
Sequential Pattern Mining with the Micron Automata
Processor

Ke Wang, Elaheh Sadredini, Kevin Skadron
Department of Computer Science

University of Virginia
Charlottesville, VA, 22904 USA

{kewang, elaheh, skadron}@virginia.edu

ABSTRACT

Sequential pattern mining (SPM) is a widely used data min-
ing technique for discovering common sequences of events
in large databases. When compared with the simple set
mining problem and string mining problem, the hierarchi-
cal structure of sequential pattern mining (due to the need
to consider frequent subsets within each itemset, as well as
order among itemsets) and the resulting large permutation
space makes SPM extremely expensive on conventional pro-
cessor architectures. We propose a hardware-accelerated
solution of the SPM using Micron’s Automata Processor
(AP), a hardware implementation of non-deterministic fi-
nite automata (NFAs). The Generalized Sequential Pattern
(GSP) algorithm for SPM searching exposes massive paral-
lelism, and is therefore well-suited for AP acceleration. We
implement the multi-pass pruning strategy of the GSP via
the AP’s fast reconfigurability. A generalized automaton
structure is proposed by flattening sequential patterns to
simple strings to reduce compilation time and to minimize
overhead of reconfiguration. Up to 90X and 29X speedups
are achieved by the AP-accelerated GSP on six real-world
datasets, when compared with the optimized multicore CPU
and GPU GSP implementations, respectively. The proposed
CPU-AP solution also outperforms the state-of-the-art Pre-
fixSpan and SPADE algorithms on multicore CPU by up to
452X and 49X speedups. The AP advantage grows further
with larger datasets.

CCS Concepts

•Information systems→Association rules; •Computer
systems organization → Multiple instruction, single
data; •Hardware → Emerging architectures;

Keywords

Automata Processor; sequential pattern mining, Apriori

1. INTRODUCTION
Sequential Pattern Mining (SPM) is a data-mining tech-

nique that identifies strong and interesting sequential rela-
tions among variables in structured databases. SPM has be-
come an important data mining technique with broad appli-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CF’16, May 16-19, 2016, Como, Italy

c© 2016 ACM. ISBN 978-1-4503-4128-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2903150.2903172

cation domains, such as customer purchase patterning anal-
ysis, correlation analysis of storage system, web log analysis,
software bug tracking and software API usage tracking [2].
For example, when a person buys a pen, appropriate recom-
mendations for paper and ink may increase sales of a store.
SPM is the right technique to mine sequential relations from
the records of transactions.

A sequential pattern refers to a hierarchical pattern con-
sisting of a sequence of frequent transactions (itemsets) with
a particular ordering among these itemsets. In addition to
recognize frequent set mining (FSM), SPM needs to deal
with permutations among the frequent itemsets. This dra-
matically increases the number of patterns to consider and
hence the computational cost relative to simple set mining
or string mining operations. In addition, as the sizes of inter-
esting datasets keeps growing, higher performance becomes
critical to make SPM practical.

Many algorithms have been developed to improve the per-
formance of the sequential pattern mining. The three most
competitive algorithms today are Generalized Sequential Pat-
tern (GSP) [15], Sequential PAttern Discovery using Equiv-
alence classes (SPADE) [19] and PrefixSpan [12]. SPADE
and PrefixSpan are generally favored today, and perform
better than GSP on conventional single-core CPUs in aver-
age cases; but GSP exposes massive parallelism and may be
a better candidate for highly parallel architectures.

Several parallel algorithms have been proposed to acceler-
ate SPM on distributed-memory systems, e.g., [4, 8, 14, 18].
Increasing throughput per node via hardware acceleration
is desirable for throughput as well as energy efficiency, but
even though hardware accelerators have been widely used
in frequent set mining and string matching applications,
e.g. [6, 20, 21], we are not aware of any previous work for a
hardware-accelerated solution for SPM.

Micron’s new Automata Processor (AP) [5] offers an ap-
pealing accelerator architecture for SPM. The AP architec-
ture exploits the very high and natural level of parallelism
found in DRAM to achieve native-hardware implementation
of non-deterministic finite automata (NFAs). The use of
DRAM to implement the NFA states provides a high ca-
pacity: the first-generation boards, with 32 chips, provide
approximately 1.5M automaton states. All of these states
can process an input symbol and activate successor states
in a single clock cycle, providing extraordinary parallelism
for pattern matching. The AP’s hierarchical, configurable
routing mechanism allows rich fan-in and fan-out among
states. These capabilities allow the AP to perform complex
symbolic pattern matching and test input streams against a
large number of candidate patterns in parallel. The AP has
already been successfully applied to several applications, in-
cluding regular expression matching [5], DNA motif search-

skadron
Typewritten Text
(This is the authors' final version. The authoritative version will appear in the ACM Digital Library.)

skadron
Typewritten Text

ing [13], and frequent set mining [16].
In this paper, we propose a CPU-AP heterogeneous com-

puting solution to accelerate SPM based on the GSP al-
gorithm framework, whose multipass algorithm to build up
successively larger candidate itemsets and sequences is best
suited to the AP’s highly parallel pattern-matching archi-
tecture, which can check a large number of candidate pat-
terns in parallel. The sequential patterns are identified and
counted by an NFA-counter automaton structure on the AP
chip. The key idea of designing such an NFA for SPM is
to flatten sequential patterns to simple strings by adding an
itemset delimiter and a sequence delimiter. This strategy
greatly reduces the automaton design space so that the tem-
plate automaton for SPM can be compiled before runtime
and replicated to make full use of the capacity and massive
parallelism of the AP. To our knowledge, this is the first au-
tomaton design to identify hierarchical sequential patterns.

On multiple real-world and synthetic datasets, we com-
pare the performance of the proposed AP-accelerated GSP
versus CPU and GPU implementations of GSP, as well as
Java multi-threaded implementations of SPADE and Pre-
fixSpan [7]. The performance analysis of the AP-accelerated
GSP shows up to 90X speedup over a multicore CPU GSP
and up to 29X speedup the GPU GSP version. The pro-
posed approach also outperforms the Java multi-threaded
implementations of SPADE and PrefixSpan by up to 452X
and 49X speedups. The proposed AP solution also shows
good performance scaling as the size of the input dataset
grows, achieving even better speedup over SPADE and Pre-
fixSpan. Our file size scaling experiments also show that
SPADE fails at some datasets larger than 10MB (a small
dataset size, thus limiting utility of SPADE in today’s ”big
data” era).

