity, and size.  Prior studies (Vouk 1993; Basili, Briand et al. 1996; Chidamber 1998; Briand 1999; Tang 

1999; Briand 2000; El Emam 2001; Subramanyam 2003) have all leveraged the structural aspects of the code to 

make an estimate of field quality.  STREW-J utilizes structural aspects of the unit-testing effort as well.   

 

 

 

 

5.2 Step two:  Analyze existing literature 

The initial research for the STREW metric suite was performed in the Java programming language.  This was 

done due to the prevalence of Java and the use of automated testing tools, such as JUnit6, in academia and 

industry.   

                                                 
6 http://www.junit.org/ 



The initial STREW-J, Version 1.1 (Nagappan 2003), was formed using metrics derived from previous 

research found in literature.  These metrics included: 

• number of test cases/source lines of code (R1) is an indication of whether there are too few test cases written 

to test the body of source code; 

• number of test cases/number of requirements (R2) is an indication of the thoroughness of testing relative to 

the requirements;  

• test lines of code/source lines of code (R3) is an indication of whether the ratio R1 was misleading as there 

might have been fewer, but more comprehensive, test cases;   

• number of assertions/source lines of code (R4) serves as a crosscheck for both R1 and R2 because there are 

few test cases but each have a large number of assertions.  Assertions (Rosenblum 1995) are used in this 

metric as a means for demonstrating that the program is behaving as expected and as an indication of how 

thoroughly the source classes have been tested on a per class level; 

• number of test classes/number of source classes (R5) is an indication of how thoroughly the source classes 

have been tested; 

• number of conditionals (for, while, if, do-while, switch)/ number of source lines of code (R6) is an indication 

of the extent to which conditionals are used.  The use of conditional statements increases the amount of 

testing required because there are more logic and data flow paths to be verified (Khoshgoftaar 1990); 

• number of lines of code/number of classes (R7) is used as an indicator for estimating defect density when 

prior releases of the software are available so that any change in the relative class size can be analyzed to 

determine if the increase in the size of the class has be accompanied by a corresponding increase in the 

testing effort (El Emam 2001). 

These metrics are intended to capture and evaluate the quality of the testing effort of a development team.  R1-

R7 all deal with the ratio of testing effort to some measure of project size, which could be indicative of whether 

testing efforts were substantial enough to remove most defects (Nagappan 2003; Nagappan 2005).   

A review of pertinent literature indicated how different testing styles could potentially affect the STREW 

method.  For example, the test quantification metrics are specifically intended to crosscheck each other to 

account for coding/testing styles.  In this instance, one developer might write fewer test cases, each with 

multiple asserts (Rosenblum 1995) checking various conditions. Another developer might test the same 

conditions by writing many more test cases, each with only one assert. The metric suite is intended to provide 

useful guidance to each of these developers without prescribing the style of writing the test cases (Nagappan 

2005). The use of the STREW-J metrics is predicated on the existence of an extensive suite of automated unit 

test cases being created as development proceeds.  STREW-J leverages the utility of automated test suites by 

providing a defect density estimate.   

 

5.3 Step three:  Perform behavioral analysis 

While other defect density models utilize different factors that contribute to defect density, one of the main 

tenets of the STREW model is that software testing metrics can be used in-process to create an estimate of 



software defect density.  Therefore, the behavioral analysis for STREW-J was focused specifically on how the 

different aspects of testing affected defect density.  A sample of the behavioral analysis for defect density in a 

Java system as it relates to testing is shown in Table 4. 

 
Table 4.  Sample behavioral analysis for defect density for testing in a Java system. 

Rating Very Low Defect Density Very High Defect Density 
Test cases • Few test cases • Many test cases 
Test case asserts • Asserts that only exercise 

“success” behavior of the product 
or do not adequately cover the 
functionality of the product.   

• Asserts that exercise various 
behaviors of each requirement.  

Requirements • Test cases do not relate to 
requirements. 

