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Abstract—
This paper proposes the use of four-transistor (4T) cache

and branch predictor array cell designs to address increasing
worries regarding leakage power dissipation. While 4T de-
signs lose state when infrequently accessed, they have very low
leakage, smaller area, and no capacitive loads to switch. This
short paper gives an overview of 4T implementation issues and
a preliminary evaluation of leakage-energy savings that shows
improvements of 60-80%.

I. INTRODUCTION

Although dynamic (switching) power is the dominant
source of power dissipation today, static (leakage) power
is increasing exponentially and is projected to become se-
vere over the next several technology generations, with
some estimates as high as 50% or more of total power
within five years. The largest source of leakage power is
in large array structures, of which caches and branch pre-
dictors are among the largest. A variety of recent work
has proposed techniques to identify unused portions of the
cache and place them in a low-leakage standby mode, in-
cluding both state-losing techniques like gated-Vdd/cache-
decay [12], [19] and state-preserving techniques like dual-
Vdd “drowsy-cache” [7] and leakage-biased bitlines [9].
The risk of state-losing techniques is that premature deacti-
vation may lose useful data, incurring a later induced cache
miss. State-preserving techniques avoid this problem but
have higher standby leakage currents. All these techniques
have the potential problem of large capacitive loads that
must be switched when moving between active and standby
modes.

All cache leakage-control techniques so far have been
based on traditional six-transistor (6T) SRAM cells. In this
paper, we propose an alternative leakage-control technique
based on four-transistor (4T) cells which are not static. 4T
cells have been proposed before for several uses, includ-
ing that of high-density on-chip caches [3], [13], but this
paper focuses on the advantages of a 4T design for control-
ling leakage. Although a 4T implementation, like 6T gated-
Vdd decay techniques, loses state, it has very low leakage,
smaller area, and no capacitive loads to switch. In addi-
tion, as process technology advances, leakage is likely to
rise faster for 6T cells than for 4T cells which use longer-
channel transistors. In [11] we introduced a 4T design for
branch predictors. In this paper, we show how to implement
leakage savings using 4T cells for caches, give preliminary
evaluation for both caches and branch predictors to suggest
that 4T designs are an attractive way to manage leakage in
array structures, discuss some implementation issues, and
conclude with future work ideas.

II. EXPERIMENTAL SETUP

Simulations in this paper are based on the SimpleScalar
3.0 and Wattch 1.02 toolkits [1], [2]. Our model processor
has microarchitectural parameters that resemble in most re-
spects the Intel PIII processor [4]. The main processor and
memory hierarchy parameters are shown in Table I. For
state-losing techniques, our simulations capture the extra
delay and dynamic energy dissipation of induced misses.

Results are evaluated using benchmarks from the SPEC
CPU2000 suite [16]. Benchmarks are compiled and stat-
ically linked for the Alpha instruction set using the Com-
paq Alpha compiler with SPEC peak settings and include all
linked libraries. For each program, we skip the first billion
instructions to avoid unrepresentative behavior at the begin-
ning of the program’s execution. We then simulate 200M
(committed) instructions using the reference input set.

Processor Core
Instruction Window 40-RUU, 16-LSQ
Issue width 4 instructions per cycle
Functional Units 4 IntALU,1 IntMult/Div,

4 FPALU,1 FPMult/Div,
2 MemPorts
Memory Hierarchy

L1 D-cache Size 32KB, 1-way, 32B blocks, 3-cycle latency
L1 I-cache Size 16KB, 4-way, 32B blocks, 3-cycle latency
L2 Unified, 256KB, 8-way LRU,

32B blocks,8-cycle latency, WB
Memory 100 cycles
TLB Size 128-entry, 30-cycle miss penalty

TABLE I
CONFIGURATION OF SIMULATED PROCESSOR.

To derive concrete values for leakage currents and any
dynamic-power overheads, we conducted circuit-level sim-
ulations with 6T and 4T library cells from Agere’s COM2
(160nm, 1.5V), COM3 (120nm, 1.0V), and COM4 (100nm,
1.0V) processes. Because leakage current is exponentially
dependent on operating temperature, we conduct our studies
at ��Æ C. Circuit simulations were conducted using Cadence
version 2.8.4 tools at a 25 picosecond resolution.

In this paper, we only evaluate 4T techniques in com-
parison to a baseline 6T implementation without leakage
control because of the difficulties in accurately estimating
the cost for switching a row in a 6T RAM array between
active and standby states for various leakage-control tech-
niques as well as the areas or access times of the different
implementations. These are necessary for comparison to
recently-proposed leakage-control techniques like drowsy
cache [7], which uses two power supplies. As 4T cells
decay of their own accord, at the circuit-level these model-
ing problems do not arise. In [11], we compared the leakage
savings between 6T/gated-Vdd and 4T implementations of



a branch predictor (i.e., both state-losing techniques) and
found that not only does the 4T design avoid the need to
switch heavily-loaded gating transistors, but also gives bet-
ter leakage savings than the 6T design. Comparing 4T tech-
niques to state-preserving techniques is an area for future
work.