Overall, this paper makes three principal contributions:
1. We show how to map SPM to NFAs, and develop a

CPU-AP computing infrastructure for GSP.
2. We design a novel automaton structure for the sequen-

tial pattern matching and counting in GSP. This struc-
ture flattens the hierarchical patterns to strings and
adopts a multiple-entry scheme to reduce the automa-
ton design space for candidate sequential patterns.

3. Our AP SPM solution shows performance improve-
ment and broader capability over multicore and GPU
implementations of GSP SPM, and also outperforms
SPADE and PrefixScan (especially for larger datasets).

2. SEQUENTIAL PATTERN MINING

2.1 Introduction to SPM
Sequential pattern mining (SPM) was first described by

Agrawal and Srikant [3]. SPM finds frequent sequences of
frequent itemsets. All the items in one itemset have the
same transaction time or happen within a certain window
of time, but in SPM, the order among itemsets/transactions
matters. In short, SPM looks for frequent permutations of
frequent itemsets, which in turn are frequent combinations
of items. FSM takes care of the items that are purchased
together; for example, “7% of customers buy laptop, flash
drive, and software packages together”; whereas in SPM,
the sequence in which the items are purchased matters, e.g.,
“6% of customers buy laptop first, then flash drive, and then
software packages”.

In a mathematical description, we define I = i1, i2, ..., im
as a set of items, where ik is usually represented by an inte-
ger, call item ID. Let s =< t1t2...tn > denotes a sequential
pattern (or sequence), where tk is a transaction and also

can be called as an itemset. We define an element of a
sequence by tj = {x1, x2, ..., xm} where xk ∈ I. In a se-
quence, one item may occur just once in one transaction
but may appear in many transactions. We also assume that
the order within a transaction (itemset) does not matter,
so the items within one transaction can be lexicographically
ordered in preprocessing stage. We define the size of a se-
quence as the number of items in it. A sequence with a
size k is called a k-sequence. Sequence s1 =< t1t2...tm >
called to be a subsequence of s2 =< r1r2...rj >, if there
are integers 1 � k1 ≺ k2 ≺ .. ≺ km−1 ≺ km � j such that
t1 ⊆ rk1, t2 ⊆ rk2, ..., tm ⊆ rkm. Such a sequence sj is called
a sequential pattern. The support for a sequence is the num-
ber of total data sequences that contains this sequence. A
sequence is known as frequent iff its support is greater than
a given threshold value called minimum support, minsup.
The goal of SPM is to find out all the sequential patterns
whose supports are greater than minsup.

2.2 Generalized Sequential Pattern framework
The GSP method is based on the downward-closure prop-

erty and represents the dataset in a horizontal format. The
downward-closure property means all the subsequences of
a frequent sequence are also frequent and thus for an in-
frequent sequence, all its supersequences must also be infre-
quent. In GSP, candidates of (k+1)-sequences are generated
from known frequent k-sequences by adding one more pos-
sible frequent item. The mining begins at 1-sequence and
the size of candidate sequences increases by one with each
pass. In each pass, the GSP algorithm has two major oper-
ations: 1) Candidate Generation: generating candidates of
frequent (k+1)-sequences from known frequent k-sequences
2) Matching and Counting: Matching candidate sequences
and counting support.

2.2.1 Sequence Candidates Generation
In GSP , the candidates of (k+1)-sequences are gener-

ated by joining two k-sequences that have the same contigu-
ous subsequence. c is a contiguous subsequence of sequence
s =< t1t2...tn > if one of these conditions hold:

1. c is derived from s by deleting one item from either t1
or tn

2. c is derived from s by deleting an item from an trans-
action ti which has at least two items.

3. c is a contiguous subsequence of c′, and c′ is a contigu-
ous subsequence of s.

Candidate sequences are generated in two steps as follows.
Joining phase Two k-sequence candidates (s1 and s2)

can be joined if the subsequence formed by dropping the
first item in s1 is the same as the subsequence formed by
dropping the last items in s2. Consider frequent 3-sequences
s1 =< {A,B} {C} > and s2 =< {B} {C} {E} > in Table
1; dropping the first items in s1 results in < {B} {C} >
and dropping the last element in s2 results in < {B} {C}.
Therefore, s1 and s2 can get joined to a candidate 4-sequence
s3 =< {A,B} {C} {E} >. Note that here {E} will not
merge into the last itemset in the s1, because it is a separate
element in s2.

Pruning Phase If a sequence has any infrequent subse-
quence, this phase must delete this candidate sequence. For
example, in Table 1, candidate < {A,B} {C} {E} > gets
pruned because subsequence < {B} {C} {E} > is not a fre-
quent 3-sequence.

2.2.2 Matching and Counting
The matching-and-counting stage will count how many

Table 1: Example of candidate generation

Frequent 3-sequences
Candidate 4-sequences

Joined Pruned

< {B} {C} {E} > < {A,B} {C} {E} > < {A,B} {C,D} >

< {A,B} {C} > < {A,B} {C,D} >

< {B} {C,D} >

< {A} {C,D} >

< {A,B} {D} >

times the input matches a sequence candidate. The occur-
rence of each candidate pattern is recorded and compared
with the minimum support number. The matching and
counting stage is the performance bottleneck for GSP, but
it exposes massive parallelism. The high density of on-chip
state elements and fine-granularity communication found on
the AP allows many candidate sequences (patterns) to be
matched in parallel, and make AP a promising hardware
performance booster for matching and counting operations
of GSP. For this reason, the GSP algorithm becomes a nat-
ural choice for mapping SPM onto the AP. In the rest of this
paper, we will show how to utilize the AP to speed up the
matching-and-counting stage of GSP and how this solution
compares with other parallel or accelerator implementations
of SPM. For comparison purpose, we also propose OpenMP
and CUDA implementations for multicore CPU and GPU
to speed up the matching and counting of GSP.

3. AUTOMATA PROCESSOR
3.1 Architecture

The AP chip has three types of functional elements - the
state transition element (STE), counters, and Boolean ele-
ments [5].The STE is the central feature of the AP chip and
is the element with the highest population density. An STE
holds a subset of 8-bit symbols via a DRAM column and rep-
resents an NFA state, activated or deactivated, via an one-
bit register. The AP uses a homogeneous NFA representa-
tion [5] for a more natural match to the hardware operation.
In terms of Flynn’s taxonomy, the AP is therefore a very un-
usual multiple-instruction, single-data (MISD) architecture:
each state (column) holds unique responses (instructions) to
potential inputs, and they all respond in parallel to each in-
put. Most other commercial architectures are von Neumann
architectures, e.g. single CPU cores (SISD), multicore or
multiprocessors (MIMD), and GPUs (SIMD).

