
Pannotia: Understanding Irregular GPGPU

Graph Applications

Shuai Che†, Bradford M. Beckmann†, Steven K. Reinhardt† and Kevin Skadron‡

{Shuai.Che, Brad.Beckmann, Steve.Reinhardt}@amd.com, skadron@cs.virginia.edu

AMD Research† and Computer Science, University of Virginia‡

Abstract—GPUs have become popular recently to acceler-
ate general-purpose data-parallel applications. However, most
existing work has focused on GPU-friendly applications with
regular data structures and access patterns. While a few prior
studies have shown that some irregular workloads can also
achieve speedups on GPUs, this domain has not been investigated
thoroughly.

Graph applications are one such set of irregular workloads,
used in many commercial and scientific domains. In particular,
graph mining –as well as web and social network analysis– are
promising applications that GPUs could accelerate. However,
implementing and optimizing these graph algorithms on SIMD
architectures is challenging because their data-dependent behav-
ior results in significant branch and memory divergence.

To address these concerns and facilitate research in this area,
this paper presents and characterizes a suite of GPGPU graph
applications, Pannotia, which is implemented in OpenCL and
contains problems from diverse and important graph application
domains. We perform a first-step characterization and analysis
of these benchmarks and study their behavior on real hardware.
We also use clustering analysis to illustrate the similarities and
differences of the applications in the suite. Finally, we make
architectural and scheduling suggestions that will improve their
execution efficiency on GPUs.

I. INTRODUCTION

There is a growing trend of using graphics processing units

(GPUs) for high-performance parallel computing. The GPU’s

high compute throughput and memory bandwidth make it a

desirable platform for accelerating applications with massive

data parallelism. Prior work [12], [15], [41] showed that

diverse applications benefit from a GPU’s high parallelism,

achieving higher performance and increased energy efficiency

than conventional CPUs. These applications come from a

variety of domains, including multimedia, data mining, bioin-

formatics, and other HPC numerical algorithms. However,

most of these applications are “GPU friendly” in that they

use regular data structures and present regular parallelism and

accesses.

Graph algorithms are fundamental to many application

domains, yet perform poorly on today’s GPUs. Large graph

structures with millions of vertices and edges are common in

many HPC and commercial applications, including networks,

electronic design automation, graph mining and social network

analysis. Accelerating graph algorithms is a challenge for

GPUs and other SIMD architectures. The high performance

of GPU applications relies on high SIMD lane occupancy and

efficient memory coalescing for inter-thread data locality. The

former requires minimal divergent branching for threads in a

SIMD group, while the latter requires regular memory access

patterns and data structure layouts. Unfortunately, graph ap-

plications tend to present both significant branch and memory

divergence on GPUs. Furthermore, memory accesses are input-

dependent and hard to predict. Load imbalance among threads

is also a common challenge.

To improve the efficiency of graph applications on GPUs,

designers must first understand their characteristics and per-

formance bottlenecks. To this end, we present a suite of

graph applications, Pannotia, and evaluate them on contempo-

rary GPUs. Pannotia’s applications present diverse parallelism

and access patterns and varying GPU resource utilization

characteristics. Prior work has studied GPU acceleration of

individual graph applications [11], [19], [32], [43], or included

some graph applications in a larger study of irregular work-

loads [10]. However, none of them provide an overall picture

of the range of characteristics, similarities, and differences

among a broad set of graph applications. Prior research has

also neglected the important domains of web and social

network analysis.

In this work, we make the following contributions:

• We present Pannotia, a suite of applications with the

focus of studying graph algorithms on GPUs and other

emerging SIMD architectures.

• We conduct a preliminary characterization of these graph

applications on real GPU hardware and analyze their

challenges.

• We perform a hierarchical clustering analysis to char-

acterize the range of benchmark behaviors, and study

their sensitivity to diverse graph structures. We show that

different program-input pairs may show vastly different

characteristics.

• Finally, we discuss some architectural design features that

allow more efficient execution of these graph workloads

on SIMD hardware.

The set of applications we evaluate show diversity on

the GPU platform. They differ in the performance benefits

achieved through GPU acceleration, and demonstrate different

levels of SIMD lane occupancy and memory access efficiency.

In addition, workload behaviors can be quite different varying

graph inputs and across different phases of a single application.

II. BACKGROUND

In this section, we briefly introduce the architecture of AMD

RadeonTM HD 7000 series GPUs and the OpenCL program-

ming model. Though this study is limited to characterizations

on an AMD GPU, the methodology and insight can be applied

to other SIMD architectures.

A. A Short Primer on AMD GPUs

In this paper, we use AMD GPUs to report our measurement

results. The AMD Radeon HD 7000 series GPUs use the

Graphics Core Next (GCN) Architecture [5], which is a

radically new approach compared to prior AMD designs based

on very long instruction word (VLIW).

The AMD Radeon HD 7950 GPU includes 28 SIMD

compute units (CUs). Each CU has one scalar unit and four

vector units [4]. Each vector unit contains an array of 16

processing elements (PEs). Each PE consists of one ALU. The

four vector units use SIMD execution of a scalar instruction.

Each CU contains a single instruction cache, an SC cache

(the data cache for the scalar Unit), a 16-KB L1 data cache

and a 64-KB local data share (LDS) (i.e., software managed

scratchpad). All CUs share a single 768-KB L2 cache. The

AMD Radeon HD 7950 GPU supports GDDR5 with twelve

memory channels and 3 GB DRAM.