• At least one test case per 
requirement 

Code coverage • Minimal coverage of important 
functions 

• 100% coverage 

5.4 Step four:  Define relative significance 

    For the development of STREW-J, relative significance was assigned to the parameters due to the desire to 

first gather initial data to explore the feasibility of building such a parametric model leveraging the testing 

effort.  This initial project data would help to determine which parameters are more important in the model 

(Nagappan 2005).  Based on our initial case study and follow up with industrial partners (Nagappan 2003) we 

determined that it was not possible to physically quantify requirements for commercial project. For this reason, 

the STREW-J metric involving requirements (R2) were removed from the initial model. 

 

5.5 Step five:  Gather expert opinion 

During the initial creation of the STREW-J model, specific expert opinion was not gathered a priori.  Expert 

opinion on the model was obtained from the community post-hoc during the peer-reviewed publication of “fast 

abstracts” of early versions of the work (Nagappan 2003; Nagappan 2003) in disseminating the results of the 

study.  

 

5.6 Step six:  Formulate a-priori model 

The a-priori model for STREW-J was determined by applying the mathematical form of a regression 

analysis7, which would be carried out once data from the project had been collected.  This is shown in Equation 

2. 

 

Defect density estimate= a + b*R1 + c*R2 + d*R3 + e*R4 + f*R5 + g*R6 + h*R7   (2)  

 

Tools were also defined for gathering metrics.  Borland’s Together IDE8 was used to gather some of the 

metrics, while other regular expression and line-of-code counting tools were used for the remainder.  

                                                 
7 SPSS was used for the purpose of statistical analysis. SPSS does not provide statistical significance beyond three decimal 
places. p=0.000 is interpreted as p<0.0005.   



 

5.7 Step seven:  Gather project data 

Once the initial model was created, the first feasibility study was performed to calibrate the model.  The 

feasibility study was carried out in a junior/senior-level software engineering course at NCSU in the fall 2003 

semester.  Students developed an open source Eclipse9 plug-in in Java.  Each project was developed by a group 

of four or five junior or senior undergraduates during a six-week final class project. The plug-in was required to 

have 80% unit test coverage via the JUnit unit test suite and for acceptance test cases to be automated via the 

FIT10 tool. A total of 22 projects were submitted; all were used in the analysis.   

The plug-ins were evaluated using a comprehensive set of 31 black-box test cases.  Twenty six of these were 

acceptance tests and were given to the students during development.  The 31 test cases included exception 

checking, error handling, and five boundary test cases that checked the operational correctness of the plug-in.  

The Nelson model (Nelson 1978) was used as a baseline comparison with the defect density estimation to show 

the accuracy of the STREW-J model versus an established model.    

 

5.8 Step eight:  Calibrate a-posteriori model 

Using the technique of data splitting, a random sample of 15 programs was selected to build the regression 

model, and the remaining seven programs were used to verify the prediction accuracy. The regression equation 

built had an R2 value of 0.405, (F=1.262, p=0.340) and is shown below in Equation 3. 

Reliability Estimate = 1.114 - 0.0842*R1 - 0.0118*R2 - 0.0247*R3 + 1.954*R4 - 0.0036*R5 – 2.301*R6 - 

0.0022*R7                                                                                                                                     (3) 

 
5.9 Step nine:  Gather more data and refine model 

After the results of the initial STREW-J parametric model were reviewed and published, revisions were made 

to the metrics in the model.  As will be discussed in Sections 5.10 and 5.11, a second literature search was 

conducted and more data was collected.   Additionally, research began to focus on industrial and open source 

projects.  The model developer altered the dependent variable for software quality from test failures/KLOC to 

trouble reports (TR) per KLOC to switch from a pre-release view of quality to a post-release (customer) view of 

quality.  A TR (Mohagheghi 2004) is a customer-reported problem whereby the software system does not 

behave as the customer expects. A TR is a more accurate reflection of the post-release field quality of the 

system normalized by the size of the code base and independent of the operational profile of the software.  