The counter element counts the occurrence of a pattern
described by the NFA connected to it and activates other
elements or reports when a given threshold is reached. One
counter can count up to 212 − 1. Two or more counters
can be daisy-chained to handle larger threshold. Counter
elements are a scarce resource of the AP chip, and therefore
become an important limiting factor for the capacity of the
SPM automaton proposed in this work.

Micron’s current generation AP-D480 boards use AP chips
built on 50nm DRAM technology, running at an input sym-
bol (8-bit) rate of 133 MHz. A D480 chip has 192 blocks,
with 256 STEs, 4 counters and 12 Boolean elements per
block [5]. We assume an AP board with 32 AP chips, so
that all AP chips process input data stream in parallel.

3.2 Input and output
The AP takes input streams of 8-bit symbols. Any STE

can be configured to accept the first symbol in the stream
(called start-of-data mode, small “1” in the left-upper corner
of STE in the following automaton illustrations), to accept
every symbol in the input stream (called all-input mode,
small “∞” in the left-upper corner of STE in the following
illustrations) or to accept a symbol only upon activation.

Any type of element on the AP chip can be configured
as a reporting element; one reporting element generates a
one-bit signal when it matches the input symbol. If any re-
porting element reports on a particular cycle, the chip will
generate an output vector which contains 1’s in positions
corresponding to the elements that report and 0’s for re-
porting elements that do not report. Too frequent outputs
will cause AP stalls, therefore minimizing output vectors is
an important consideration for performance optimization.

3.3 Programming and configuration
The Micron’s AP SDK provides Automata Network Markup

Language (ANML), an XML-like language for describing
automata networks, as well as C, Java and Python bind-
ing interfaces to describe automata networks, create input
streams, parse output and manage computational tasks on
the AP board. A “macro” is a container of automata for
encapsulating a given functionality, similar to a function or
subroutine in common programming languages.

Deploying automata onto the AP fabric involves two stages:
placement-and-routing compilation (PRC) and loading (con-
figuration) [1]. In the PRC stage, the AP compiler deduces
the best element layout and generates a binary version of
the automata network. In the cases of large number of
topologically identical automata, macros or templates can
be precompiled in PRC stage and composed later [13]. This
shortens PRC time, because only a small automata network
within a macro needs to be processed, and then the board
can be tiled with as many of these macros as fit.

A pre-compiled automata only needs the loading stage.
The loading stage, which needs about 50 milliseconds for a
whole AP board [13], includes two steps: routing configu-
ration / reconfiguration that programs the connections, and
the symbol set configuration/reconfiguration that writes the
matching rules for the STEs. The changing of STE rules
only involves the second step of loading, which takes 45 mil-
liseconds for a whole AP board. The feature of fast partial
reconfiguration play a key role in a successful AP imple-
mentation of SPM: the fast symbol replacement helps to
deal with the case that the total set of candidate patterns
exceeds the AP board capacity; the quick routing recon-
figuration enables a fast switch from k to k + 1 level in a
multiple-pass algorithm like GSP for sequence mining.

4. MAPPING SPM ONTO THE AP
As we discussed in Sec. 2.2, GSP maps to the AP archi-

tecture naturally and the sequential pattern matching-and-
counting step is the performance bottleneck of the GSP on
conventional architectures. Therefore, we propose to use the
AP to accelerate the matching-and-counting step.

4.1 Automaton for Matching and Counting
The hierarchical patterns in SPM, sequences of itemsets,

are more complex than strings or individual itemsets as stud-
ied in the previous works [13, 16]. Within itemsets of a se-
quence, items of interest may be discontinuous, i.e. we may
only be interested in some frequent subset of an itemset [16].
While, one input sequence may have irrelevant itemsets in
between interesting itemsets. The matching part of the au-
tomaton for SPM should identify the frequent itemsets as
well as the order among the itemsets. In summary, the au-
tomaton design needs to deal with all possible continuous
and discontinuous situations for both items and itemsets,
and keep the order among itemsets in the same time. There
is no previous work that proposed automaton design for hi-
erarchical pattern matching. Furthermore, in order to maxi-

mize benefit from the high parallelism of NFAs, and the Mi-
cron AP in particular, an appropriate automaton structure
must be as compact as possible, to maximize the number of
such structures that can be accommodated in a single pass.

4.1.1 Flattening the Hierarchy of Sequential Patterns
To match sequences of itemsets, we first convert sets into

strings with a pre-defined order. And then we introduce
a delimiter of itemset to bound and connect these strings
(converted from itemsets) within a sequential pattern. The
sequence of strings is also a string. Keeping this observation
in mind, the hierarchy of a sequence of itemsets is there-
fore flattened to a discontinuous sequence-matching prob-
lem. This is the key innovation of proposed automaton de-
sign for SPM.

Figure 1 shows the automaton design for sequential pat-
tern matching and counting. In the examples shown here,
the items are coded as digital numbers in the range from 0
to 252, with the numbers 255, 254, 253 reserved as the data-
ending reporting symbol, sequence delimiter, and itemset
delimiter, respectively. In the case of more than 253 fre-
quent items, two conjunctive STEs are used to represent an
item and support up to 64,009 frequent items, which is suffi-
cient in all the datasets we examine; because the AP native
symbol size is 8 bits, this will require two clock cycles to
process each 16-bit symbol.) Even larger symbol alphabets
are possible by longer conjunctive sequences. In Figure 1,
the counting and reporting component is shown below the
orange dotted line. The I/O optimization strategy proposed
in [16] is adopted by delaying all reports from frequent pat-
terns to the last cycle.

The STEs for matching sequential patterns are shown
above the orange dotted line. One matching NFA is bounded
by a starting sequence delimiter for starting a new sequence
and an ending sequence delimiter (the same symbol) for ac-
tivating the counting-and-reporting component. In contrast
to the set-matching NFAs proposed in [16], the NFA for SPM
is divided into several itemsets, demarcated by the itemset
delimiter. Each NFA has two rows of STEs. The bottom row
is for the actual symbols in a candidate sequential pattern.
The STEs in the top row, called “position holders”, help to
deal with the discontinuous situations (with itemsets or be-
tween itemsets). Each “position holder” has a self-activation
connection and match all valid symbols (excluding the de-
limeters). As long as the input symbol stays in range, the
“position holder” will stay activated and keep activating the
next STE in the bottom row. The key idea to implement
hierarchical pattern matching with the flattened automaton
design is to define two types of “position holder”: “itemset
position holder” and “item position holder”. In the case of
sequential patterns, the first “position holder” in each item-
set should be an itemset position holder, 0 : 253. It will stay
activated before the end of a sequence and handle discon-
tinuous itemsets within that sequence. The other “position
holders” are “item position holders”, 0 : 252, which only
hold the position within an input itemset. In the example
shown in Figure 1a, any other itemsets except a superset of
{1, 50}, will not reach the itemset delimiter. After a super-
set of {1, 50} is seen, the “position holder” above STE “15”
will hold the position (activate itself) until the end of the
same input sequence. Namely, after a superset of {1, 50} is
seen, the itemsets other than the superset of {15, 80} are
ignored before a superset of {15, 80} appears in the same
input sequence. Note that more sophisticated hierarchical
patterns, such as a sequence of sequences or a pattern of
more than a two-level hierarchy, can be implemented using

