DRAFT—Do not distribute

RAPID Programming of Pattern-Recognition Processors

Kevin Angstadt

Westley Weimer

Kevin Skadron

Department of Computer Science
University of Virginia
Charlottesville, VA 22904-4740
{angstadt,weimer,skadron}@cs.virginia.edu

Abstract

We present RAPID, a high-level programming language and
combined imperative and declarative model for program-
ming pattern-recognition processors, such as Micron’s Au-
tomata Processor (AP). The AP is a novel, non-Von Neu-
mann architecture for direct execution of non-deterministic
finite automata (NFAs), and has been demonstrated to pro-
vide substantial speedup for a variety of data-processing
applications. RAPID is clear, maintainable, concise, and ef-
ficient both at compile and run time. Language features,
such as code abstraction and parallel control structures, map
well to pattern-matching problems, providing clarity and
maintainability. For generation of efficient runtime code,
we present algorithms to convert RAPID programs into fi-
nite automata. Further, we introduce a tessellation technique
for configuring the AP, which significantly reduces com-
pile time, increases programmer productivity, and improves
maintainability. We evaluate five RAPID programs against
custom, baseline implementations previously demonstrated
to be significantly accelerated by the AP. We find that
RAPID programs are much shorter in length, are express-
ible at a higher level of abstraction than their handcrafted
counterparts, and yield generated code that is often more
compact. In addition, our tessellation technique for configur-
ing the AP has comparable device utilization to, and results
in compilation that is up to four orders of magnitude faster
than, current solutions.

1. Introduction

Big-data research is becoming increasingly common in both
industry and also academia. In a recent survey of around
1,000 senior decision-makers from nine industries and ten
countries, 70% of respondents consider their business’s abil-

[Copyright notice will appear here once ’preprint’ option is removed.]

ity to exploit big data critical to their future success [5]. Ad-
ditionally, the Computer Sciences Corporation reports that
the amount of data being generated by individuals and com-
panies will be 44 times greater in 2020 than it was in 2009
[8].

Collected data is often analyzed in a multitude of dif-
ferent ways, and many algorithms in areas such as data-
mining, bioinformatics, deep packet analysis, and spam fil-
tering require identification of exact or near-match character
patterns. A pattern defines a sequence of data that should
be found within another collection of data. For example,
a pattern could be all DNA sequences within a Hamming
distance of four from “ATCGAC” or all six-letter strings be-
ginning with “se”. Conducting such searches through large
datasets demands good support from both hardware and soft-
ware. Current processor technologies are not well-suited for
these tasks: single-threaded processing most naturally iden-
tifies a single pattern at a time, and therefore requires multi-
ple passes through the data; vector or SIMD processors suf-
fer from inherent branch divergence when analyzing data for
multiple patterns; and multi-core processors and clusters of-
ten execute far fewer threads than there are patterns to be
identified.

Hardware designers are exploring new processing tech-
nologies to accelerate pattern identification. One proposed
solution is the Automata Processor (AP) [10] by Micron, a
non-Von Neumann architecture for direct hardware simula-
tion of non-deterministic finite automata (NFAs). Patterns
are encoded as NFAs, which are loaded into a reconfigurable
lattice on the processor. Data are then streamed to the pro-
cessor and the NFAs are executed in parallel. The AP is well-
suited for problems that are highly parallel with disjoint or
inexact comparisons, such as analyses requiring the identifi-
cation of multiple patterns against a single data stream. Pre-
vious work has demonstrated significant speedups on the AP
for several data analysis and pattern-recognition problems,
such as biological motif search [16], association rule mining
[19], and Brill tagging in natural language processing [21].

The AP, however, is currently challenging to program.
Programming consists of specifying NFAs using an XML-
based language, which requires both knowledge of automata
theory and also the non-standard architecture. This is akin

to assembly-level programming on a traditional, Von Neu-
mann architecture. High-level language bindings exist for
this XML-based language, but are similarly challenging to
use. Regular expressions are a common means for defining
NFAs, but their use with the AP also has drawbacks. For
problems accelerated by the AP, the regular expression rep-
resentation is often an exhaustive enumeration of all accept-
ing data sequences. This is difficult to maintain and places an
unnecessary burden on the developer, as described further in
Section 2.

This paper presents RAPID, a high-level language that
maintains the performance benefits of pattern-recognition
processors while also providing concise, clear, maintainable,
and efficient representations of pattern-identification algo-
rithms. Programs consist of one or more macros and a net-
work, written in a combination of imperative and declara-
tive styles. A macro uses sequential control flow to define
an algorithm for matching patterns in an input data stream.
Macros in RAPID are similar to C-style macros and macros
in low-level Automata Processor programs. The network
contains a list of macros that are instantiated in parallel, al-
lowing for simultaneous recognition of many patters in data
streams. Macros and networks provide a programming ab-
straction that maps naturally to both pattern-matching prob-
lems and also the computational model of the Automata Pro-
cessor while providing a familiar structure akin to functions
or procedures.