 

                                                                                                                                                       
8 http://www.borland.com/together/ 
9 Eclipse is an open source integrated development environment.  For more information, go to http://www.eclipse.org/. 
10 http://fit.c2.com/ 



5.10 Step two:  Analyze existing literature – iteration 2 

The model developer analyzed the results of the feasibility study and returned to literature to refine and add 

new metrics to the STREW-J model.  The metrics included in STREW-J Version 2.0 are shown in Table 5. 

 
Table 5:  STREW-J metrics 

Test quantification 
Number of Assertions 
SLOC* 

SM1 

Number of Test Cases 
SLOC* 

SM2 

Number of Assertions 
Number of Test Cases 

SM3 

_____(TLOC+/SLOC*)___ 
(Number of ClassesTest Number of ClassesSource) 

SM4 

Complexity and O-O metrics 
Σ Cyclomatic ComplexityTest 

Σ Cyclomatic ComplexitySource 

SM5 

Σ CBOTest 

Σ CBOSource 
SM6 

Σ DITTest 

Σ DITSource 
SM7 

Σ WMCTest 

Σ WMCSource 
SM8 

Size adjustment 
SLOC* ____________                                              
Minimum SLOC* 

SM9 

* Source Lines of Code (SLOC) is computed as non-blank, non-comment source lines of 
code 

+ Test Lines of Code (TLOC) is computed as non-blank, non-comment test lines of code 
 

Prior studies have found a strong correlation between cyclomatic complexity (SM5) and the number of test 

defects (Troster 1992).  Prior studies have also shown cyclomatic complexity to be related to software errors, 

fault-proneness and maintenance activities (Khoshgoftaar 1992; Munson and Khoshgoftaar 1992; Lanning 

1994; Khoshgoftaar 2002). The larger the inter-object coupling (SM6), the higher the sensitivity to change 

(Chidamber and Kemerer 1994). Therefore, maintenance of the code is more difficult (Chidamber and Kemerer 

1994). Prior studies have shown coupling between objects has been shown to be related to fault-proneness 

(Basili, Briand et al. 1996; Briand 2000). As a result, the higher the inter-object class coupling, the more 

rigorous the testing should be (Chidamber and Kemerer 1994).  The relationship between the depth of 

inheritance (SM7)  and fault-proneness (Basili, Briand et al. 1996; Briand 2000) was found to be strongly 

correlated. The relationship between the WMC (SM8)  as an indicator of fault-proneness has been demonstrated 

in prior studies (Basili, Briand et al. 1996; Briand 2000).  The final metric, SM9, is a relative size adjustment 

factor. Defect density has been shown to increase with class size (El Emam 2001).  Some metrics were removed 

in Version 2 because they did not contribute towards the estimation of post-release field quality and due to 

inter-correlations between the elements.  Additionally, the number of requirements (R2 in STREW 1.1) was 

difficult to gather because organizations often do not know the number of requirements implemented in a 



release.  The STREW-J metric suite is also used to provide color coded feedback (Nagappan 2005) to 

developers to identify areas that require further testing.  

Further, drawing general conclusions from empirical studies in software engineering is difficult because any 

process depends to a large degree on a potentially large number of relevant context variables.  For this reason, 

we cannot assume a priori that the results of a study generalize beyond the specific environment in which it was 

conducted (Basili, Shull et al. 1999).  Researchers become more confident in a theory when similar findings 

emerge in different contexts (Basili, Shull et al. 1999).   

 

5.11 Step seven:  Gather project data – iteration 2 

Data was gathered from 27 open source Java projects found on SourceForge11, an open-source development 

website, and five industrial projects from a company in the United States to calibrate STREW Version 2.0 

(Nagappan 2005).  The open source projects were selected from SourceForge based on their domain (all were 

software development tools), rate of active development, possession of automated unit tests, and TR logs 

availability.  The size range of the open source projects was from one to almost 80 KLOC.  These open source 

projects also had from one to hundreds of developers working on them at varying rates of development and with 

varying expertise.   