Set {1, 50} Set {15, 80}
itemset

delimiter

Sequence

delimiter

Sequence

delimiter

Coun8ng and

repor8ng component

(a) Automaton for sequence < {1, 50}, {15, 80} >

Set {7} Set {40}
itemset

delimiter

Sequence

delimiter

itemset

delimiter Set {2}
Sequence

delimiter

Coun7ng and

repor7ng component

(b) Automaton for sequence < {7}, {2}, {40} >

Figure 1: Examples of automaton design for sequential pat-
tern matching and counting. Blue circles and black boxes
are STEs and counters, respectively. The numbers on an
STE represent the symbol set that STE can match. “0:252”
means any item ID in the range of ASCII 0-252. Symbols
“255”,“254”,“253”are reserved as the input ending, sequence
delimiter and itemset delimiter.

the same idea.
The only difference between an“item position holder” and

an “itemset position holder” are their symbol set. One im-
portant advantage of the flattened automaton design is that
one such automaton structure can deal with all situations
of the same encoded pattern length (the encoded pattern
length includes the itemset delimiters). This feature greatly
reduces the design space of sequential pattern matching au-
tomata. For example, the automaton structure shown in
Figure 1 can deal with all these cases: < {a, b, c, d, e} >,
< {a}{b, c, d} >, < {a, b}{c, d} >, < {a, b, c}{d} >, <
{a}{b}{c} >. We define the actual item IDs in a sequen-
tial pattern without counting delimiters as “effective items”
and define the pattern that considers the itemset delimiters
“encoded pattern”. In this step, the automaton design space
for a given length of “encoded pattern” is reduced to 1.

4.1.2 Multiple-entry NFAs
In each GSP level, there could be 0 to k− 1 delimiters in

actual patterns, the encoded pattern lengths of level k can
vary from k (a sequence consisting of a single itemset) to
k+k−1 (all the itemsets only have a single item, so we have
k-1 itemset delimeters). Because candidate sequences are
generated at runtime, the number of patterns to be checked
of a given encoded length is not known before runtime. We
need a further step to reduce the automaton design space of
the candidates for each GSP to one single template, so that
the place and routing can be done before runtime.

To solve this problem, we adopt the idea of multiple-entry
NFAs for variable-size itemsets (ME-NFA-VSI) proposed by
Wang et al. [16]. Figure 2 shows an example of the ME-NFA-
VSI structure that can handle all possible cases of sequences
of effective length 3. Figure 2a shows the ANML macro of
this ME-NFA-VSI structure, leaving some parameters to be
assigned for a specific sequence. %TD and %NTD are the

Table 2: Number of macros that fit into one block

with 8-bit encoding

k <= 10 10 < k <= 20 20 < k <= 40
sup < 4096 4 2 1
sup >= 4096 2 2 1

Table 3: Number of macros that fit into one block

with 16-bit encoding

k <= 5 5 < k <= 10 10 < k <= 20
sup < 4096 4 2 1
sup >= 4096 2 2 1

192 AP blocks per D480 AP chip; 6144 blocks per 32-chip AP board.

sequence delimiter and its complement and are assigned to
“254” and “0-253”. %ER is the ending and reporting symbol
of the input stream and is assigned to “255” in this paper.
%e00 - %e02 are symbols for three entries. Only one entry
is enabled for a given sequence. %i00 - %i04 are individual
symbols of items and itemset delimiter. %p00 - %p04 are
the corresponding “position holders”.

To match and count a sequence of three itemsets (two
itemset delimiters are introduced), the first entry is enabled
by “254”, the sequence delimiter, and the other two entries
are blocked by “255” (Figure 2d). The sequence matching
will start at the left most item symbol, and handle the cases
of < {X}{Y }{Z} >. Similarly, this structure can be config-
ured to handle other situations by enabling a different entry
point (Figure 2c and 2d).

4.1.3 Macro Selection and Capacity
The flattening strategy and multiple-entry strategy intro-

duced in Sec 4.1.1 and 4.1.2 shrink the automata design
space (the number of different automata design) of a se-
quential pattern of length k from 2k−1 patterns to a single
pattern template, which makes it possible to pre-compile a
library of automata for each level k and load the appropriate
one to the AP chip at runtime. In each level k, the different
encoding schemes, 8-bit and 16-bit, and the support thresh-
old (greater than 4K or not) lead to four different automa-
ton designs. To count a support number larger than 4095,
two counters should be daisy-chained to behave as a larger
counter. For this case, counters are more likely a limiting
factor of the capacity.

The actual capacity of a macro may be limited by STEs,
counters, or routing resources of the AP chip. We have
developed a library of macro structures described in Sec-
tion 4.1.2 and compiled all these macros with the newest
Micron AP compiler (v1.6-5). Table 2 and 3 show the ac-
tual capacities of macros for the different encoding schemes,
support number and level range. Note that across all of our
datasets, we never encountered a case of k larger than 20.

4.2 Program Infrastructure
Figure 3 shows the complete workflow of the AP-accelerated

SPM proposed in this paper. The data pre-processing step
creates a data stream from the input dataset and makes
the data stream compatible with the AP interface. Pre-
processing consists of the following steps:

1. Filter out infrequent items from input sequences
2. Recode items into 8-bit or 16-bit symbols
3. Recode input sequences
4. Sort items within each itemset of input sequences, and

connect itemsets and sequences
Step 1 helps to avoid unnecessary computing on infrequent
items and reduces the dictionary size of items. Depending
on the number of frequent items, the items can be encoded

Entry 0 Entry 1 Entry 2

(a) AP macro for sequential pattern

(b) Automaton for sequence < {12, 79, 95} >

(c) Automaton for sequence < {33, 80}{11} >

(d) Automaton for sequence < {17}{2}{90} >

Figure 2: A small example of multiple-entry NFA for all
possible sequences of effective size 3. (a) is the macro of this
ME-NFA-VSI with parameters.

by 8-bit (freq item# < 254) or 16-bit symbols (254 <=
freq item# <= 64009) in step 2. Different encoding schemes
lead to different automaton designs and capacities of pat-
terns. Step 3 removes infrequent items from the input se-
quences, recodes items, and removes very short transactions
(fewer than two items). Step 4 sorts items in each itemset

Figure 3: The workflow of AP-accelerated SPM

(in any given order) to fit the automaton design described
in Section 4.1. The data pre-processing is only carried out
once per workflow.