B. OpenCL

The OpenCL programming model is a domain-based model

for programming GPUs and other accelerators [4]. In OpenCL,

a host program launches a kernel with work-items over an

index space (called an NDRange). Work-items are grouped

into work-groups. OpenCL currently supports multiple mem-

ory spaces (e.g., the global memory space shared by all

workgroups, the per-workgroup local memory space, the per-

workitem private memory space, etc.). In addition, there are

also constant and texture memory (i.e., image) spaces for

read-only data structures. OpenCL uses a relaxed consistency

model. Two types of barrier synchronizations are supported in

different scopes: local barriers for all the threads (i.e., work-

items) in a workgroup and global barriers for all the threads

launched in a kernel. On the host side, OpenCL has a variety

of options for buffer and queue management (e.g., specifying

inter-kernel dependencies).

III. CHALLENGES OF GRAPH ALGORITHMS ON GPUS

In this section, we discuss some common workload behav-

iors and challenges shared by many graph applications on the

GPU platform. In Section VI, we will focus our evaluation

of graph workloads from these perspectives. Understanding

these issues is helped by visualizing the two sample graph

structures in Figure 1. It shows a jazz musician network and a

dolphin social network [2] we generated using the Gephi [6]

framework.

Branch divergence occurs when threads in the same wave-

front take different execution paths. GPUs execute instructions

in SIMD lockstep and can execute only one path of the branch

at a time for a given wavefront, with some threads masked off

if they took the branch in a different direction [4], [18], [31].

Many graph algorithms visit a sub-set of “active” vertices or

edges in each iteration (see Section IV-C). There is a high

probability that only part of the SIMD cores are active when

processing different threads in a wavefront. This leads to low

SIMD throughput due to underutilization of compute resources

and wastes of power.

Memory divergence occurs when threads from a sin-

gle wavefront experience different memory access latencies

caused by cache misses or accessing different memory banks.

In current organizations, the entire wavefront must wait until

the last thread finishes memory access [4], [18], [31]. This is

a common issue for graph algorithms. For instance, the con-

currently visited adjacency lists may be distributed in different

regions of memory. Supplying these data for multiple threads

may take multiple memory transactions. In addition, the access

patterns of these applications are hard to predict to improve

data locality. The efficiency of memory references would

be poor with unoptimized data layouts and access patterns.

Furthermore, there is not much data reuse (i.e. computation

per memory access) in certain graph applications.

Load imbalance is due to uneven work distribution across

different threads inside a kernel call. This imbalance is often

related to the structure of the graph being processed. In most

graphs, some vertices have higher degree (i.e., the number of

connected neighboring vertices) than others. Kernels are often

structured such that each GPU thread is assigned to process

one vertex, iterating over its edge list. The total running time of

a wavefront will be determined by the thread processing the

vertex with the largest number of edges, even though many

other threads in the wavefront will have completed their tasks

much earlier.

Parallelism may vary during the entire program execution

(e.g., across iterations) depending on the traversal patterns of

specific algorithms as well as the graph structures processed.

In contrast to many regular applications (e.g., stencil appli-

cations) in which each iteration processes the same amount

of work, graph applications have unpredictable computation

loads over time. It is common that only a few vertices or

edges are being processed in some iterations while hundreds

of thousands of vertices or edges are being processed in

other iterations. This raises a challenge of scheduling and

partitioning work across SIMD units –or even across the

CPU and the GPU– to save power consumed by the idling

processing elements, and to avoid being bottlenecked by the

GPU’s low single-thread performance when it is not achieving

sufficient parallelism to compensate.

IV. OVERVIEW OF PANNOTIA

Pannotia is an OpenCL application library, including a set of

graph applications and kernels, common graph utility routines,

and datasets. The chosen applications are widely used in many

scientific and enterprise applications. The suite includes basic

graph algorithms such as graph traversal, graph partitioning,

shortest paths, etc., and also includes emerging applications

used for analyzing webs and social networks (e.g., Facebook,

Fig. 1. A graph illustration of jazz musician (left) and dolphin social (right)
networks

Twitter). Pannotia currently includes eight diverse applica-

tions, supporting both multi-core CPU and GPU execution. We

have developed some of the Pannotia applications ourselves,

while others are based on prior work [19], [21], [35], [40].

Pannotia also includes library routines to help users gen-

erate and parse graphs. We develop a set of running scripts

capable of being configured to work with hardware profilers

to gather application characteristics. The graph output formats

are also compatible with the Gephi framework for easy visu-

alization of graph structures.

A. Graph Input Formats and Data Structures

Pannotia currently supports two types of graph formats:

COO and METIS [33]. The library contains a set of functions

to parse graph input files stored in these formats. For the

coordinate format, Pannotia supports both the 9th DIMACS

Implementation Challenge [3] and the Matrix Market for-

mats [29].

Graphs are represented in different data structures inter-

nally in different applications. For instance, some applications

use the compressed sparse row (CSR) representation, storing

the vertices, their corresponding edge lists and weights in

three separate compact vectors (e.g., in graph coloring and

maximum independent set). Betweenness centrality uses a

representation similar to the concept of COO. The ith position

(i.e., edge i) of two vectors are used to store IDs of the two

connecting vertices, while the third vector is used to store the

corresponding edge weight. Additionally, Floyd-Warshall uses

2D adjacency matrices to store the weights and shortest paths

for each pair of vertices. Connected component labeling uses

a 2D array to store the images to be labeled.

B. Graph Data Sets

Pannotia uses many real-world graphs from different do-

mains (e.g., co-author and citation graphs, road networks,

numerical simulation meshes, clustering instances, etc.). We

TABLE I
PANNOTIA APPLICATIONS AND KERNELS.