The industrial case study involved three software systems (five versions) with a company in the United 

States.  To protect proprietary information, the names and natures of the projects are kept anonymous. These 

projects were critical in nature because TRs could lead to loss of essential funds for the company.  In the 

industrial environment, failures found by customers are reported back to the organization. These TRs are then 

mapped back to the appropriate software systems.  Project sizes ranged from 13-504 KLOC, and team size 

varied from six to sixteen developers.  Over half had at least five years experience working in this field. 

Borland’s Together IDE was used to gather some of the complexity metrics, while other regular expression 

and line-of-code counting tools were used for the remainder.  These metrics were then compiled for analysis. 

 

5.12 Step eight:  Calibrate a-posteriori model – iteration 2 

The model developer used two-thirds of the open-source projects to build and calibrate the prediction model 

using a regression analysis and the remaining one-third to evaluate the fit of the model. Of the 27 projects, 18 

projects were used to build the model and the remaining nine projects to evaluate the built model.  The random 

split was conducted nine times to verify data consistency, i.e. to check if the results of the analysis were not a 

one time occurrence. This random-splitting was not performed with the academic projects feasibility study.   

Principle component analysis (PCA) was used to help remove the multicollinearity exhibited in the STREW 

metrics model.  For PCA to be applicable, the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy 

should be greater than 0.6 (Brace 2003). The KMO measure of sampling adequacy is a test of the amount of 

variance within the data that can be explained by the measures.  The KMO measure of sampling adequacy was 

found to be  0.764 indicating the efficacy of the applicability of PCA.  PCA of the nine STREW metrics yielded 

                                                 
11 http://www.sf.net/ 



two principal components.  Thus, while the final STREW model uses the metrics listed in Table 5, they are 

converted into independent parameters (principle components) in the equation itself. 

Figure 2 shows the complete model fit for all the 27 open source projects built using the principal 

components of the STREW metrics as the independent variable and the post-release failure density as the 

dependent variable. Similar to the academic case studies, the model built is statistically significant (R2=0.428, 

(F=8.993, p=0.004)) 

 
Figure 2: Model fitting results for PCA 

 
The STREW model used was calibrated to the open source projects to predict the TRs of the industrial 

software systems. Figure 3 indicates the prediction plots obtained using PCA. The axes are removed to protect 

proprietary information.  

 
Figure 3: Prediction plots with PCA 

 
All the projects were considered critical for this organization, so extra effort was put forth in ensuring that 

TRs would be low.  Also, note that Figure 4 indicates that the predicted value closely overlaps the actual TRs 

and bounds for Projects 1A-2B.  However, Project 3 may not be a comparable project since it is a small, core 

module that was developed for use in future software projects.  Project 3 was rigorously tested, comparably 

more so than the other projects, in order to decrease the number of TRs in future projects that would incorporate 



it.  Even though the sample size is small (only 5 projects), the correlation results of the actual and estimated 

post-release failure density (Pearson correlation coefficient = 0.962 / p = 0.009 and Spearman correlation 

coefficient = 0.500 / p = 0.391) shows the efficacy of the model. These results indicates the efficacy of the 

sensitivity of prediction model but is limited by the small sample size of the available projects.  

 

6 STREW-H 

Based on the work of STREW-J, Sherriff et al. began exploring how the concepts of the STREW method 

would translate to a functional programming language.  To this end, research began in late 2003 on the 

STREW-Haskell, or STREW-H, parametric suite.  In this section, we illustrate the nine-step parametric 

modeling process in iteratively guiding the STREW-H model development and refinement  

 

6.1 Step one:  Determine model needs 

The STREW-H model began as a refinement of the STREW-J.  Thus, as with STREW-J, the main goal of 

STREW-H is to provide an early estimate of software quality so that corrective action can be taken earlier in 

the development process to help improve overall software quality.  However, the STREW-H metric suite also 

deals with metrics such as complexity and size, along with the testing metrics previously introduced by 

STREW-J.   

We determined that the model needs and success criteria for STREW-H were the same as the needs of 

STREW-J, with the exception of the language that we would be working with.  The stakeholders included the 

model developer, Galois Connections, Inc. (the system developer and data provider), and the National Science 

Foundation (which funded the research). 