We introduce three parallel control structures to facili-
tate common pattern-matching tasks. These allow the con-
cise specification of multiple, simultaneous comparisons
against a single data stream and provide high-level support
for variable-offset sliding window comparisons that are in-
tegral to many pattern-recognition problems.

We also present algorithms for converting RAPID pro-
grams into NFAs for execution with the Automata Proces-
sor. While code generation from RAPID for other pattern-
recognition processors and CPUs is possible, we choose to
focus on the AP because of recent promising results [4, 16,
19, 21] and the overall flexibility of the architecture. These
studies have reported speedups ranging from 8x—4000x over
single-threaded CPU applications. Acceleration of RAPID
programs is achieved via staged computation. Imperative
statements in the code are executed at compile time to aid
in generating finite automata, while declarative statements
related to the input data stream are then executed on the Au-
tomata Processor.

The AP hardware has a finite number of resources, di-
vided into configurable regions. By increasing the utilization
of these resources, more NFAs can be loaded, thereby allow-
ing for increased parallel exploration of the data stream. We
propose an auto-tuning tessellation optimization to increase
the density of NFAs loaded into the AP while reducing com-
pile time. Often, the generated finite automata of a RAPID
program consist of a repeated NFA design for exploring vari-

Submitted Draft

ations of a pattern. Our optimization determines the max-
imum quantity of this design that can occupy the smallest
programmable portion of the AP and generates a final au-
tomaton accordingly. At runtime, this structure can be filed
(loaded into multiple, programmable regions) onto the AP
by making use of block-level configuration before execution
of the search. Automation of this process saves the developer
time and reduces the number of possible programming mis-
takes, while increasing the overall resource utilization and
throughput of the AP.

We evaluate the efficiency of compiled RAPID programs
against handcrafted equivalents, measuring program size and
resource utilization. These programs are based on real-world
applications that have previously been show to have signifi-
cant speedups when executed on the Automata Processor.
This paper makes the following contributions:

e the RAPID programming language, a high-level lan-
guage for programming pattern identification processors

e a set of algorithms for converting RAPID programs into
non-deterministic finite automata

e an auto-tuning tessellation optimization for block-level
configuration of the AP, which maintains runtime effi-
ciency and significantly reduces compilation times

e experimental evaluation of the RAPID language against
hand-crafted applications demonstrating improved den-
sity of loaded NFAs and up to five orders of magnitude
faster compilation times when using our tessellation op-
timization

2. Background and Related Work

Pattern-Recognition Processors. There have been many
proposed hardware approaches for accelerating pattern-
matching problems [7, 11, 12, 14, 20]. Recently, there
has been been a renewed focus on accelerating pattern-
recognition problems using devices such as IBM’s Pow-
erEN Processor [13], the Titan IC RXP Regular eXpression
Processor [18], and the Automata Processor (AP) [10]. The
PowerEN processor contains special accelerators alongside
traditional cores to allow for improved regular expression
performance. The Titan IC processor employs a large lookup
table to accelerate regular expression matching. Rather than
directly processing a regular expression, the AP executes
NFAs using a combination of a modified SDRAM mem-
ory array and a reconfigurable routing matrix. The device is
a MISD processor according to Flynn’s Taxonomy. In this
paper we choose to target the AP and leave research into
alternate hardware architectures for future work.

Low-Level Automata Programming. The primary pro-
gramming model for the AP requires developers to design
NFAs using an XML-based language called the Automata
Network Markup Language (ANML). The ANML definition
is passed to placement and routing tools, which generate a

2015/12/7

binary image of the automaton. This binary image is used to
configure AP components to directly execute the NFAs. The
language allows for very fine-grained control, but is verbose
and not conducive to maintenance. For example, measuring
Hamming distance, the number of differences in correspond-
ing characters between two strings, between a five character
string and the input data stream requires 62 lines of code
[15]. To modify this code for Hamming distance compar-
isons with a string of length 12 requires 40 lines to be modi-
fied or inserted (i.e., 65% of the code in this simple example
must be modified to make this change). Modifying the code
to support even larger strings requires the modification of an
increasing percentage of the code.

Although GUI-based design tools for developing au-
tomata exist, there is still an additional level of abstraction
the developer must provide. Instead of directly represent-
ing the pattern to be matched, the developer must instead
provide a finite automaton. The conversion from pattern to
automaton is a conceptual burden placed on the developer.
Finite automata can be challenging and tedious to design
and can feel non-intuitive to developers lacking familiarity
with automata theory. In program verification research, for
example, generation of finite automata that represent speci-
fications is automated because generating correct designs is
difficult [1], and debugging of these automata is also chal-
lenging [2].

Additionally, ANML requires developers to have inti-
mate knowledge of the processor’s architecture to design
automata that meet hardware constraints. Consequently,
changes in newer generations of the hardware could hinder
productivity and portability.