III. DECAY WITH 4T RAM CELLS

Quasi-static cells have been previously proposed and
used for a number of reasons [8], [14]. First, they offer a
method for easily implementing dynamic RAM (DRAM) in
a logic fabrication process [15], [17], especially in embed-
ded systems where the technology is known as EDRAM.
Second, since the charge they store naturally decays over
time, they are a natural candidate for implementing “cache
decay” [12] or “branch predictor decay” [11].

This section examines a way of avoiding the disadvan-
tages of the gated-Vdd approach by using quasi-static four-
transistor memory technologies for decay applications. Be-
cause of their use as embedded DRAM in some designs, 4T
cells are already present in many design libraries, We use
the cells as they appear in the Agere Systems design library.

A. The Quasi-Static 4T Cell

Basic 4T DRAM cells are well established and described
in introductory VLSI textbooks [18]. 4T cells are similar
to ordinary 6T cells but lack two transistors connected to
Vdd that replenish the charge that is lost via leakage (Fig-
ure 1). Using exactly the same transistors as an optimized
6T design, the 4T cell requires only 69% of the cell area [5].
Performance-wise the 4T cell is virtually the same; while
our data demonstrates a slight speed disadvantage, the dif-
ference is so small that coupled with the smaller amount of
parasitic interconnect, the difference essentially disappears.

More importantly, 4T DRAM cells naturally decay over
time (without the need to switch them off); once they lose
their charge they leak very little since there is no connection
to Vdd. However, some secondary leakage via the access
transistors still remains due to bit-line precharging which
we do take into account in our transistor-level simulations.
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Fig. 1. The 6T SRAM cell (left) and the 4T quasi-static RAM cell (right).

4T cells are automatically refreshed from the precharged
bit lines whenever they are accessed. When a 4T cell is ac-
cessed, its internal high node is restored to high potential,
refreshing the logical value stored in it; there is no need
for a read-write cycle as in 1T DRAM. As the cell decays
and leaks charge, the voltage difference of its internal nodes
drops to the point where the sense amps cannot distinguish
its logical value. This occurs when the node voltage differ-
ential drops below a threshold; as a conservative setting, on

the order of 100 mV (for 1.5V designs). Below this thresh-
old we have a decayed state, where reading a 4T DRAM
cell may produce a random value—not necessarily a zero.
Over a long time the cell reaches a steady state where both
the high node and the low node of the cell “float” at about
30 mV (for 1.5V designs).

4T cells possess two characteristics fitting for decay: they
are refreshed upon access and decay over time if not ac-
cessed. In the rest of this section we discuss extensively the
4T decay design, including decay or hold times, dynamic
energy, metastability, and other considerations.

B. Retention Times In 4T Cells

The critical parameter for a 4T design is retention time.
Retention time is defined as the time from last access to the
time when the internal differential voltage of the cell drops
below the detection threshold. Retention time depends on
the leakage currents present in the 4T cell which in turn
depend on process technology variations and temperature.

To study retention times in 4T cells we use Agere’s
COM2 0.16u CMOS process for which we have accurate
transistor models. We use COM2 because it is the most
modern of the four COM processes that are available to val-
idate our models against real measurements. Though this
particular technology does not suffer excessively from leak-
age, our analysis scales to future generations. We target an
operating temperature of ��Æ C but also discuss mechanisms
to adjust in high temperatures (���Æ C).

Finally, as shown in Table II, selecting 3.3V I/O
transistors—readily available in COM2 technology—to re-
place the 1.5V transistors while maintaining 1.5V biasing
in the 4T cells significantly extends retention times at the
expense of increased cell area. Even in this case the 4T cell
area is still less than that of the 6T cell. (There is roughly
an 18% difference.) Building 4T cells out of 3.3V-sized
transistors while operating them at 1.5V is feasible because
of the nature of the 4T cell which acts as a placeholder for
charge. The same cannot be done for an active 6T circuit
(two cross-coupled inverters) which requires its transistors
to be fully biased to work correctly.

standard 4T slow-decay 4T
Temperature 25C 85C 125C 25C 85C 125C
Hold Time(ns) 18K 1.7K 0.56K 1M 57.2K 9.4K

TABLE II
HOLD TIMES IN NS FOR STANDARD AND SLOW-DECAY VERSIONS OF

4T CELLS. FOR A 1 GHZ (1 NS CYCLE TIME) PROCESSOR, ONE CAN

CONSIDER THESE RETENTION TIMES AS CYCLE COUNTS.