 

6.2 Step two:  Analyze existing literature 

Since STREW-H began as a direct refinement of STREW-J, and because of our initial unfamiliarity with 

Haskell, the original metrics for the STREW-H were the same as those from STREW-J Version 1.1.  Using 

these metrics as the starting point, we proceeded to recreate this parametric model for use with a functional 

programming language.  Once we began analyzing the literature, we discovered that STREW-H had its own 

unit testing software, HUnit (Herrington) and QuickCheck (Classen and Hughes 2000).  Thus, STREW-H was 

modified to work with the data provided by these software tools.  We also found other metrics that were used in 

previous studies to help predict the quality of Haskell programs.  For example, type signatures are in Haskell 

what method declarations are in Java, except that type signatures are not necessarily required by the Haskell 

compiler (Harrison, Samaraweera et al. 1995).  While a lack of type signatures could allow more flexibility for 

a programmer to allow different data types in a function, it was considered a better practice to include type 

signatures for each function.   

The initial STREW-H Version 0.1 metrics derived from STREW-J and literature included the following: 

 



• number of QuickCheck properties (Classen and Hughes 2000) and test case asserts / source lines of code 

(M1) is the total number of different test cases and gives information about the overall testing effort; 

• number of type signatures / source lines of code (M2), much like the number of functions defined in a Java 

program, helps show the complexity of the system; 

• number of test cases / number of requirements (M3) shows the general testing effort with regard to the scope 

of the system as a whole; 

• test lines of code / source lines of code (M4) shows the general testing effort with respect to the size of the 

system. 

Expert opinion would be needed to validate the inclusion of these metrics, and to suggest other possible metrics 

for the STREW-H. 

 

6.3 Step three:  Perform behavioral analysis 

The behavioral analysis for defect density in a Haskell system is shown in Table 6.  While many aspects of 

this analysis are similar to that of STREW-J, there were specific concepts that were introduced specifically for a 

functional language. 

Table 6.  Initial behavioral analysis for defect density for a Haskell system. 
Rating Very Low Defect density Very High Defect density 
Testing • No test procedures 

• Many requirements untested 
• Ad-hoc testing / no use of HUnit, 

QuickCheck, etc. 
• Minimal stress / off-nominal tests 
• Low test LOC/SLOC 

• Detailed test procedures and QA 
• Extensive stress / off-nominal 

tests 
• Automated unit testing 
• High test LOC/SLOC 

Compiler Warnings • Excessive warnings • No warnings 
Type Signatures • No type signatures • Type signatures for all methods 

 
6.4 Step four:  Define relative significance 

Based on our analysis of the literature and our experience with STREW-J, we determined that the metrics in 

STREW-H would behave in a similar manner to those in STREW-J.  Thus, our initial reasoning was that testing 

effort would impact defect density the most, with type signatures next, and compiler warnings last. 

 

6.5 Step five:  Gather expert opinion 

As we started to gather expert opinion on our model, we began to see how the two models would begin to 

move apart from one another.  In January of 2004, interviews were conducted with 12 Haskell researchers at 

Galois Connections, Inc.12 and with members of the Programatica team13 at The OGI School of Science & 

Engineering at the Oregon Health and Science University (OGI/OHSU) to elicit expert opinion on the initial 

version of the STREW-H metric suite.  We found that due to the nature of Haskell, more common Java errors 

                                                 
12 http://www.galois.com 
13 http://www.cse.ogi.edu/PacSoft/projects/programatica/ 



such as type errors or null pointer exceptions did not exist.  Even though versions of unit testing tools, such as 

HUnit (based on JUnit), existed, they were not used prevalently because most defects were discovered during 

system-level testing.  Therefore, we determined that we required other types of metrics besides those mainly 

based on testing efforts to create our prediction.  The suggested metrics from the Haskell experts included 

structural and testing concepts that are unique to functional languages.  Using these suggestions, more 

background research was performed to validate the inclusion of these potential metrics in the STREW-H.  