Alternatively, developers could program the processor
using regular expressions, which abstractly represent their
equivalent automata; however, this also has its drawbacks.
For many problems, such as motif search or association rule
mining, the regular expression representing the search is
non-intuitive or may enumerate all possible variations of a
given pattern that should be matched. An additional limita-
tion with these programming models is that the patterns to
be matched must be known at compile time; i.e., a specific
instance of a problem must be defined and then compiled.

Languages for Streaming Applications. Streaming appli-
cations process a sequence of data that is received in real
time. Common examples of these applications include radio
receivers and software routers. The AP can be classified as
a streaming processor because the hardware detects patterns
in real time as data is input.

Languages for streaming applications, such as Streamlt
[17], have been studied in great detail. Streamlt provides
structures for stream pipelining, splitting and joining, and
feedback loops. StreamlIt objects may peek and pop from the
input stream, store input, and perform computations before
outputting a result. The AP architecture, however, does not
readily admit to this computational model. Finite automata

Submitted Draft

have no inherent memory, and cannot generally peek at the
input stream. Many of the operations allowed by StreamlIt
are thus not applicable in this domain, and it is not evident
how to extend the Streamlt model to describe complex au-
tomata nor non-deterministic execution. Additionally, data
and control are treated differently in StreamlIt and RAPID. A
Streamlt program specifies a stream graph: data always en-
ters the program and is transformed and passed downstream
until reaching an output. In RAPID, each instruction de-
scribes the next step to be taken to identify a pattern: stream
data enters the program in the location(s) where the program
is currently active, causing control to shift to another state-
ment in the program. Ultimately, StreamIt and RAPID target
different architectures and abstractions, and are not directly
comparable (e.g., it is not clear how to compile Streamlt pro-
grams for the Automata Processor).

Non-Deterministic Languages. Non-determinism is a use-
ful formalism for identifying patterns in parallel within a
data stream. In a state machine, non-determinism arises
when multiple states are active simultaneously, effectively
allowing for parallel exploration of the data stream. Several
existing languages contain non-deterministic control struc-
tures to facilitate these types of operations.

Dijkstra’s Guarded Command Language [9] introduces
non-deterministic alternative and repetitive constructs. Each
construct is predicated with a boolean “guard” that must
be true for the encapsulated statements to execute. The
alternative construct chooses one command for which the
guard is satisfies and executes it. In the repetitive construct,
the program loops, choosing one command with a satis-
fied guard to execute, until no guards are satisfied. Rather
than proposing a concrete language, the Guarded Command
Language presents guiding formalisms for supporting non-
determinism. RAPID provides similar constructs, but a no-
tion of parallel exploration is incorporated directly into the
semantics, allowing RAPID to be more concise than the
Guarded Command Language when processing stream or
pattern data.

An additional non-deterministic programming language
is Alma-0 [3], a declarative extension of Modula-2. Alma-0
supports the use of boolean expressions as statements, an
ORELSE statement allowing for execution of multiple paths
through the program, and a SOME statement that is the non-
deterministic dual of the FOR statement. While RAPID also
treats boolean expressions as statements (see Section 3.1),
it differs from Alma-0 in the computational model sup-
ported by the language’s semantics. In Alma-0, the ORELSE
and SOME are defined via backtracking. Execution is single
threaded: when an ORELSE statement or a SOME statement is
encountered, the program will choose a single option to ex-
ecute. If an exploration fails, the program backtracks to the
last choice point, restoring all program state, and attempts
a different option. Rather than choosing a single option to

2015/12/7

| macro hamming_distance (String s, int d) {
Counter cnt;

foreach (char c : s)
4 if (¢ !'= input()) cnt.count();
5 cnt <= d;
6 report;

}
¢ network (Stringl[] comparisons) {
9 some (String s comparisons)
10 hamming_distance(s,5);

o}

Figure 1: A RAPID program for computing Hamming dis-
tances

explore and backtracking if computation fails, RAPID pro-
grams explore all paths in parallel.

3. The RAPID Language

RAPID allows developers to write concise, clear, and main-
tainable algorithms for use on pattern-recognition proces-
sors, such as the Automata Processor. In particular, RAPID
supports searching a stream of data for many patterns in par-
allel. Programs are written in a combined imperative and
declarative style using a C-like syntax. In this section, we
present a high-level overview of the control structures and
data representations in the RAPID programming language.

3.1 Program Structure

Macros and Networks. Rapid programs consist of one or
more macros and a network. The basic unit of computation in
a RAPID program is a macro, which define reusable pattern-
matching algorithms. Macros in RAPID share similarities
with both C-style macros and ANML macros, allowing code
to be written once and then used as a “rubber stamp”. RAPID
macros admit more customized usage than their namesakes
in C and ANML,; the same macro can generate all designs
for a particular problem.