Applications/Kernels Graph Domains Abbreviation

Connected components labeling Graph clustering CCL

Dijkstra Shortest path DJK

Graph coloring Graph partitioning CLR

Maximal independent set Graph partitioning MIS

Floyd-Warshall Shortest path FW

Friend recommendation Social network FRD

Betweenness centrality Social network BC

Page rank Web algorithm PRK

evaluate graphs from the 9th DIMACS Implementation Chal-

lenges [3] for shortest-path related problems (e.g., US-road-

NW and CA) and the 10th DIMACS Implementation Chal-

lenges for graph partitioning and clustering [2] problems (e.g.,

ecology, shell and G3 circuit). Also, some other graphs (e.g.,

flickr) are chosen from the University of Florida Sparse Matrix

Collection [42]. Pannotia also uses graph generators to pro-

duce random graphs for experiments. We use Georgia Tech’s

GTgraph random-graph generator [34] to generate synthetic

graphs.

C. Benchmark Description

In this section, we present a brief introduction of the current

benchmarks included in the Pannotia suite.

Connected components labeling (CCL) is used in com-

puter vision and image processing to detect connected regions

in images. Given an image or graph that needs to be labeled,

an auxiliary structure L, with the same size, stores labels for

all the corresponding nodes in the data structure. A label is

a value in L that points to a pixel or node. CCL labels all

the nodes so if node a and b are in the same region, they

will have the same label in L [35]. A typical task of CCL is

to find the parent of a node. CCL in Pannotia is an OpenCL

implementation of a prior work [35].

Dijkstra (DJK) solves the single-source shortest path

(SSSP) problem for a graph with non-negative edge path costs,

producing a shortest-path tree [14]. This algorithm is often

used as a subroutine in various graph algorithms. Given a user-

specified source vertex in the graph, the algorithm searches

the path with lowest cost (i.e., the shortest path) between

the source node and all the other nodes in the graph. DJK

keeps track of a distance array, saving the shortest distances

of all the vertices evaluated so far. Given a new visited

vertex, for each of its neighbors, if the calculated distance via

passing through the vertex is smaller than the old distance,

a new value of distance will be updated. In a multithreaded

implementation, this must be done with atomics, since thread

contention may occur if two threads converge on the same

vertex from different paths.

Graph coloring (CLR) partitions the vertices of a graph

such that no two adjacent vertices share the same color. The

CLR implementation in Pannotia is an OpenCL implementa-

tion based on the algorithm described in the work [21]. This

work does not attempt to achieve optimal coloring. The goal is

to divide a graph into independent set of vertices for parallel

computation; vertices with the same color are in the same

set. Doing such coloring is among the first steps in many

parallel graph algorithms. In the initialization step, each vertex

is labeled with a random integer value. The algorithm then

launches multiple iterations, each responsible for labeling one

color. For each vertex, the algorithm compares its vertex value

with that of its neighboring vertices. If the vertex value of a

given node happens to be the largest (or smallest) among its

neighbors it marks itself with the current iteration colors (one

each for the largest and smallest in each set). The algorithm

terminates when all vertices are colored.

Maximal independent set (MIS) finds a maximal subset

of vertices in a graph such that no two are adjacent. MIS is

another basic building block for many graph algorithms. The

first step of MIS is similar to that of CLR. Each vertex is

labeled with a random integer value and each vertex judges

whether it can be included in the set. If so, the vertex is added

to the array which stores the current set. For the vertices added

to the set in the current iteration, the algorithm expands their

neighbor lists and marks all neighbors inactive; they will be

removed from the candidate list and not participate in the

evaluation of the next iteration of MIS. The algorithm will

terminate when all nodes are visited and evaluated. MIS is a

GPU implementation of Luby’s algorithm [27].

Floyd-Warshall (FW) is a classical dynamic programming

algorithm, solving the all-pairs shortest paths (APSP) prob-

lem. Given a graph G(V, E), a function shortestPath(i, j, k)

returns the shortest possible path from i to j using vertices

only from the set 1, 2 , ..., k as intermediate vertices. One

important step of the algorithm attempts to find the shortest

path from each i to each j using only vertices 1 to k+1. For

each pair of vertices, the shortest path can be either a path

that uses vertices in the set 1, 2,..., k or a path that goes from

i to k+1 and then from k+1 to j. The core of the algorithm

is:

s h o r t e s t P a t h (i , j , k +1) = min (s h o r t e s t P a t h (i , j , k) ,

s h o r t e s t P a t h (i , k +1 , k)

+ s h o r t e s t P a t h (k +1 , j , k))

This Floyd-Warshall implementation is an OpenCL version

based on the algorithm of prior work [19].

Friend recommendation (FRD) One common function-

ality in social websites, such as Facebook and LinkedIn, is

to recommend people or friend connections. FRD algorithms

recommend people who do not know each other but have

common friends. Friend relationships can be maintained with

an adjacency list. For instance, for each person i, we keep

track of a list of persons who are friends of i.

”Andy” −− [”Mark ” , ” Dave ” , ”Bob” , . . .]

A simple algorithm finds the top n persons with whom a

person has common friends. For each person and their contact

list, the algorithm populates a set of n/(n− 1) triples, where n
is the number of friends a person has. For instance, Andy will

populate the triples including (Bob, Mark, Andy), (Bob, Dave,

Andy). For Bob, the algorithm recommends Mark and Dave

through Andy. After the algorithm generates all the triples, a

filtering step eliminates the pairs who are already friends.

Betweenness centrality (BC) measures vertices’ centrality

in a network [9]. It is a widely-used algorithm to identify a

set of popular vertices in a network (e.g., a social network).

For a graph G(V,E) with n vertices and m edges, the BC of

a vertex v ∈ V is defined as:

∑

s 6=v 6=t

σst(v)

σst

(1)

where σst represents the number of shortest paths between

s and t, and σst(v) represents the number of shortest paths

that pass through a specified vertex v. The main part of the

algorithm contains a series of kernels including doing APSP

across vertices, and performing backtracking and reduction

to update the σ value for each vertex to calculate the BC

values. The implementation currently includes the use of

atomic operations to handle thread contentions when doing

reductions. Our BC OpenCL implementation is based on the

algorithm of a prior work [40].