Based on these assumptions, we determine retention
times for our technology through detailed transistor-level
simulations. We simulate an access to a cell, followed by
a long period in which the cell is left unread. During this
time, leakage causes the cell’s internal nodes to lose charge.
As mentioned above, we use 100 mV as value criteria for
the minimum voltage we would expect the sense amps to
distinguish. Retention times in nanoseconds for the COM2
process appear in Table II. In future generations, we expect
that cycle times will continue to drop, while leakage will
increase. Therefore, to first order, retention times counted
in cycles will go down slowly if at all.

The success of a 4T design depends on matching reten-
tion times to access (i.e., “refresh”) intervals. A further way



to affect retention times is to add devices such as resistors or
capacitors to the basic 4T cell [6]. Such devices can be used
to slowly replenish the lost charge. If the rate of replenish-
ment is less than the leakage, the cell will still decay albeit
much more slowly, and retention time can be extended sig-
nificantly. This could be especially useful in designing a 4T
L2 cache, where access frequencies are lower.

C. Cache Decay Considerations

As mentioned, reading a decayed cache line will produce
a value, albeit random. This necessitates the use of decay
counters. In 4T designs, the decay counters are used not
to “switch off” cache lines (since this is unnecessary) but
rather to indicate via the stable (6T SRAM) valid bits when
the values of the 4T cells become unreliable because of their
natural decay. The decay counters are set to prevent read-
ing a cache line after the retention time has elapsed, to pre-
vent the possibility of error or metastability from reading
decayed data. We use the same hierarchical counter struc-
ture discussed in [12], with a global counter and cascaded
local counters per cache line. The global counter avoids
the need for large per-line counters; the local counters are
incremented every time the global counter rolls over, and
the line is regarded as unsafe to use after the local counter
saturates. The global counter here plays an important role:
it is via the global counter that we adapt to operating tem-
perature. A temperature-sensing circuit can adjust the rela-
tive magnitude of the global counter to account for progres-
sively smaller hold times with higher temperatures. In the
case where the hold time becomes unacceptably low, refresh
must be used to preserve performance.

For decay counters, more bits afford finer granularity for
decay, but also consume more leakage energy and require
more area. When the hold time is large (tens of thousands
of machine cycles for GHz clocks) the local cache-line de-
cay counters can be very coarse grained (i.e., with very low
resolution). In this case single-bit local cache-line decay
counters can be used. The global counter ticks at a period
half the hold time. Since the last access to a cache line in
relation to the next global tick pulse is unknown, decay in-
tervals range from half hold time to a full hold time. On
average, for a random access the decay interval is 3/4 of the
hold time.

Another important issue here concerns writeback of dirty
data. A simple solution is to require the writeback of any
dirty data (indicated by the dirty bit) at the point when its lo-
cal counter reaches the decayed state. The action of writing
back the data actually refreshes and cleans the data. Thus,
in this design written data have larger decay intervals than
unwritten data.

D. Branch Predictor Design Considerations

Because RAM arrays are typically close to square in their
aspect ratio, with branch predictors, a row in the RAM ar-
ray contains potentially unrelated predictor values. Yet, as
shown in [10], there is enough temporal and spatial local-
ity in a row of two-bit counters to make cache-decay tech-
niques applied to rows be effective for branch predictors as
well. The more important difference is that in contrast to
cache data, branch-predictor data are not true machine state,
meaning that we can potentially eliminate the decay coun-
ters. If we unknowingly read a decayed value and get a

random prediction as a result, it only induces a performance
effect and does not affect correctness. Yet if we directly read
possibly decayed values, this introduces a possible metasta-
bility concern. Many techniques exist for preventing this;
one technique we proposed in [11] is to add a dummy col-
umn in the 4T RAM array with a voltage comparator (set to
100 mV or some more conservative value) that will gate off
the sense amplifiers and instead force the branch-predictor
output to a fixed value, e.g. not-taken. This is the model we
adopt for our evaluation in the next section.

IV. RESULTS

A. Results for 4T-based Caches

To demonstrate with a more concrete example the feasi-
bility of the 4T design, we simulate the L1 instruction and
data caches. For our experiments, we simulate with a 3.3V
sized 4T cell, giving us a 57,200 cycle decay interval at
1 GHz and ��

ÆC. For the decay counters, we use a 1 bit
counter.