From gathered expert opinion and literature consulted, the following seven metrics were added to complete 

the STREW-H Version 0.1: 

• monadic instances of code / source lines of code (M5), identified as a common source of problems in 

Haskell programs, provides information on likely problem areas; 

• number of overlapping patterns / source lines of code (M6) shows the relative number of times that a pattern 

will never be reached because another pattern will overtake it, which is commonly a programmer error; 

• number of incomplete patterns / source lines of code (M7) shows the relative number of patterns that will not 

complete because a case is not being covered; 

• number of missing signatures / source lines of code (M8) shows the relative number of functions that do not 

have type signatures, a good programming technique; 

• number of name shadowing / source lines of code (M9) shows the relative number of variables that have a 

variable of the same name in the same scope; 

• number of unused binds / source lines of code (M10) shows the relative number of functions that were 

unused in the system; 

• number of unused imports / source lines of code (M11) shows the relative number of imported modules that 

were unused in the system; 

 

6.6 Step six:  Formulate a-priori model 

Similarly to STREW-J, the a-priori model for STREW-H was determined by applying the mathematical form 

of a regression analysis, which would be carried out once data from the project had been collected.  This is 

shown in Equation 4. 

 

Failures/KLOC = a + b*M1 + c*M2 + d*M3 + e*M4 + f*M5 + g* M6 + h*M7 + i*M8 + j*M9 + k*M10 + 

l*M11   (4) 

 

Tools were also defined for gathering metrics.  Various LOC counting tools, such as SLOCCount,14 and 

lexical analyzers, such as EditPlus,15  were used to the metrics.  The metrics would be gathered on a static code 

                                                 
14 SLOCCount, David Wheeler  http://www.dwheeler.com/sloccount/  
15 EditPlus.  http://www.editplus.com/  



base at a specified point in the project.  Specifically, snapshots of the code base would be taken at regular two-

week intervals to assess development in-process. 

 

 

6.7 Step seven:  Gather project data 

A subset of four metrics was gathered on seven different versions of the Glasgow Haskell Compiler (GHC) 

(Versions 4.08, 5.00.2, 5.02.2, 5.04, 5.04.3, 6.0, and 6.0.1).   The system was around 200 KLOC in size.  Only 

four metrics were gathered (M2 – M5) due to constraints on our ability to gather the other metrics at that time.  

GHC is hosted on SourceForge.net16 an open source development website.  The website provides information 

on defects reported by version for a particular project.  Defects had been reported for all versions included in 

this study, except for version 4.08, which was under development before the project was hosted on 

SourceForge.  Defects from this version were taken from the GHC bugs mailing list archive17. 

 

6.8 Step eight:  Calibrate a-posteriori model 

A multiple regression analysis18 was performed on these four metrics to determine if they were indicative of 

the number of defects that were found for each version.  Six of the seven versions of GHC were randomly 

chosen to formulate the coefficients in the regression model, Equation 5.  The regression equation was found to 

be: 

Defects/KSLOC = .08  –  .0762*(M2) + .0002*(M3) + .607*(M4) + .0113*(M5 )                 (5) 

 

The results of the study (p < .0451) show the model was statistically significant.  Using this equation, the 

estimated defect density for the seventh version is 0.04 defects/KLOC, while the actual defect density was 0.07 

defects/KLOC.  The equation was fairly accurate in predicting the number of defects.   

 

6.9 Step nine:  Gather more data and refine model 

The results of this study prompted further research with STREW-H.  Based on the data we received regarding 

the various metrics and feedback from the Haskell experts, new metrics were added and old ones were refined 

to create a smaller, easier-to-use suite that still provided the same quality of information.  This analysis 

prompted us to refine our metric suite to five metrics that cover both testing information and coding standards 

specific to the Haskell programming language.  Our current version of STREW-H, Version 0.2 (Sherriff, 

Nagappan et al. 2005), is as follows: 

• test lines of code / source lines of code (M1) includes HUnit, QuickCheck, and ad host tests and shows 

the general testing effort with respect to the size of the system; 

                                                 
16 http://sourceforge.net/projects/ghc/  
17 http://www.haskell.org/mailman/listinfo/glasgow-haskell-bugs  
18 SPSS was used for the purpose of statistical analysis. SPSS does not provide statistical significance beyond 3 
places of decimal. p=0.000 is interpreted as p<0.0005. 