Each iteration of the outer loop shown in Figure 3 explores
all frequent k-sequences from the candidates generated from
(k−1)-sequences. In the beginning of a new level, an appro-
priate precompiled template macro of automaton structure
for sequential patterns is selected according to k, encod-
ing scheme (8-bit or 16-bit), and the minimum support (see
Section 4.1.3), and is configured onto the AP board. The
candidates are generated on the CPU and are filled into the
selected automaton template macro. The input data formu-
lated in pre-processing is then streamed into the AP board
for counting.

5. EXPERIMENTAL RESULTS
The performance of our AP implementation is evaluated

using CPU timers, stated configuration latencies, and an
AP simulator in the AP SDK [1, 11], assuming a 32-chip
Micron D480 AP board. Because the AP advances by one
8-bit symbol every clock cycle, the number of patterns that
can be placed into the board, and the number of candidates
that must be checked in each stage, determines how many
passes through the input are required, which allows a sim-
ple calculation to determine the total time on the AP (see
hardware parameters in Section 3).

5.1 Comparison with Other Implementations
We compare the performance of the proposed AP- accel-

erated GSP (GSP-AP) versus the multi-threaded Java GSP
implementation (GSP-JAVA) from spmf toolkit [7] as well
as a highly optimized GSP single-core CPU C implementa-
tion (GSP-1C), a multicore implementation using OpenMP,
(GSP-6C), and a GPU implementation (GSP-1G) of the

GSP algorithm. We also compare the AP- accelerated GSP
with Java multi-threaded implementations of SPADE and
PrefixSpan [7]. Because GSP-1C is always faster than GSP-
JAVA, we don’t show the results of GSP-JAVA in this paper,
but use it as a baseline to determine the feasible ranges of
minimum support number.

5.2 Multicore and GPU GSP
In multicore and GPU implementations of GSP, the most

time-consuming step, the matching and counting, is paral-
lelized using OpenMP and CUDA.
GSP-GPU: After filtering out the infrequent items, the
whole dataset is transferred to the GPU global memory.
Then, the algorithm iterates over two steps: (1) generating
(k + 1)-sequence candidates from the frequent k-sequences
on CPU, and (2) identify the frequent (k + 1)-sequences on
GPU. In the CUDA kernel function, each thread is respon-
sible for matching and counting one candidate in the input
dataset. Once the matching and counting phase is done for
all the candidates of k + 1 level, the results are transferred
back to the CPU for the next level. We do not consider
pruning in the candidate generation step (neither in AP nor
in GPU implementation) as it increases pre-processing time
and decreases the overall performance. An array data struc-
ture is used to contain candidates and the input database for
GPU and AP implementations to optimize the performance
of candidate pattern generation.
GSP-multi-core: Work flow is the same as the GSP-CPU
implementation except that the matching and counting step
is parallelized using OpenMP .
The CPU version adopts the data structure of linked-list to
accelerate the pruning and counting operations to achieve
the best overall performance.

5.3 Testing Platform and Parameters
All of the above implementations are tested using the fol-

lowing hardware:
• CPU: Intel CPU i7-5820K (6 physical cores, 3.30GHz)
• Memory: 32GB, 1.333GHz
• GPU: Nvidia Kepler K40C, 706 MHz clock, 2888 CUDA

cores, 12GB global memory
• AP: D480 board, 133 MHz clock, 32 AP chips (simulation)

For each benchmark, we compare the performance of the
above implementations over a range of minimum support
values. A lower minimum support number requires a larger
search space (because more candidates survive to the next
generation) and more memory usage. To finish all our ex-
periments in a reasonable time, we select minimum support
numbers that produce computation times of the GSP-JAVA
in the range of 2 seconds to 2 hours. A relative minimum
support number, defined as the ratio of a minimum support
number to the transaction number, is adopted in the figures.

5.4 Datasets
Six public real-world datasets for sequential pattern min-

ing found on spmf [7] website are tested. The details of
these datasets are shown in Table 4.

5.5 GSP-AP vs. Other GSP Implementations
Figure 4 shows the performance comparison among four

different GSP implementations. As the minimum support
number decreases, the computation time of each method in-
creases, as a larger pattern search space is exposed. On aver-
age, the performance relationship among the four tested im-
plementations follows this order: GSP −1C < GSP −6C <
GSP − 1G < GSP − AP . The multicore GSP-6C achieves
about 3.7X-6X speedup over single-core version GSP-1C.

Table 4: Datasets

Name Sequences# Aver. Len. Item# Size (MB)
BMS1 59601 2.42 497 1.5
BMS2 77512 4.62 3340 3.5
Kosarak 69998 16.95 41270 4.0
Bible 36369 17.84 13905 5.4
Leviathan 5834 33.8 9025 1.3
FIFA 20450 34.74 2990 4.8

Aver. Len. = Average number of items per sequence.

0.020 0.015 0.010 0.005 0.000

0.1

1

10

100

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

 GSP-1C

 GSP-6C

 GSP-1G

 GSP-AP

(a) BMS1

0.010 0.009 0.008 0.007 0.006 0.005 0.004
0.1

1

10

100

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

 GSP-1C

 GSP-6C

 GSP-1G

 GSP-AP

(b) BMS2

0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02
0.1

1

10

100

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

 GSP-1C

 GSP-6C

 GSP-1G

 GSP-AP

(c) Leviathan

0.030 0.025 0.020 0.015 0.010 0.005
0.1

1

10

100

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

 GSP-1C

 GSP-6C

 GSP-1G

 GSP-AP

(d) Kosarak

0.10 0.08 0.06 0.04 0.02 0.00
0.1

1

10

100

1000

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

 GSP-1C

 GSP-6C

 GSP-1G

 GSP-AP

(e) Bible

0.30 0.25 0.20 0.15 0.10 0.05
0.1

1

10

100

1000

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

 GSP-1C

 GSP-6C

 GSP-1G

 GSP-AP

(f) FIFA

Figure 4: The performance comparison among GSP-1C,
GSP-6C, GSP-1G and GSP-AP on six benchmarks.