Statements within a macro are executed sequentially and
define actions that should be taken to identify a pattern. To
facilitate the description of these actions, RAPID provides
several control structures, including if statements, while
loops, and foreach loops. Unlike some languages, we guar-
antee in-order traversal when iterating with a foreach loop.
The language also provides parallel control structures useful
for pattern-matching, which we describe later in this section.

Additionally, macros can instantiate other macros. When
a macro is called, control shifts to the called macro; all of
its statements are executed, and then control returns to the
calling macro. While the macro code defines how to iden-
tify a pattern in the input stream, the macro parameters can
specify the particular characters to match, allowing for com-
parisons of varying lengths. Consider the macro in Figure 1,
which performs a Hamming distance computation between
a string parameter, s, and the input stream. Changing from

Submitted Draft

comparison against a string of length five to a string of length
twelve only requires passing a different string argument to
the macro. As noted previously in Section 2, more than half
of the code in the ANML model must be modified to make
an identical change.

The network represents the highest level of pattern-
matching within a RAPID program. Statements within a
network definition are executed in parallel. The most com-
mon use of the network is to define a collection of macros
for instantiation, which are executed in parallel at runtime
to identify patterns in the input data stream. The network
may also have parameters which specify certain values at
runtime. For example, Figure 1 contains a RAPID program
that computes the Hamming distance for a number of given
strings and reports on input within a distance of five. In this
example, the network is parameterized on an array of strings,
which is used at runtime to specify the comparisons being
made.

Reporting. RAPID programs passively observe the input
data stream; they cannot modify the stream in any man-
ner. Programs can indicate interesting regions within the
stream by using the report statement, which generates a re-
port event. These events provide the offset in the input data
stream at which the report occurred and additional identi-
fying meta data, such as the reporting macro. For the pro-
gram in Figure 1, reports indicate offsets where the input
stream is within a Hamming distance of five from the strings
in comparisons.

Boolean Expressions as Statements. Inspection of the in-
put data stream is central to the RAPID programming model.
Often, pattern identification algorithms only continue if a
certain sequence of characters is detected. RAPID provides
concise support for this common domain idiom by allowing
boolean expressions whenever full statements are allowed.
These declarative assertions terminate the thread of compu-
tation if the expression returns false. Line 5 in Figure 1
illustrates this usage.

3.2 Types and Data in RAPID

There are five primary data types in RAPID: char, int,
bool, String, and Counter. Both String and Counter
are lightweight objects, while the remaining three are primi-
tive types. Additionally, there is support for nested arrays of
these types.

In RAPID, pattern-matching occurs in a stream of a char-
acters. Therefore, the language provides the char primitive
type for interacting with input data. The input data stream,
however, is a stream of bits and does not need to be inter-
preted as characters. To support this, a char may also store
escaped hexadecimal values. RAPID also defines two char-
acter constants, which represent special symbols in the in-
put stream: ALL_INPUT and START_OF_INPUT. The former
represents any symbol within the input and the latter is a re-
served symbol for indicating the start of data. For example,

2015/12/7

i Counter cnt;
> foreach(char c¢ "rapid") {
if(¢ == input()) cnt.count();
4}
s if(cnt >= 3) report;

Figure 2: The above code counts the number of characters
matched in “rapid” and reports if the count is at least three

if the input data stream consists of the flattening of an array,
the entries would be concatenated into a stream, separated
by the START_OF_INPUT symbol.

A Counter is an abstract representation of a saturating
up-counter. Upon instantiation, a counter’s value is initial-
ized to zero. Counters provide two functions: reset () and
count (), which set the value to zero and increment by one
respectively. Although a program does not have access to the
internal value of the counter, it is possible to check its value
against integers.

Figure 2 demonstrates the usage of counters and interact-
ing with the input stream. The foreach loop iterates over
each character in the string “rapid” sequentially. If that
character matches the next character from the input stream,
the counter is incremented. After iterating over the entire
string, the program checks if the counter is at least three and
reports if so. For example, if the stream contained “tepid”,
the count would be three, and there would be a report, but
“party” results in a count of one and no report.

The input data stream in RAPID is privileged and is ac-
cessed via the input () function. A call to this function re-
turns a single character from the head of the data stream.
Access to the input data is destructive—no peeking or inser-
tion is allowed. All portions of a RAPID program executing
in parallel receive the same character from the input stream.
For example, if the stream contains “abcd...”, input ()
would return ‘a’ to all active threads of computation, and
the stream would now contain “bed. . .”.

RAPID’s design represents the input stream as a spe-
cial function rather than as a special indexed array. This is
for conceptual clarity: arrays afford a notion of random ac-
cess into the stored data, while pattern-recognition proces-
sors support sequential access to an ordered sequential data
stream. Global input access is intentionally similar to C’s
“fgetc” rather than “fread/fseek” or “mmap”.