Page rank (PRK) is an algorithm used by Google to

calculate probability distributions representing the likelihood

that a person randomly clicking on links arrives at any

particular page [36]. In the first step, the value of each

vertex is initialized to 1
num vertices() . In each step of the

main computation loop, each vertex sends along its outgoing

edge its current PageRank divided by the number of outgoing

edges [28]. Each vertex then sums up the values arriving at it

and calculates the PageRank value. The algorithm terminates

until convergence determined by an aggregator or after running

a user-specified number of iterations. There are be multiple

possible implementations of PageRank; ours is based on the

Pregel description [28].

V. METHODOLOGY

In this section, we discuss the experiment setup and method-

ology to characterize and analyze Pannotia applications.

A. Experiment Setup

The experiment results are measured on real hardware using

an AMD Radeon HD 7950 (Tahiti) discrete GPU. The AMD

Radeon HD 7950 features 28 GCN CUs with 1792 processing

elements running at 800 MHz with 3 GB of device memory.

We compare the GPU results with those obtained from four

CPU cores on an AMD A8-5500 accelerated processing unit

(APU) with a 1.4-GHz clock rate and 2 MB L2 cache. We

use AMD APP SDK 2.8 with OpenCL 2.1 support. AMD

APP Profiler v2.5 is used to collect profiling results. In

addition, this study is restricted to cases when the working

sets of applications do not exceed the capacity of the GPU

device memory. For much larger graphs, research is needed

to design algorithms for graph processing and partitioning;

simple overlaying and chunking will not work efficiently

for certain graph applications, because their data-dependent

memory accesses tend to be difficult to predict, and this risks

incurring too much GPU-CPU interaction..

TABLE II
THE PROFILER COUNTERS USED IN THIS STUDY [1].

Counters Descriptions Types of Metrics

ALUInsts The average number of ALU instructions executed per thread ALU instructions

FetchInsts The average number of fetch instructions from the memory executed per thread Memory instructions

WriteInsts The average number of write instructions to the memory executed per thread Memory instructions

ALUUtilization The percentage of active vector ALU threads in a wavefront SIMD utilization

ALUBusy The percentage of GPUTime ALU instructions processed Compute intensity

CacheHit The percentage of fetch, write, atomic, and other instructions that hit the L2 cache Memory locality

MemUnitBusy The percentage of GPUTime the memory unit is active Memory BW util

MemUnitStalled The percentage of GPUTime the memory unit is stalled Memory BW util

WriteUnitStalled The percentage of GPUTime the write unit is stalled Memory BW util

FetchSize The total data in kB fetched from the memory Memory traffic

WriteSize The total data in kB written to the memory Memory traffic

B. Metrics and Hierarchical Clustering

We evaluate and characterize these graph applications from

several different perspectives, including the relative perfor-

mance of GPU and CPU implementations and breaking down

execution time among CPU execution, GPU kernel execu-

tion, and CPU-GPU data communications. We also study the

sensitivity of application behaviors with different graph input

structures.

Table II lists a set of hardware counters we measure on

AMD GPUs. The counters include metrics related to arith-

metic and memory instructions, SIMD lane utilization, cache

locality, and memory bandwidth utilization.

To demonstrate the similarity or dissimilarity of the bench-

marks we evaluate, we use an approach similar to that of prior

GPU program analysis efforts [13], [17]. We apply principal

component analysis (PCA) and hierarchical clustering to the

characteristics we collect, then use a dendrogram to show a

clustering tree to demonstrate similarity among benchmarks.

These techniques have been widely applied for benchmark

comparison in similar contexts [7], [20], [22], [37]. However,

the question of how to perform more fair and accurate eval-

uation and comparison of benchmarks and how to determine

what metrics are the most important remain open problems

that are beyond the scope of this paper.

VI. CHARACTERIZATIONS AND RESULTS

In this section, we report experimental results characteriz-

ing Pannotia’s parallelism and load imbalance, performance

speedups and execution-time breakdown, SIMD utilization and

cache efficiency. Finally, we examine the similarity/dissimilar-

ity of these workloads.

A. Parallelism and Load Imbalance

Depending on the traversal patterns and particular graph

inputs processed, certain graph algorithms demonstrate vary-

ing degrees of parallelism running through different execution

phases. We use two examples to show this behavior. Figure 2

shows the number of active vertices processed during the

entire execution of DJK. The number of vertices that can

be processed in parallel first increases, then reaches a peak,

and then decreases. Similarly, Figure 3 shows the number of

active vertices colored during the entire execution of CLR.

In contrast, the application begins with a large number of

vertices to label, which gradually decreases over time. GPUs

are good at computing problems with massive parallelism

and big data sets; therefore, such phase behavior must be

understood by developers and system designers to utilize the

available computation resources efficiently.

Load imbalance across threads is undesirable for SIMD

execution, especially for threads in a SIMD wavefront, leading

to underutilization of SIMD lanes (See Section VI-C). Figure 4

shows the distribution of the length of edge lists expanded for

all active vertices for DJK over time. Most of the vertices have

a degree of one to four. Though the vertices with degrees

of five to eight are a minority in the whole distribution,

they cause the long tails of execution making the rest of

the threads in the same wavefront idle, doing nothing and

wasting power. As another example, Figure 5 shows the edge

list degree distribution for CLR. Most of the vertices have a

degree ranging from two to five. Furthermore, in both cases,

degree distributions change over time.

B. Performance Speedup and Execution Time Breakdown

We measure the performance of these graph applications by

running OpenCL programs on an AMD Radeon HD 7950 GPU

and compare their execution times against four CPU cores of

an AMD A8-5500 APU. The speedups are calculated on the

main computation parts excluding I/O and initial setup. When

calculating GPU execution times, we include the PCIe transfer

overhead.