The GPU version outperforms GSP-1C up to 63X. GSP-
1G shows better performance than GSP-6C at large support
numbers but loses at small ones. This indicates that more
parallelism needs to be exposed for GPU implementation
to compensate for the data transfer overhead between CPU
and GPU. The proposed GSP-AP is the clear winner, with
a max 430X (in the BMS2) speedup over single-core, up to
90X speedup over multicore, and 2-29X speedup over GPU.

5.6 Timing Breakdown and Speedup Analysis
To better understand the performance shown in Figure 4,

profiling results are shown in Figures 5 and 6. Focusing
on the matching and counting stage, the multi-core and
GPU versions achieve 5X and tens-X speedups over single-
core CPU implementation, while the AP implementation
achieves several hundreds to 1300 times speedups over the

0.020 0.015 0.010 0.005
60

70

80

90

100

110

120

0

50

100

150

200

250

 P
e
rc

e
n
ta

g
e

Relative Minimum Support

 GSP-1C M&C pct.

 GSP-6C M&C pct.

 GSP-1G M&C pct.

 GSP-AP M&C pct.

 GSP-AP AP conf pct.

 GSP-6C M&C S.

 GSP-1G M&C S.

 GSP-AP M&C S.

 S
p
e
e
d
u
p

(a) BMS1

0.010 0.009 0.008 0.007 0.006 0.005 0.004
70

80

90

100

110

120

0

100

200

300

400

500

600

 P
e
rc

e
n
ta

g
e

Relative Minimum Support

 GSP-1C M&C percentage

 GSP-6C M&C percentage

 GSP-1G M&C precentage

 GSP-AP M&C precentage

 GSP-AP AP conf precentage

 GSP-6C M&C Speedup

 GSP-1G M&C Speedup

 GSP-AP M&C Speedup

 S
p
e
e
d
u
p

(b) BMS2

0.030 0.025 0.020 0.015 0.010 0.005
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0

200

400

600

 P
e
rc

e
n
ta

g
e

Relative Minimum Support

 GSP-1C M&C percentage

 GSP-6C M&C percentage

 GSP-1G M&C percentage

 GSP-AP M&C percentage

 GSP-AP AP conf percentage

 GSP-6C M&C Speedup

 GSP-1G M&C Speedup

 GSP-AP M&C Speedup

 S
p
e
e
d
u
p

(c) Kosarak

Figure 5: The timing breakdown and speedup analysis on
GSP implementations. The “M&C percentage” means the
percentage of matching and counting steps within the total
GSP execution time. The “AP conf percentage” means the
percentage of AP configuration time, including both routing
configuration time and symbol replacement time, in total AP
matching and counting time.

sequential matching and counting implementation. The smal-
ler the minimum support, the more candidates are gener-
ated, and the larger the speedups achieved for both GPU
and AP versions. On one hand, it shows the performance
boost of massive complex-pattern matching achieved by the
AP. On the other hand, Amdahl’s law starts to take effect
at small support numbers, with the percentage of time for
matching and counting within the total execution time drop-
ping, and the un-accelerated candidate-generation stage be-
coming dominant. This could be addressed by parallelizing
candidate generation (see Section 5.7). Amdahl’s law has
even more severe impact on the AP version than on GPU

0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0

100

200

300

400

500

600

700

 P
e
rc

e
n
ta

g
e

Relative Minimum Support

 GSP-1C M&C percentage

 GSP-6C M&C percentage

 GSP-1G M&C percentage

 GSP-AP M&C percentage

 GSP-AP AP conf percentage

 GSP-6C M&C Speedup

 GSP-1G M&C Speedup

 GSP-AP M&C Speedup S
p
e
e
d
u
p

(a) Bible

0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0

50

100

150

 P
e
rc

e
n
ta

g
e

Relative Minimum Support

 GSP-1C M&C percentage

 GSP-6C M&C percentage

 GSP-1G M&C percentage

 GSP-AP M&C percentage

 GSP-AP AP conf percentage

 GSP-6C M&C Speedup

 GSP-1G M&C Speedup

 GSP-AP M&C Speedup S
p
e
e
d
u
p

(b) Leviathan

0.30 0.25 0.20 0.15 0.10
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0

200

400

600

800

1000

1200

1400

 P
e
rc

e
n
ta

g
e

Relative Minimum Support

 GSP-1C M&C percentage

 GSP-6C M&C percentage

 GSP-1G M&C percentage

 GSP-AP M&C percentage

 GSP-AP AP conf percentage

 GSP-6C M&C Speedup

 GSP-1G M&C Speedup

 GSP-AP M&C Speedup

 S
p
e
e
d
u
p

(c) FIFA

Figure 6: The timing breakdown and speedup analysis on
GSP implementations.

implementation. FIFA is one typical example, where over
1300X speedup is achieved at 7.5% relative support, but the
percentage of matching and counting drops to 3%.

From Figures 5 and 6 we observe that configuration time
dominates the total AP matching and counting time, 80%-
90% of the AP time for all cases. Fortunately, the latency
of symbol replacement could be significantly reduced in fu-
ture generations of the AP, because symbol replacement is
simply a series of DRAM writes, and this should be much
faster. We hypothesize that the current times assume some
conservative buffering. Reducing symbol replacement could
improve the overall performance greatly. Figure 7 studies
the cases of BMS2 and Kosarak, assuming 2X, 5X and 10X
faster symbol replacement. Up to 2.7X speedup is achieved
over current AP hardware when assuming 10X faster symbol
replacement.

5.7 GSP-AP vs. Other SPM Algorithms
The PrefixSpan and SPADE are two advanced algorithms

0.010 0.009 0.008 0.007 0.006 0.005 0.004
-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

 P
e
rc

e
n
ta

g
e

Relative Minimum Support

 1X

 2X

 5X

 10X

 1X

 2X

 5X

 10X

T
o
ta

l
C

o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

(a) BMS2

0.030 0.025 0.020 0.015 0.010 0.005
-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

 P
e
rc

e
n
ta

g
e

Relative Minimum Support

 1X

 2X

 5X

 10X

 1X

 2X

 5X

 10X

T
o
ta

l
C

o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

(b) Kosarak

Figure 7: The impact of symbol replacement time on GSP-
AP performance for BMS2 and Kosarak. The columns show
the percentage of AP configuration time in total AP match-
ing and counting time. The symbols and lines show overall
all computation time.

which outperform the GSP in general cases. In this pa-
per, we test multi-threaded Java implementations of these
two algorithms and evaluate them on a multi-core CPU.
As we see in the results, even multi-core PrefixSpan gives
poor performance related to the AP. In addition, at least
50X speedup would be needed for PrefixSpan on the GPU
to be competitive to the AP. So we do not implement it
on the GPU. For SPADE, we again do not implement it
for the GPU, because it runs out of memory for bench-
marks larger than 10MB, assuming a high-end GPU with
24GB memory, such as the Nvidia K80. Smaller GPUs
will fail even earlier. Figure 8 compares the performance
of the Java multi-threaded implementations PrefixSpan and
SPADE with hardware-accelerated GSP implementations.
The performance of GSP-1G is in between PrefixSpan and
SPADE on average. The proposed GSP-AP outperforms
both PrefixSpan and SPADE in most cases, and achieves up
to 300X speedup over PrefixSpan (in Bible) and up to 30X
speedup over SPADE (in FIFA).