3.3 Parallel Control Structures

In pattern-matching problems, it is often useful to explore
multiple possibilities in parallel. For example, a spam fil-
ter may wish to check for many black-listed subject lines
simultaneously, or a gene aligner may begin matching a se-
quence at any point in the input stream. To facilitate such
operations, RAPID provides both the network environment
and also parallel control structures. Networks, as described
previously, allow for parallelism at the macro level, which is

Submitted Draft

| either {
2 hamming_distance(s,d); //hamming distance

’y? == input (); //nezt input is ’y
2

| report; //report candidate

5 } orelse {

6 while(’y’> != input()); //consume until ’y
J

Figure 3: An example usage of an either/orelse statement

useful for checking several patterns in tandem. The parallel
control structures (either/orelse, some, and whenever)
provide finer-grain control over parallel operations.

Either/Orelse Statements. This structure provides ba-
sic support for parallel exploration in a pattern-matching
algorithm. An either/orelse statement consists of two
or more blocks, which allows for an arbitrary, static num-
ber of parallel computations. Computation splits when an
either/orelse statement is encountered during execution,
and each of the blocks is executed in parallel. When the end
of a block is reached, computation continues with the next
statement in the program. No blocking or joining occurs,
meaning that different paths in the either/orelse state-
ment may begin executing the following statement at dif-
ferent times. This behavior is desirable because it allows for
the matching of different length patterns containing the same
suffix.

As an example usage of the either/orelse statement,
consider the code fragment in Figure 3, which is adapted
from a bioinformatics motif search program [16]. In this
problem, candidates in the input stream are separated by
the control character ’y’. The computation should report the
candidates within a Hamming distance of d from the string
stored in variable s. We use an either/orelse statement
to ensure that computation continues to the next candidate
when the current candidate does not fall within the threshold.
The first block of the either/orelse statement performs
the Hamming distance comparison, while the second block
consumes input until the control character is reached, always
preparing the program to check the next candidate.

Some Statements. In certain cases, for example instantiat-
ing macros based on the content of an array, the ability to
generate a dynamic number of parallel paths is desirable.
The some statement provides this functionality.

This statement is the parallel dual of a foreach loop.
During execution, the program iterates over a provided array
or string and instantiates a parallel thread of execution for
each item. Similar to an either/orelse statement, the ex-
ecution of each parallel thread continues with the subsequent
statement in the program; different threads in the some state-
ment may reach this next statement at disjoint times. The
some statement in Figure 1 instantiates a Hamming distance

2015/12/7

| whenever (ALL_INPUT == input()) {

foreach(char ¢ "rapid")
c == input ();

4 report;

Figure 4: Execution of a sliding window search over the
entire input stream for the string “rapid”

macro for each string in the comparisons array. The num-
ber of parallel threads executed depends on the number of
entries in comparisons.

Whenever Statements. A common operation in pattern-
matching algorithms is a sliding window search, in which a
pattern could begin on any character within the input stream.
The whenever statement consists of a boolean guard and an
internal statement, which is often a block. The guard spec-
ifies a condition on the input stream that must be true or a
counter threshold that must be met before the internal state-
ment is executed. At any point in the data stream where this
guard is satisfied, the internal statement will be executed in
parallel with the rest of the program. A whenever statement
is the parallel dual of a while statement. Whereas a while
statement checks the guard condition before each iteration
of the internal statement, a whenever statement checks the
guard in parallel with all other computations, if any.

The code fragment in Figure 4 will perform a sliding win-
dow search for the string “rapid”. The predicate within the
guard will return true on any input, and therefore the block
of code will begin execution at every character in the input
stream. The whenever statement can also perform restricted
sliding window searches depending on the predicate in the
guard. For example, an application searching through HTTP
transaction might use the predicate matching “GET” before
matching specific URLs.

Sliding window searches are fundamental to stream pat-
tern recognition. All RAPID programs perform a sliding
window search on the START_OF _INPUT symbol. In the com-
mon case, this sliding window search occurs at the topmost
level of a RAPID program, i.e. right within the network. To
reduce verbosity, RAPID infers this whenever statement,
only requiring developers to specify a whenever statement
when performing a non-default sliding window search.

4. The Automata Processor

Before describing our techniques for transforming RAPID
programs into NFAs for acceleration with the AP, we present
an overview of the device’s architecture and computational
model.

The Automata Processor, as described by Dlugosch et
al. [10], is a hierarchical, memory-derived architecture for
direct execution of homogeneous non-deterministic finite
automata. NFAs are a useful model of computation for iden-
tifying patterns in a string of symbols. An NFA, formally,

Submitted Draft

0RO,

(D=

Figure 5: A behaviorally equivalent NFA and homogeneous
NFA (both accept exactly aa, aab, and aaca)

is defined as a tuple consisting of: a finite set of states, a fi-
nite alphabet, a transition function, the initial state, and the
set of accepting states. The finite alphabet defines the allow-
able symbols within the input string. The transition function
takes, as input, a set of currently active states and a symbol,
and the function returns a new set of active states.