Figure 6 shows the performance results across all the

benchmarks. We observe performance improvements up to

10.6× on the GPU compared to the CPU. FW achieves the

highest speedups. It uses a 2D matrix to keep track of the

path distances for each pair of vertices in the graph. In each

iteration, all points in the array can be processed in parallel

for a given k value (see Section IV-C). Its data structures

and access patterns both map well to the GPU architecture.

DJK and CLR achieve speedups ranging from 4× to 8×.

There is abundant parallelism in these applications, especially

for large graphs, which can leverage GPU parallel compute

resources. FRD and CCL achieve modest speedups of only

1–2× compared to multicore CPU executions. Even though

the threads in FRD are independent of each other, threads

can be waiting for other long-running threads in the same

wavefront to finish. Each thread generates n(n − 1) pairs,

Fig. 2. The number of active vertices processed during the entire runtime of
Dijkstra

Fig. 3. The number of active vertices are colored during the entire runtime of
Graph Coloring

Fig. 4. The distribution of the length of edge lists expanded for all active
vertices during the entire runtime of Dijkstra

Fig. 5. The distribution of the length of edge lists expanded for all active
vertices during the entire runtime of Graph Coloring

where n is the degree of a vertex, exacerbating the imbalance

caused by variations in vertex degrees. For instance, for the

coauthor dataset we use, some authors have hundreds of co-

authors, while others have only a few or even one. Similarly,

in CCL, certain threads spend more time searching for their

parent node, doing indirect accesses, than other threads in a

wavefront.

Even for a single application, different inputs show different

performance benefits. For instance, the speedups achieved by

MIS on the GPU range from 2.3× (shell) to 4× (ecology).

Additionally, the speedups achieved by CLR range from 4.6×
(ecology) to 7.6× (shell). Section VI-E2 will analyze further

the diverse application behaviors exhibited by different inputs.

Fig. 6. The speedup of running applications on the GPU compared to multi-
core CPUs. The execution time for calculating the speedup is measured on
the CPU and GPU for the core part of the computation, excluding the I/O
and initial setup.

Figure 7 shows the execution time breakdown due to

CPU computation, GPU kernel execution, and CPU-GPU data

communication (PCIe). The fraction of time spent on the GPU

computation ranges from 8% to 99%. Many applications share

a common pattern of looping through several consecutive GPU

kernels and spend a majority of time on GPU execution. For

instance, BC takes multiple iterations, searching the shortest

paths for each vertex, updating the score matrix and perform-

ing backward computation to calculate the BC value for each

vertex. Each iteration of CLR and MIS calculates a subset

towards an overall solution and prunes a set of vertices for the

next iteration. DJK expands the active edges in each iteration.

There are also a few applications which contain a large

fraction of CPU computation. For instance, FRD sets up the

positions where tuples are stored in the final array on the CPU.

MIS needs randomization of vertex values for each iteration,

which is done on the CPU. We anticipate moving some or all

of these operations to the GPU as future work.

C. SIMD Utilization

Graph workloads pose significant challenges for efficient

GPU SIMD utilization due to their irregular data structures

and parallelism. This causes workload imbalance for threads

in a SIMD group. Prior research used software techniques

to achieve better data and work packing [32] for breadth-

first search. However, less effort has been applied to other

applications.

Figure 8 captures the average percentages of active vector

ALU threads in a wavefront across all benchmarks as reported

by the AMD APP Profiler. In other words, when a wavefront

instruction is issued, this counter provides the average number

of threads active as specified by its execution mask. Pannotia

shows diverse control divergence across benchmarks, with

SIMD utilization ranging from less than 10% to more than

Fig. 7. The fraction of each GPU implementations runtime due to the core
part of computation (GPU execution, CPU-GPU communication and CPU
execution)

Fig. 8. The percentage of active vector ALU threads in a wavefront reported
by AMD APP Profiler (100% is ideal with full utilization)

90%. As discussed in Section VI-B, for the co-authors data

set used in FRD, certain authors have much longer coauthor

lists than others, resulting in significant load imbalance within

wavefronts. CLR shows an average of 67% threads active. In

addition, this application also exhibits an interesting phase

behavior: for CLR with G3-circuit, some phases show high

utilization (around 90%) while other phases show low uti-

lization (around 20%). This of course depends on the input

graph structures. Because the inputs we used for DJK are road

networks, the degrees of most vertices range from one to four.

Thus, they show relatively better utilization than applications

such as FRD with a degree range of one to several hundreds.

D. Cache Access

High GPU performance requires efficient memory band-

width utilization. In general, multiple GPU thread accesses

in a wavefront will be coalesced into a minimum number of

memory transactions. Ideally, threads should touch contiguous

data elements in memory (e.g., in the same cache line or

memory block). However, memory-coalescing optimization

is a challenge for graph algorithms due to their hard-to-

predict and close-to-random access patterns. The GPU cache

is designed primarily to optimize inter-thread spatial locality.

Fig. 9. The percentage of memory accesses that hit the L2 data cache of
the GPU, including read, write, atomic operations.

Fig. 10. Hit-rate variation of DJK during the entire execution run.

It is interesting to see whether the L2 cache is effective for

these workloads.

Figure 9 shows the L2 cache hit rates with different inputs

of all the Pannotia applications. Again, the workloads show

diverse behaviors. The cache hit rates range from about 10%

to more than 90%. FW, PRK and FRD demonstrate better

cache hit rates. CLR shows the worst hit rates (12-14%). Even

for a single application, hit rates vary across different inputs

(e.g., 26–37% for MIS). A detailed analysis requires us to

understand the working set and memory footprints of each

iteration during the entire program execution, which we leave

for future work.