The L1 instruction cache is the easier of the two cases to
build; as a read-only structure, we need not be concerned
with writebacks. Thus, the only effect is a negligible in-
crease in the miss rate. The average miss rate of the stan-
dard, non-decaying L1 I-cache is 0.522%; for the 4T ver-
sion, it is 0.536%, and so decay causes applications to run
less than 0.25% slower on average. For this performance
hit, however, we gain massive savings in leakage energy;
fully 80% of the L1 instruction cache, on average, would be
decayed. In other words, we consume only 20% the leak-
age power of a normal cache, yet provide virtually the same
performance.

To further illustrate the application of 4T cells in caches,
we can examine the data cache. The data cache is somewhat
more difficult to design than the instruction cache; if the
data cache is writeback, there exists the possibility that dirty
data will decay before it is written back to memory, so we
write back the line before it decays. Furthermore, we must
be able to ensure that the data will be transferred to a write
buffer before it is lost. The decay counter thus serves two
purposes—to signal when a block is decayed, as well as to
initiate the writeback process when the dirty bit is on.
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Fig. 2. Normalized leakage energy of a 1 bit 4T decay cache; lower is
better.

In the D-cache, as in the I-cache, miss rate increases only
negligibly. The overall miss rate of a standard L1 D-cache
is 8.2%, versus 8.3% for the 4T based D-cache. With less
than a 0.1% increase in the miss rate, decay causes applica-
tions to run just under 0.02% slower overall. In return for
a virtually negligible hit in performance, we decay approx-
imately 63% of the D-cache; that is, we save 37% of the
leakage energy for almost no cost in performance.



Figure 2 summarizes the energy savings and shows the
normalized leakage energy of the decay caches. If the ex-
tra dynamic power cost of a slower-running application is
higher than the total leakage energy savings, then decay is
not worth it. Figure 2 shows the tradeoff cost for the three
transistor technologies mentioned earlier; 1.0 is the break-
even point, and a result less than 1.0 represents a net sav-
ings. As we can see, decay posts a net savings in energy for
all technologies shown.

B. Results for 4T-based Branch Predictors

We now examine the leakage and performance impact of
branch predictor decay based on 4T structures. More de-
tailed results can be found in [11]. We use slow-decay 4T
cells in our design, both in the BTB and in the 16k-entry
gshare direction predictor.

The performance impact of predicting branches based on
decayed predictor entries is negligible. Over all the bench-
marks, performance was down less than 0.25%, while the
overall prediction accuracy was down less than 0.5%.
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Fig. 3. Normalized leakage energy for branch predictors with standard
(left) and slow-decay (right) 4T cells.

Figure 3 shows the normalized leakage energy with 4T-
based branch predictors. The leakage energy of a 6T branch
predictor is defined as 1; a number lower than that indicates
a processor equipped with a particular branch predictor con-
sumed less energy, and vice versa.

A processor with a 4T branch predictor consumes less en-
ergy under most processes. At COM2, the branch predictor
decays too rapidly unless slow-decay transistors are used.

V. CONCLUSIONS

This paper has proposed the use of four-transistor imple-
mentations of the cache and branch predictor as a way to
save leakage energy in these structures. 4T cells save leak-
age because they lack the two load transistors that maintain
the cells’ charge. They therefore decay over time unless
accessed within the horizon of their retention time. This
means that they only leak as much energy as was deposited
upon access. 4T cells thus provide a natural implementa-
tion of “decay” with very low leakage energy. A 4T imple-
mentation for a 100nm process can cut leakage in the data
cache by 60%, in the instruction cache by 75%, and in the
branch predictor by 80%, with negligible performance loss
and some savings in area.

Based on these early results, we argue that as leakage
power becomes a major contributor to overall power dissi-
pation, 4T cache and branch predictor designs merit further
exploration. Furthermore, as process technology improves,
other important issues arise, such as alpha particle immu-
nity (and soft errors in general) for both 6T and 4T.

This is an interesting point because 6T cells in this era
have shown soft error problems due to large source-drain
area. 1T cells (previously notorious for their soft error sen-
sitivity) are not as bad as previously thought because their
source-drain area is so small that the particle has a smaller
target to hit. Furthermore, there is less of a charge imbal-
ance because the cross-sectional area of the depletion region
is so small. The 4T cell thus serves to be the practical mid-
dle ground between 6T and 1T.

Our results so far suggest that 4T designs are an attrac-
tive way to save leakage energy in caches and predictors.
4T-based designs are also attractive because 4T cells are
already a part of many standard-cell libraries; verification
would include a single additional simulation that demon-
strates the exponential decay of the internal nodes of the
cell. This makes cache/predictor design possibly easier
than for other leakage-control techniques, because 4T im-
plementations are smaller than equivalent 6T implementa-
tions, and because they avoid the need to switch large capac-
itive loads as with sleep transistors to ground (gated-Vdd) or
dual power supplies.
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