Traditionally, NFAs are often represented as a directed
graph with states as vertices and the transition function en-
coded as edges. The AP executes an alternate form of NFAs
known as homogeneous NFAs. These automata restrict the
possible transition rules such that all incoming transitions to
a state must occur on the same symbol.! Because all transi-
tions to a state occur on the same symbol, we can label states
with symbols rather than labeling the transitions. We refer to
these combined states and labels as state transition elements
(STEs). An STE accepts the symbols in its label, which we
we refer to as the character class of the STE. Figure 5 de-
picts an NFA and a behaviorally equivalent homogeneous
NFA. Additionally, the AP relaxes the definition of machine
acceptance. Instead of accepting if an accepting state is ac-
tive at the end of input, the AP will report any time an accept-
ing state is active and record the relative offset in the input
stream of this activation. This allows for pattern-recognition
in streams of data symbols.

The set of languages recognized by both forms of finite
automata are equivalent [6]; however, the homogeneous for-
mulation allows for efficient execution directly in hardware.
The STEs are stored in a memory array, and transitions be-
tween these STEs are embedded in a reconfigurable routing
matrix. These two components—the memory array and rout-
ing matrix—form the basis of the AP architecture.

An SDRAM memory array serves as a computational
medium in the AP, a stark contrast from its traditional role
as main memory in a Von Neumann computer system. Ar-
ranged as a two dimensional grid, SDRAM data is accessed
via row and column addresses. STEs consist of a single col-
umn of memory and a detection cell used for storing whether
the given STE is active. The design in Figure 5b would re-

! NFAs traditionally support e-transitions between a source and target state
without consuming a symbol. These are not supported in our definition of
homogeneous NFAs. An e-transition may be removed by duplicating all
incident transitions to the source state on the target state.

2015/12/7

Row 1

Row 2 Row 2

Row 3 Row 3

Block 0,0 Block 1,0

Row 1

Half-Core

Figure 6: Hierarchical relationships between AP compo-
nents: groups of two (GoT) and a special purpose element
(S.E.) form a row, rows form blocks, and blocks form a half-
core

quire seven columns of SDRAM, one for each of the STEs.
The symbol or symbols accepted by an STE are stored in the
column of memory, each row representing a different sym-
bol in the alphabet. At runtime, a symbol from the input data
stream is decoded and drives one of the rows in the mem-
ory array. Simultaneously, all STEs (columns of memory)
determine whether they accept that symbol. Accepting STEs
(i.e., those currently active as determined via their detection
cells) then generate an output signal that is passed through
the routing matrix to activate the connected STEs.

In addition to STEs, there may be additional special pur-
pose elements. For example, the current generation AP con-
tains saturating counters and combinatorial logic. These ele-
ments connect to the STEs via transition edges and allow for
aggregation and thresholding of transitions between STEs.
While these elements do not necessarily add any expressive
power over traditional NFAs, the use of counters and logic
often reduces the overall size of automata. This allows the
AP architecture to be flexible. Future implementations might
contain additional special purpose elements.

A hierarchical, reconfigurable routing matrix is used to
route activation signals between STEs and special elements.
Groupings of two STEs form a GoT. Several GoTs and a
special purpose element (S.E.) are then connected to form a
row in the routing matrix. Groupings of rows form blocks,
and groupings of blocks form a half-core. Although an AP
chip consists of two half-cores, there exists no routing be-
tween these two units. An AP board consists of several AP
chips, and this allows for many pattern-recognition searches
to occur in parallel. Figure 6 depicts this hierarchy for a
half-core. Table 1 provides resource information for the first-
generation AP board. We can take advantage of this hier-
archical routing to produce efficient automata from RAPID
programs.

Submitted Draft

Table 1: Resources available on the first-generation AP
board, containing 32 chips

Total Total Total Boolean Total Half-
STEs Coun- Logic Elements Blocks Cores /
ters Chip
1,572,864 24,576 73,728 6,144 2
STEs / Rows / Counters / Block Boolean Blocks /
Row Block / Block Half-Core
16 16 4 12 96

5. Code Generation and Staged Computation

In this section, we present techniques for converting RAPID
programs into automata for execution on the Automata Pro-
cessor. The placement and routing tools for the AP accept
both regular expressions and an XML-based design lan-
guage called ANML as input. We choose to generate ANML
because this allows for finer-grained control over the result-
ing automata. Additionally, ANML allows us to explicitly
take advantage of future extension to the AP hardware, such
as the addition of new special purpose elements.