Cache hit rates also show very interesting phase behaviors

for some applications. Figure 10 is an example of the hit-rate

statistics over time for the main single-source shortest path

kernel in DJK. The cache hit rate first improves, then degrades,

improves again and finally degrades with some fluctuations

in the middle. This phenomenon correlates with the phase

behavior we studied in Figure 2. We hypothesize that the

increasing number of active threads initially brings data into

the cache that is likely to be used by other threads. However,

as more and more vertices are processed, cache contention and

conflicts in turn degrade the cache hit rate.

E. Hierarchical Clustering

In this section, we use clustering analysis to explore simi-

larities and differences across workloads and among different

Fig. 11. Dendrogram showing the similarity between different graph
workloads(x-axis represents the linkage distance in the PCA coverage space)

inputs for each workload.

1) Workload Similarity: We first conduct a principal com-

ponent analysis (PCA) with the metrics mentioned in Table II.

We perform certain preprocessing for the statistics including

calculating ratios such as ALU/mem and fetches/writes with

the reported instructions, and normalize the values for each

metric across all the benchmarks. Figure 11 is a dendrogram

obtained after conducting PCA and hierarchical analysis. It

shows the similarity among these graph applications. The

applications classified in a cluster are more similar than those

classified in another cluster. In the figure, the magnitude of the

link distance (x-axis) quantifies the measure of dissimilarity.

For instance, BC and MIS (US-NW data set) show similar

behaviors. The next most similar benchmark to them is PRK

(2k data set). Figure 11 shows that FW and CCL are similar

for the counters that we evaluate and are classified into the

same cluster. Both of these two benchmarks show high SIMD

utilization and L2 cache hit rates from Figures 8 and 9.

PRK (flickr data set) and FRD are significantly different from

others; they demonstrate significant SIMD underutilization

compared to the other benchmarks (Figure 8).

2) Diverse Behaviors for Different Program-Input Pairs:

The dendrogram also illustrates an important issue: choosing

appropriate workloads for research. First, target benchmarks

need to represent real-world workloads. Second, benchmarks

need to process representative inputs. In other words, designers

should consider representative program-input pairs for evalu-

ation so they can make appropriate design decisions. Different

program-input pairs may show vastly different characteristics

on a given platform, which is clearly shown in Figure 11.

For instance, benchmark instances with three different inputs

(i.e., ecology, shell, US-road-NW) of MIS are classified into

different clusters. They present very different fetch-versus-

write ratios to the global memory as well as percentages

of GPU time when the write unit is stalled. CLR with G3-

circuit and ecology present similar behaviors; however when

using the shell input, it becomes more similar to MIS with

the same input. This implies that researchers using different

program-input pairs to optimize their hardware or compilers

may reach quite different designs. Similar observations have

been made when evaluating single and multi-threaded CPU

workloads [8], [16]. But this issue has been overlooked by

many researchers when doing computer architecture evaluation

and benchmarking. We show that input sensitivity is also an

issue for data-parallel applications on SIMD architectures.

Choosing the appropriate program-input pairs is especially

critical and a challenge for graph applications given diverse

and large number of existing graph structures. Research is

essential for a high-level abstraction and definition of graph

structures and associated analysis approaches for easy under-

standing of program behaviors.

VII. DISCUSSION

While developing and characterizing these graph bench-

marks, we made the following observations, which may allow

more efficient execution of these graph applications on the

GPU.

A. Architecture and Scheduling

Some graph applications evaluated in this paper share a

common parallel access pattern. As we discussed in Sec-

tion IV-A, graphs in CSR format are typically stored in three

compact vectors for vertices, edges, and weights. Each element

in the vertex array is an index pointing to the corresponding

edge and weight lists.

With such an organization, a typical pattern can be summa-

rized as the following pseudo-code, assuming each thread is

assigned to one vertex:

/ / g e t t h e v e r t e x i d . Each t h r e a d p r o c e s s e s

/ / t h e t a s k f o r one v e r t e x

i n t t i d = g e t t h r e a d i d ()

/ / g e t t h e s t a r t and e nd ing p o i n t e r s o f t h e edge l i s t

i n t s t a r t = v e r t e x [t i d] ;

i n t end = v e r t e x [t i d + 1] ;

. . .

/ / expand t h e edge l i s t f o r each v e r t e x

f o r (i = s t a r t ; i < end ; i ++){
compute (edge [i] , we igh t [i] , . . .) ;

}
. . .

Listing 1. A common pattern in many graph algorithms

In the current GPU model, the instructions of the code in

List 1 will be issued to different SIMD lanes. However, when

expanding the edge list, the length of edge lists (i.e., the range

of i) may vary across different vertices. Thus, for threads in

the same SIMD group, the threads with shorter edge lists have

to wait for those with longer edge lists to finish executing the

for loop.

We propose that in each SIMD unit, some scalar cores

working collaboratively with SIMD cores can be beneficial

particularly for such graph traversal patterns. For instance, the

major flow control for each vertex can be executed on the

scalar unit. The for loop of expanding the edge list can be

scheduled across SIMD lanes for the range of loop indices. In

this case, instead of each SIMD lane processing the edge list

for one vertex, each lane is now processing one edge in the

edge list for the same vertex. Figure 12 illustrates this idea

and compares two different schedules on architectures with

and without scalar units.

B. Heterogeneous SIMDs

We have shown that these graph applications show sig-

nificant SIMD underutilization. It is common that only a

few threads are active in a wavefront. We discussed in

Section VI-C that low utilization can be caused by vertices

with different degrees processed by the threads. One potential

solution is that, when only a few threads are active, these

threads can be scheduled on the scalar unit for execution. On

the other hand, if we use the scheduling policy described in

Section VII-A, it is still common that the average degree of

the vertices is smaller than the SIMD width (e.g., one to

five in Figure 5 and one to eight in Figure 4). Today’s GPUs

offered by NVIDIA and AMD typically use SIMD widths of

16 and 32. Based on our characterization, it might be useful for

vendors to consider including additional CUs with narrower

SIMDs (e.g., four to eight). Similarly, long wavefronts can be

time-sliced to execute on these narrow SIMD units or wide

SIMDs as usual. Prior research has also investigated using a

dynamic approach adapting SIMD width [30].