As we discussed in Section 5.6, the performance of AP
and GPU solutions suffer from the increasing portion of the
un-accelerated candidate-generation stage. We therefore im-
plemented a multi-threaded candidate generation version for
AP and GPU, GSP-AP-MTCG and GSP-1G-MTCG. The
performance improvements are clear in Bible, FIFA and
Leviathan who become candidate-generation dominant at
small minimum support numbers. The GSP-AP-MTCG get
452X speedup over PrefixSpan (in Bible) and up to 49X
speedup over SPADE (in FIFA). The speedups of GSP-AP-
MTCG over GSP-1G-MTCG become even larger because
the same sequential stage is parallelized in the same way.

0.020 0.015 0.010 0.005
0.01

0.1

1

10

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

 PrefixSpan

 SPADE

 GSP-6C

 GSP-1G

 GSP-AP

 GSP-1G-MTCG

 GSP-AP-MTCG

(a) BMS1

0.010 0.009 0.008 0.007 0.006 0.005 0.004
0

1

2

3

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

 PrefixSpan

 SPADE

 GSP-6C

 GSP-1G

 GSP-AP

 GSP-1G-MTCG

 GSP-AP-MTCG

(b) BMS2

0.030 0.025 0.020 0.015 0.010 0.005
0

1

2

3

4

5

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

 PrefixSpan

 SPADE

 GSP-6C

 GSP-1G

 GSP-AP

 GSP-1G-MTCG

 GSP-AP-MTCG

(c) Kosarak

0.10 0.08 0.06 0.04 0.02 0.00
0.1

1

10

100

1000 PrefixSpan

 SPADE

 GSP-6C

 GSP-1G

 GSP-AP

 GSP-1G-MTCG

 GSP-AP-MTCG

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

(d) Bible

0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02
0.1

1

10

100

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

 PrefixSpan
 SPADE
 GSP-6C
 GSP-1G
 GSP-AP
 GSP-1G-MTCG
 GSP-AP-MTCG

(e) Leviathan

0.30 0.25 0.20 0.15 0.10 0.05
0.1

1

10

100

1000

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Relative Minimum Support

 PrefixSpan

 SPADE

 GSP-6C

 GSP-1G

 GSP-AP

 GSP-1G-MTCG

 GSP-AP-MTCG

(f) FIFA

Figure 8: The performance comparison among GSP-GPU,
GSP-AP, PrefixSpan and SPADE.

5.8 Performance Scaling with Data Size
In this era of “big data”, mining must accommodate ever-

larger data sets. The original datasets we adopted are all
below 10MB, which may once have been representative, but
are less so for the future. In this subsection, we study the
scaling of performance as a function of input data sizes. We
enlarge the input data size by concatenating duplicates of
the whole dataset with an assumption that the number of
input sequences will grow much faster than the dictionary
size (the number of distinct items) does.

Figure 9 shows the performance results of input data scal-
ing on Kosarak and Leviathan. The total execution times of
all tested methods, PrefixSpan, SPADE, GSP-1G and GSP-
AP, increase linearly with the input data size on both bench-
marks. The SPADE method runs out of memory (32GB
on the CPU) for both tested minimum support numbers
on Kosarak at input size larger than 10MB. Given smaller
GPU on-board memory, a GPU SPADE would fail at even
smaller datasets. The execution time of the proposed GSP-
AP method scales much more favorably than other methods.
Its speedup over PrefixSpan grows with larger data sizes,
and reaches 31X at relative minimum support of 0.45%. A
GPU implementation of PrefixSpan is unlikely to gain more
speedup over the multi-threaded PrefixSpan shown here.
For these reasons, the GPU implementations of PrefixSpan
and SPADE are not needed in this paper. In the case of

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80
Rel. min sup = 1.05%

 PrefixSpan

 SPADE

 GSP-1G

 GSP-AP

Rel. min sup = 0.45%
 PrefixSpan
 SPADE
 GSP-1G
 GSP-AP

T
o
ta

l
c
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

Input file size (MB)

SPADE runs
out of memory

(a) Kosarak

0 10 20
1

10

100

1000

10000

100000
Rel. min sup = 2.5%

 PrefixSpan

 SPADE

 GSP-1G

 GSP-AP

Rel. min sup = 1.5%
 PrefixSpan
 SPADE
 GSP-1G
 GSP-AP

T
o
ta

l
c
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

Input file size (MB)

(b) Leviathan

Figure 9: Performance scaling with input data size on
Kosarak and Leviathan.

Leviathan, GSP-AP shows worse performance than SPADE
at small datasets, but outperforms it at large datasets. In
this case, GSP-AP achieves up to 420X speedup over Pre-
fixSpan and 11X speedup over SPADE.

6. RELATED WORK
Because of the larger permutation space and complex hi-

erarchical patterns involved, performance is a critical issue
for applying the sequential pattern mining (SPM) technique.
Many efforts have been made to speed up SPM via software
and hardware.

6.1 Sequential Algorithms
Generalized Sequential PatternGSP [15] follows the multi-

pass candidate generation–pruning scheme of Apriori algo-
rithm and inherits the horizontal data format and breadth-
first-search scheme from it. Also in the family of the Apri-
ori algorithm, Sequential PAttern Discovery using Equiv-
alence classes (SPADE) [19] was derived from the concept
of equivalence class [17] for sequential pattern mining, and
adopts the vertical data representation. To avoid the mul-
tiple passes of candidate generation and pruning steps, Pre-
fixSpan [12] algorithm extended the idea of the pattern growth
paradigm [9] to sequential pattern mining.