• number of type signatures / number of methods in the system (M2) shows the ratio of methods that 

utilize type signatures, which is a good programming practice in Haskell; 

• number of test cases / number of requirements (M3) includes HUnit, QuickCheck, and ad host tests and 

shows the general testing effort with regard to the scope of the system;  

• pattern warnings / KLOC (M4) shows some of the most common errors in Haskell programming and 

includes common errors in the creation of recursive methods, such as incomplete patterns and 

overlapping patterns; 

• monadic instances of code / KLOC (M5), identified as a source of problems in Haskell programs, 

provides information on likely problem areas. 

6.10 Step seven:  Gather project data – iteration 2 

To validate STREW-H Version 0.2, we worked with Galois Connections, Inc., during the seven-month 

development of an ASN.1 compiler system (Sherriff, Nagappan et al. 2005).  The project was a proof-of-

concept ASN.1 compiler (about 20 KLOC) that could show that high-assurance, high-reliability software could 

be created using a functional language.  During the course of the project, 20 in-process snapshots of the system 

were taken at one- or two-week intervals over the seven-month period.  Also, logs were kept on the code base, 

indicating when changes needed to be made to the code to rectify defects that were discovered during the 

development process. 

 

6.11 Step eight:  Calibrate a-posteriori model – iteration 2 

A multiple regression analysis19 was utilized to calibrate the model created with the five metrics of the 

STREW-H and the number of in-process defects that were corrected and logged in the versioning system by 

Galois.  We calibrated the parametric model with 14 random in-process snapshots of the system and used this 

model to predict the remaining six snapshots’ defect densities.  This data splitting was done five separate times 

with a different randomly-chosen set of 14 snapshots to help remove any bias.  The analysis showed that future 

defect densities in the system could be predicted based on this historical data of the project with respect to the 

STREW-H metric suite.   

The R2 values from the five models were as follows: 

• 0.943 (F=26.304, p<0.0005);  

• 0.930 (F=21.232, p<0.0005); 

• 0.962 (F=25.206, p<0.0005); 

• 0.949, (F=29.974, p<0.0005); and 

• 0.967 (F=42.237, p<0.0005).   

                                                 
19 SPSS was used for the purpose of statistical analysis. SPSS does not provide statistical significance beyond three decimal 
places. p=0.000 is interpreted as p<0.0005.   



The results of the regression model showed that the STREW-H metrics are associated with the number of 

defects that were discovered and corrected during the development process.  Using the parametric model, the 

defect density of the remaining six snapshots was predicted to be as shown in Figure 5.  The graph in Figure 5 

shows the closeness of the fit of the regression equation.  Five of the six predictions were within 3 

defects/KLOC, but one prediction was .8 defects/KLOC away from the actual value.  We believe this occurred 

for this particular snapshot because it occurred during a time when new code development dropped and test 

code development increased.  This change in their general weekly development methodology contributed to this 

outlier.  For this model, the average absolute error is .299 and the average relative error is 14.091. 

 

Case Number

654321

D
ef

ec
ts

 / 
K

LO
C

2.5

2.0

1.5

1.0

.5

0.0

-.5

Actual

Prediction

LCL

UCL

 
Figure 5: Actual vs. Estimated Defects/KLOC 

 
 

7 MODEL COMPARISON 

In Table 7, we provide an overview of how the three parametric models in this study utilized each step in the 

parametric modeling process.  This comprehensive guide summarizes the information presented in Sections 4 

through 6. 



Table 7.  Model comparison. 
Framework 

activity 
COCOMO STREW-J STREW-H 

Determine 
model needs 

• Provide cost and schedule 
estimates for current and 
future projects. 

• Be flexible enough to be 
tailored to a specific 
organization. 