C. Resource Management

Our analysis shows that these applications demonstrate

diverse phase behaviors during program execution. Even for

a single application, phase behaviors may vary with different

inputs. For some applications, some iterations process a small

amount of work while the other iterations process a large

amount of work. For instance, DJK begins computation from a

single source vertex and gradually explores the vertex frontier

level by level. From both performance and energy efficiency

perspectives, GPU offload is beneficial when there is sufficient

work to leverage the GPU’s parallel resources. Therefore, for

these graph applications, it is interesting to consider how to

partition work of different phases across the CPU and the

GPU. This approach would be more efficient on systems with

integrated GPUs (e.g., AMD APUs) in which the CPU and the

GPU share memory. This configuration allows more efficient

task distribution across devices without costly PCIe data

transfers. A good example is a face detection implementation

optimized for an APU [38]. Power management techniques

for phases that underutilize compute resources are another

interesting research direction.

VIII. RELATED WORK

There are several benchmark development efforts for hetero-

geneous systems, including the Rodinia [12], [13], Parboil [41]

and SHOC [15] benchmark suites. A majority of the included

benchmarks are regular; only a few are graph or tree-based

algorithms, for instance, breadth-first search from Parboil and

Rodinia and B+tree from Rodinia.

Burtscher et al. [10] performed a quantitative study of

irregular programs on GPUs. The study also included other

Fig. 12. Two types of scheduling with GPU scalar and SIMD units

irregular benchmarks, e.g., data compression, pointer-to anal-

ysis. Unlike their work, Pannotia is focused primarily on

evaluating and understanding graph algorithms on the GPU

platform. We also introduce some representative applications

from web and social network analysis domains, which have

not been covered previously.

Other works studied how to accelerate graph algorithms

efficiently on GPUs. Harish et al. [19] parallelized several

graph algorithms on the GPU using NVIDIA’s CUDA. Merrill

et al. [32] proposed an optimized breadth-first search imple-

mentation with prefixsum on both single and multiple GPU

nodes. Burtscher et al. [11] presented an efficient CUDA

implementation of a classical tree-based Barnes-Hut n-body

algorithms. Several works [23], [35] have studied the ap-

proaches to optimize CCL problems on the GPU platform. In

addition, Vineet et al. [43] implemented a minimum spanning

tree (MST) algorithm for GPU acceleration. Sengupta et

al. [39] studied the scan primitives useful for programming

irregular applications.

In contrast to these individual studies, we introduce new

graph algorithms and their OpenCL implementations on the

GPU and provide an overall analysis of these applications by

providing new insights into different performance bottlenecks,

characterizing program behavior across different inputs, and

analyzing similarity among these graph workloads with hier-

archical clustering.

Prior works also benchmark a variety of applications on

the GPU platform. Che et al. [13] characterized the Rodinia

benchmark suite on the GPU platform and compared its

multithreaded version against the PARSEC benchmark. Kerr

et al. evaluate a set of metrics for GPU workloads [24] and

use them to analyze the behavior of GPU programs. Goswami

et al. [17] compared NVIDIA SDK, Parboil, and Rodinia

benchmarks using hierarchical clustering. Only a few targeted

benchmarks in these analysis are graph-based applications.

Other works studied graph algorithms on non-SIMD archi-

tectures. For instance, Pregel [28] is a system to process large-

scale graphs; their focused domain is web graph and various

social networks. GraphLab [26] is a MapReduce-like API and

framework designed for data mining with optimizations for

graph algorithms. GraphChi [25] is a disk-based system for

processing large graphs by breaking graphs into small parts

and using a parallel-sliding window method.

IX. CONCLUSION AND FUTURE WORK

This paper presents and characterizes Pannotia, a library of

graph applications. The suite of applications is implemented

in OpenCL and includes applications from a variety of graph

domains. We primarily focus on graph applications because

they present significant challenges on SIMD architectures with

branch and memory divergence, and input-dependent load

imbalance and parallelism.

We then conduct a characterization of these graph ap-

plications using hardware counters on an AMD GPU. We

observe that this suite of applications demonstrates diversity

in terms of parallel speedups, SIMD utilization and cache

efficiency both across applications and across different phases

within applications. We conduct a workload similarity study

among these benchmarks and observe that even for a single

application, different input data sets may show vastly different

program behaviors. This is an important issue that must be

considered by researchers for hardware and software designs.

We also discuss architecture features that may allow more

efficient execution of these graph workloads on the GPU,

including the use of scalar units for flow control and possible

narrower SIMD units for efficient lane utilization.

Directions for future work include:

• Evaluating more diverse graph applications with more

pointer-chasing and divide-and-conquer features, and

those that update the original graph structure.

• Developing new metrics and visualization methods to

improve analysis of workload behaviors, especially as a

function of different inputs and application phases.

• Studying general software optimization techniques and

primitives for these graph applications for better perfor-

mance and programmability.

• Evaluating and optimizing Pannotia on a variety of plat-

forms, including APUs, GPUs and many-core architec-

tures from other vendors. Integrated GPUs pose unique

opportunities for load balancing and work partitioning.

In addition, as we discussed, these graph applications

share common characteristics (e.g. low arithmetic intensity,

low data reuse, memory and branch divergence, and varying

parallelism). It would be interesting to study how to design

architectures specifically for this set of workloads and how

to improve existing GPUs so they are better suited to graph

applications.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their constructive

comments and suggestions.

REFERENCES

[1] AMD Radeon HD 7000 series counters. Web resource. http:
//developer.amd.com/tools/heterogeneous-computing/amd-app-profiler/
user-guide/app-profiler-settings/.