6.2 Parallel Implementations
Shintani and Kitsuregawa [14] proposed three parallelGSP

algorithms on distributed memory systems. These algo-
rithms show good scaling properties on an IBM SP2 clus-
ter. Zaki et al. [18] designed pSPADE, a data-parallel ver-
sion of SPADE for fast discovery of frequent sequences in
large databases on distributed-shared memory systems, and

achieved up to 7.2X speedup on a 12-processor SGI Ori-
gin 2000 cluster. Guralnik and Karypis [8] developed tree-
projection-based parallel sequence mining algorithms for dis-
tributed-memory architectures and achieved up to 30X speed-
ups on a 32-processor IBM SP cluster. Cong et al. [4] pre-
sented a parallel sequential pattern mining algorithm (Par-
ASP) under their sampling-based framework for parallel data
mining, implemented by using MPI over a 64-node Linux
cluster, achieving up to 37.8X speedup.

6.3 Accelerators
Hardware accelerators allow a single node to achieve or-

ders of magnitude improvements in performance and en-
ergy efficiency. General-purpose graphics processing units
(GPUs) leverage high parallelism, but GPUs’ single instruc-
tion multiple data (SIMD), lockstep organization means that
the parallel tasks must generally be similar. In ref. [10], the
authors present a parallel GSP implementation on GPU but
they relax the problem of sequential pattern mining to item-
set mining. To the best of our knowledge, there has been
no previous work on hardware acceleration for true SPM.
In particular, SPADE and PrefixSpan have not been imple-
mented on GPU. For our analysis purpose, we implemented
true GSP for SPM on GPU.

Micron’s AP shows great potential in boosting perfor-
mance of massive pattern matching applications. We show
in this paper that the proposed AP-accelerated solution for
sequential pattern mining using GSP has great performance
advantage over other parallel and hardware-accelerated im-
plementations.

7. CONCLUSIONS AND FUTURE WORK
We present a hardware-accelerated solution for sequen-

tial pattern mining (SPM), using Micron’s new Automata
Processor (AP), which provides native hardware implemen-
tation of non-deterministic finite automata. Our proposed
solution adopts the algorithm framework of the Generalized
Sequential Pattern (GSP), based on the downward closure
property of frequent sequential patterns. We derive a com-
pact automaton design for matching and counting frequent
sequences. A key insight that enables the use of automata
for SPM is that we can flatten hierarchical patterns of se-
quences into strings by using delimiters and place-holders.
A multiple-entry NFA strategy is proposed to accommodate
variable-structured sequences. Together, this allows a sin-
gle, compact template to match any candidate sequence of
a given length, so this template can be replicated to make
full use of the capacity and massive parallelism of the AP.

We compare GSP across different hardware platforms. Up
to 430X, 90X, and 29X speedups are achieved by the AP-
accelerated GSP on six real-world datasets, when compared
with the single-threaded CPU, multicore CPU, and GPU
GSP implementations. The AP-accelerated solution also
outperforms PrefixSpan and SPADE on multicore CPU by
up to 300X and 30X. By parallelizing candidate generation,
these speedups are further improved to 452X and 49X. Even
more performance improvements can be achieved by hard-
ware support to minimize symbol replacement latency. The
AP advantage increases with larger datasets, showing good
scaling properties for larger datasets while the alternatives
scale poorly.

8. ACKNOWLEDGMENTS
This work was supported in part by the Virginia CIT

CRCF program under grant no. MF14S-021-IT; by C-FAR,
one of the six SRC STARnet Centers, sponsored by MARCO

and DARPA; NSF grant EF-1124931; and a grant from Mi-
cron Technology. The authors would like to thank to Prof.
Samira Khan, Dept. of Computer Science, University of
Virginia for her valuable comments on the manuscript.

References
[1] Micron Automata Processor website, 2015.

http://www.micronautomata.com/documentation.

[2] C. C. Aggarwal and J. Han, editors. Frequent Pattern Min-
ing. Springer International Publishing, Cham, 2014.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In
Proc. ICDE’95, pages 3–14. IEEE, 1995.

[4] S. Cong, J. Han, J. Hoeflinger, and D. Padua. A sampling-
based framework for parallel data mining. In Proc. PPoPP
’05. ACM, 2005.

[5] P. Dlugosch et al. An efficient and scalable semiconductor
architecture for parallel automata processing. IEEE TPDS,
25(12):3088–3098, 2014.

[6] W. Fang et al. Frequent itemset mining on graphics proces-
sors. In Proc. DaMoN ’09, 2009.

[7] P. Fournier-Viger et al. Spmf: A java open-source pat-
tern mining library. Journal of Machine Learning Research,
15:3569–3573, 2014.

[8] V. Guralnik and G. Karypis. Parallel tree-projection-based
sequence mining algorithms. Parallel Comput., 30(4):443–
472, Apr. 2004.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In Proc. SIGMOD ’00. ACM, 2000.

[10] K. Hryniów. Parallel pattern mining-application of gsp al-
gorithm for graphics processing units. In ICCC ’12, pages
233–236. IEEE, 2012.

[11] H. Noyes. Micron automata processor architecture: Recon-
figurable and massively parallel automata processing. In
Proc. of Fifth International Symposium on Highly-Efficient
Accelerators and Reconfigurable Technologies, 2014. Keynote
presentation.

[12] J. Pei et al. Mining sequential patterns by pattern-growth:
The prefixspan approach. IEEE Trans. on Knowl. and Data
Eng., 16(11):1424–1440, 2004.

[13] I. Roy and S. Aluru. Discovering motifs in biological se-
quences using the micron automata processor. IEEE/ACM
T COMPUT BI, 13(1):99–111, 2016.

[14] T. Shintani and M. Kitsuregawa. Mining algorithms for se-
quential patterns in parallel: Hash based approach. In Pro-
ceedings of the Second Pacific−Asia Conference on Knowl-
edge Discovery and Data mining, pages 283–294, 1998.

[15] R. Srikant and R. Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. In Proc. EDBT
’96, 1996.

[16] K. Wang, Y. Qi, J. Fox, M. Stan, and K. Skadron. Associ-
ation rule mining with the micron automata processor. In
Proc. IPDPS ’15, 2015.

[17] M. J. Zaki. Scalable algorithms for association mining. IEEE
Trans. on Knowl. and Data Eng., 12(3):372–390, 2000.

[18] M. J. Zaki. Parallel sequence mining on shared-memory ma-
chines. J. Parallel Distrib. Comput., 61(3):401–426, 2001.

[19] M. J. Zaki. Spade: An efficient algorithm for mining frequent
sequences. Mach. Learn., 42(1-2):31–60, 2001.

[20] F. Zhang, Y. Zhang, and J. D. Bakos. Accelerating frequent
itemset mining on graphics processing units. J. Supercom-
put., 66(1):94–117, 2013.

[21] Y. Zu et al. GPU-based NFA implementation for memory
efficient high speed regular expression matching. In Proc.
PPoPP ’12, pages 129–140. ACM, 2012.