Our technique takes two files as input: the RAPID pro-
gram and a file annotating properties of the arguments to the
network parameters, such as lengths of arrays and strings.
Using this information, our tool converts the RAPID pro-
gram into two files: an ANML specification and host driver
code. The ANML file specifies the configuration of the AP
needed to perform the given pattern-matching algorithm
given by the RAPID program. The driver code is executed on
the CPU at runtime to load the ANML design onto the AP,
stream input data to the AP, and collect report events back
from the AP. In this section, we focus on the transformation
of RAPID into the ANML specification.

We employ a staged computation model to convert RAPID
program: comparisons with the input stream and counters
occur at runtime, while all other values are resolved at com-
pile time. To aid in partitioning, we annotate all expres-
sions with their return type during type checking. Allowable
annotations include the five types listed in Section 3.2 as
well as an internal Automata type, which we use to denote
expressions interacting with the input stream. Expressions
annotated with Automata or Counter are converted into
ANML structures (allowing for runtime execution), while
the remaining expressions are evaluated during compilation.

At its heart, our conversion algorithm recursively trans-
forms RAPID programs into finite automata in much the
same way that regular expressions can be recursively trans-
formed into NFAs. Comparisons with the input stream are
transformed into STEs. The particular statement in which the
comparison occurs determines how the STEs attach to the
rest of the automaton. Rules for transforming automata ex-
pressions determine the structure of the STEs within a given
statement. We describe the conversion of expressions, state-
ments and counters in turn.

2015/12/7

’a’ == input()
—()—
’a’ = input()
—E)—

’a’ == input() && ’b’ == input()

—(@D-E—

’a’ == input() || ’b’ == input()

— () —

1(’a’ == input() && °’b’ == input() &&
’c’ == input())

<o

Figure 7: Example transformations of RAPID expressions
into automata

5.1 Converting Expressions

Expression transformation results in the formation of a chain
of STEs. No cycles are generated by expressions, but chains
may include bifurcations. Figure 7 provides examples of
transformations from RAPID expressions to automata struc-
tures. The most basic transformation is a comparison be-
tween a character and the input stream, which generates a
single STE. AND expressions behave as concatenation be-
cause reading from the input stream is destructive. The con-
version of an OR expression generates a bifurcation in the
generated automaton structure. A special case occurs when
both sides of the OR expression contain input comparisons
of length one. In these instances, we take advantage of STE
character classes to specify multiple accepting symbols for a
single STE.

Negations of expression generate the most complex struc-
tures of all the expression types. Traditionally, an automa-
ton is negated by swapping accepting and non-accepting
states. This construction, however, does not work for our use
case because RAPID programs consume the same number of
symbols for an expression and its negation. The traditional
transformation does not maintain this property. Instead, we
transform the expression via De Morgan’s laws and gener-
ate STEs for the resulting statement. After any mismatch
in this negation, the remaining symbols do not matter, but
still must be consumed. We therefore use star states, which
match on any character. In practice, complex STE character
classes can handle such reserved symbols efficiently.

5.2 Converting Statements

Statements in RAPID are transformed into the high-level au-
tomaton structures, allowing for additional pipelining, feed-

Submitted Draft

* —>

Statement 1
Statement 2

~
Statement n o

(a) Foreach Loops

Statement 1
Statement 2

Statement n

(b) Either/Orelse and Some statements

—

!predicate

(c) While Loops

. Whenever
[

Body

(d) Whenever statement

Figure 8: Automaton designs for RAPID statements

back loops, and parallel exploration of patterns. We present
the overall structures in Figure 8.

A foreach loop is unrolled into straight-line pattern-
matching. Parallel either/orelse and some statement
are transformed by generating the code for each state-
ment and connecting these structures in parallel into the
overall design. This mirrors the language semantics that
the some statement is the parallel dual of foreach. Note
that some statements typically depend on compile-time
parameters (via input annotations on the network) while
either/orelse statements do not (see Section 3.3).

There is also a similarity between while loops and
whenever statements. While loops are transformed to alter-
nately perform predicate checks and execute the body code.
This generates a feedback loop structure in the automa-
ton. In a whenever statement, predicate checking begins
on every character consumed. To support this, we generate
a self-activating STE that accepts all symbols (see * node
in Figure 8d). This added STE maintains an active transi-
tion into the predicate, allowing matching to begin on every
symbol consumed. Once the predicate accepts, the body of
the whenever statement will begin to execute (although the
predicate is still checked again in parallel on subsequent
input characters).

2015/12/7

Table 2: Rules for thresholds and outputs on counters

Comparison Threshold True Output
< x X inverted
<= x x+1 inverted
> x x+1 non-inverted
>= x X non-inverted
== x convertto <= x && >= x
1= x convertto< x || > x

5.3 Converting Counters

Counters in RAPID programs are transformed into a com-
bination of one or more physical saturating counters and
boolean logic elements. The basic structure consists of a sat-
urating counter set to latch (once the threshold is reached,
the output signal remains active) and an inverter, which al-
lows for detection of the counter target not being reached.