[2] The 10th DIMACS Implementation Challenge Graph Partitioning and
Graph Clustering. Web resource. http://www.cc.gatech.edu/dimacs10/.

[3] The 9th DIMACS Implementation Challenge Shortest Paths. Web
resource. http://www.dis.uniroma1.it/challenge9/.

[4] AMD Accelerated Parallel Processing: OpenCL Programming Guide.
Web resource. http://developer.amd.com/download/AMD Accelerated
Parallel Processing OpenCL Programming Guide.pdf.

[5] AMD Graphics Core Next Architecture. Web resource. http://www.amd.
com/us/products/technologies/gcn/Pages/gcn-architecture.aspx.

[6] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source
software for exploring and manipulating networks. In ICWSM, May
2009.

[7] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A quan-
titative comparison of two multithreaded benchmark suites on chip-
multiprocessors. In IISWC, Sep 2008.

[8] C. Bienia and K. Li. Fidelity and scaling of the PARSEC benchmark
inputs. In IISWC, Dec 2010.

[9] Ulrik Brandes. A faster algorithm for betweenness centrality. J. Math.

Sociol., 25:163–177, 2001.

[10] M. Burtscher, R. Nasre, and K. Pingali. A quantitative study of irregular
programs on GPUs. In IISWC, Nov 2012.

[11] M. Burtscher and K. Pingali. An efficient CUDA implementation of
the tree-based Barnes Hut n-body algorithm. In GPU Computing Gems,
pages 75–92. Morgan Kaufmann, 2011.

[12] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In IISWC, Oct 2009.

[13] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron. A characterization of the Rodinia benchmark suite with
comparison to contemporary CMP workloads. In IISWC, Dec 2010.

[14] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction

to Algorithms. McGraw-Hill, 2nd edition, 2001.

[15] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter. The scalable HeterOgeneous
computing (SHOC) benchmark suite. In GPGPU, Mar 2010.

[16] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Workload
design: Selecting representative program-input pairs. In PACT, Sept
2002.

[17] N. Goswami, R. Shankar, M. Joshi, and Tao Li. Exploring gpgpu
workloads: Characterization methodology, analysis and microarchitec-
ture evaluation implication. In IISWC, Dec 2010.

[18] NVIDIA CUDA Programming Guide. Web resource. http://developer.
nvidia.com/object/gpucomputing.html.

[19] P. Harish and P. Narayanan. Accelerating large graph algorithms on the
GPU using CUDA. In HiPC, Dec 2007.

[20] K. Hoste and L. Eeckhout. Microarchitecture-independent workload
characterization. IEEE Micro, 27(3):63–72, 2007.

[21] J. Cohen and P. Castonguay. Efficient graph matching and coloring
on the gpu. http://developer.download.nvidia.com/GTC/PDF/GTC2012/
PresentationPDF/S0332-GTC2012-Graph-Coloring-GPU.pdf.

[22] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John. Measuring
benchmark similarity using inherent program characteristics. IEEE

Trans. Comp,, 55(6):769–782, 2006.

[23] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider. Connected compo-
nent labeling on a 2D grid using CUDA. J. Parallel and Dist. Comp.,
71(4):615–620, 2011.

[24] A. Kerr, G. Diamos, and S. Yalamanchili. A characterization and
analysis of PTX kernels. In IISWC, Oct 2009.

[25] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph
computation on just a pc. In OSDI, Oct 2012.

[26] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Graphlab: A new parallel framework for machine learning.
In UAI, July 2010.

[27] M. Luby. A simple parallel algorithm for the maximal independent set
problem. In STOC, May 1985.

[28] G. Malewicz, M. H. Austern, A. J.C Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD, June 2010.

[29] Matrix Market Format. Web resouce. http://math.nist.gov/MatrixMarket/
formats.html.

[30] J. Meng, J. W. Sheaffer, and K. Skadron. Robust SIMD: Dynamically
adapted simd width and multi-threading depth. In IPDPS, May 2012.

[31] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivision for
integrated branch and memory divergence tolerance. In ISCA, June 2010.

[32] D. G. Merrill, M. Garland, and A. S. Grimshaw. Scalable GPU graph
traversal. In PPoPP, Feb 2012.

[33] METIS File Format. Web resource. http://people.sc.fsu.edu/∼jburkardt/
data/metis graph/metis graph.html.

[34] GTGraph: A Suite of Synthetic Random Graph Generators. Web
resource. http://www.cse.psu.edu/∼madduri/software/GTgraph/index.
html.

[35] V. M. A. Oliveira and R. A. Lotufo. A study on connected components
labeling algorithms using GPUs. In SIBGRAPI, Aug 2010.

[36] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical Report SIDL-WP-1999-
01204, Stanford Univerisity, 1999.

[37] A. Phansalkar, A. Joshi, and L. K. John. Analysis of redundancy and
application balance in the SPEC CPU2006 benchmark suite. In ISCA,
June 2007.

[38] AFDS 2012 Phil Rogers Keynote: The programmer’s guide to a
universe of possibility. Web resource. http://hsafoundation.com/

publications/.
[39] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives for

GPU computing. In GH, Aug 2007.
[40] Z. Shi and B. Zhang. Fast network centrality analysis using gpus. BMC

Bioinformatics, 12(140), 2011.
[41] Parboil Benchmark suite. Web resource. http://impact.crhc.illinois.edu/

parboil.php.
[42] The University of Florida Sparse Matrix Collection. Web resource. http:

//www.cise.ufl.edu/research/sparse/matrices/.
[43] V. Vineet, P. Harish, S. Patidar, and P. J. Narayanan. Fast minimum

spanning tree for large graphs on the GPU. In HPG, Jul 2009.