STREW metric suite 
leverages the testing effort 
to: 
• Make an early estimate 

of an external measure 
of post-release filed 
quality 

• Provide test quality 
feedback to identify 
areas that require more 
testing 

• Identify low quality 
components early in the 
development process to 
affordably guide 
corrective actions. 

STREW metric suite 
leverages the testing effort 
to: 
• Make an early estimate 

of an external measure 
of post-release filed 
quality 

• Provide test quality 
feedback to identify 
areas that require more 
testing 

• Identify low quality 
components early in the 
development process to 
affordably guide 
corrective actions. 

Analyze 
existing 
literature 

person-hours, software 
complexity, development 
methodologies, other cost and 
schedule factors 

assertions, cyclomatic 
complexity, CK metric suite 

Haskell, HUnit, 
QuickCheck, monads, type 
signatures 

Perform 
behavioral 
analysis 

Results found in (Devnani-
Chulani 1999) 

See Table 4 See Table 6 

Define 
relative 
significance 

Results found in (Devnani-
Chulani 1999) 

Requirements noted to be a 
minimal contributor. 

Based off of the results of 
STREW-J. 

Gather expert 
opinion 

Worked with numerous 
collaborators in industry to 
solicit expert opinion. 

Gathered opinion from peer 
review during the 
dissemination of the work. 

Gathered opinion from 
Haskell-specific research 
groups and software 
development firms. 

Formulate a-
priori model 

A two-phase Delphi method 
was used in conjunction with 
the “Gather expert opinion” 
step to create the initial model. 

Initial model based on 
mathematical formula of 
regression analysis using the 
metrics derived from 
literature. 

Initial model based on 
mathematical formula of 
regression analysis using the 
metrics derived from 
literature and expert 
opinion. 

Gather project 
data 

Project data was gathered on 
numerous projects in industry 
and government. 

Project data was gathered on 
27 academic projects. 

Project data was gathered on 
an open source Haskell 
project. 

Calibrate a-
posteriori 
model 

• Multiple regression 
• Bayesian calibration 

• Multiple regression 
• PCA 

• Multiple regression 
• PCA 

Gather more 
data; refine 
model 

COCOMO II became 
COCOMO II.2000 after 
gathering data from more 
projects and using a Bayesian 
calibration method. 

STREW-J 1.1 became 
STREW-J 2.0 after gathering 
data from open-source and 
industrial projects. 

STREW-H 0.1 became 
STREW-H 0.2 after gathering 
data from an industrial project. 

8 CONCLUSIONS 

 In software engineering, parametric models usually deal with the estimation of a software project’s schedule, 

costs, or potential quality.  In this paper, we have presented a process for building and verifying parametric 



models in software engineering.  We have also analyzed the creation three particular parametric models using 

this framework.  Boehm’s COCOMO model has been built and refined over the course of more than 25 years to 

be an effective estimator of software project cost factors, and has been calibrated for use on numerous different 

types of software projects.  The STREW-J and STREW-H models were created semi-concurrently, building off 

each other.  The two models were calibrated to a much more narrow scope of systems, and certain companies in 

particular.  They were shown to be effective estimators of software defect density. 

While each follows the process in a different way, these three models demonstrate the utility of the nine-step 

process for building parametric models in software engineering.  The process, while general enough to allow 

developers freedom in their approach, describes steps that can help direct model developers efforts so that 

important concepts are not overlooked.  These steps are intended to be used as general guidelines, but the steps 

can and should be rearranged, combined, or omitted as necessary for a given project.  For example, expert 

opinion was extremely important to COCOMO II in that it was used heavily in building the model through a 

Delphi process, and then it was used as the actual data for the model as well.  STREW-H needed expert opinion 

to create the model since the model developer was not as familiar with the language.  The model developer in 

STREW-J, however, only garnered expert opinion later in the process when validating the model.  Each of these 

steps in the parametric modeling process provides different information for the model and can be emphasized in 

different ways.  This flexibility in the process makes this parametric modeling process an effective tool for use 

in empirical software engineering. 
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