Physical counters on the AP have three connection ports:
count enable, reset, and output. Counter object function
calls to count() and reset() in RAPID are connected
to their respective ports on the counter. Output signals then
connect to the next statement in the program.

We follow a set of rules for determining the threshold
and outputs of a Counter object shown in Table 2. Equality
checking with a Counter requires the use of two physical
counter elements in the AP. While traversing the program,
we note which Counter objects are used for equality check-
ing. Then during code generation, we emit two counter ele-
ments for each.

This technique only allows for one threshold to be checked
per counter in the RAPID program. An alternate solution
would be to use positional encodings. This technique dupli-
cates the automaton for each value the counter might have,
encoding the count in the position of states within the au-
tomaton. While this design allows for easy checking of mul-
tiple thresholds, it also significantly increases the number of
states in the final automaton and does not support counter
resetting. We chose not to implement this technique in our
initial compiler because it does not support full, generic
functionality.

We must also support the use of Counter variables as
predicates in a whenever statement. For the body of a
whenever statement to execute, the Counter must have
reached its appropriate threshold, and the statement itself
must have been reached within the control flow of the
RAPID program. We use a self-activating STE matching
all symbols to track when the statement is reached. We use
an AND gate to check both of these conditions before exe-
cuting the body of the whenever statement. This design is
demonstrated in Figure 9.

Counter threshold checks are also used as assertions or
as predicates in if statements and while loops. Because
NFAs do not have dynamic memory (beyond the states them-
selves), we propose to handle this case by both generat-

Submitted Draft

N / Whenever o
Body

Figure 9: Structure of whenever statement with counters

ing automata and also pre-transforming the input stream.
For each such Counter, we create a unique reserved in-
put symbol. This new symbol indicates that the threshold
for that particular Counter has been met. We add an STE
matching exactly that symbol linked to the subsequent state-
ment; whenever that symbol is encountered in the input data
stream, the appropriate subsequent statement begins execu-
tion. This symbol must be injected into the input data stream
before the RAPID program begins execution. Actual injec-
tion is handled by the runtime code and can occur while
data is being streamed to the AP (but before execution of
the RAPID program beings).

We attempt to automatically determine the pattern for
inserting the count threshold symbol into the input stream.
An example pattern is “insert the symbol after every 25
characters in the input stream.” In many cases, the compiler
can infer the pattern by counting the number of symbols
consumed before the counter check occurs. When while
loops are included in the program, however, it may not be
possible to determine where in the input stream to inject
the unique symbols. In these cases, we currently output a
warning at compile time and rely on the developer to provide
the pattern for inserting the control character into the data
stream.

6. Auto-tuning Tessellation

The automata designs generated from RAPID programs are
often repetitive. Specifically, we found four out of five of
our benchmarks reuse the same automaton structure multiple
times, only altering the symbol sets of the STEs. Developers
may take advantage of this property of designs to improve
placement and routing times for the Automata Processor.

Using current tools for the AP, an automaton can be pre-
compiled (i.e., placement and routing can be determined for
a small portion of the overall design). State symbols are pa-
rameterized, allowing pre-compiled designs to be used re-
peatedly with different symbols. The developer creates au-
tomata that reference this pre-compiled design many times.
This design is then placed and routed to be loaded onto the
device. Because the individual automata have already been
placed, the time needed is significantly reduced compared to
processing the entire design at once; however, this process
still requires over an hour for designs spanning an entire AP
board.

We propose an alternate approach, auto-tuning tessella-
tion, that requires seconds to produce final placement and

2015/12/7

routing data. This optimization approximates filling an en-
tire AP board with a design. Instead of generating a design
to fill the entire board, we produce a design on a block-level
for the AP (see Section 4). At runtime, we load this design
several times onto the AP to fill the entire board. To improve
device utilization (the number of automata loaded onto the
AP), we attempt to generate dense designs at the block level.

To implement this optimization, we must determine
which program elements to generate for tessellation. One
option would be to require developers to annotate programs,
indicating code sections to tile. This, however, places un-
due burden upon developers as they would have to analyze
programs to determine the best locations to introduce tiling.
Instead, we use a heuristic: code iterating over a network
parameter within a some statement contained at the top level
of the network is tiled. This heuristic captures the intended
optimization behavior for all of our benchmarks that support
tiling.

Given a portion of the code to tile, we generate an au-
tomaton. This design is placed and routed, reporting the
block-level device utilization. Then, we iteratively add addi-
tional copies of the automaton to the design until just before
device utilization increases. This technique improves overall
usage by embedding more automata into each block.

7. Evaluation

We evaluate RAPID against hand-crafted designs for a col-
lection of five benchmark applications, which were selected
based upon previous research demonstrating significant ac-
celeration using the Automata Processor [4, 16, 19, 21].

Table 3 provides descriptions of the benchmarks used.
For each benchmark, we chose an instance size represen-
tative of a real-world problem. These sizes come either di-
rectly from previous work or from conversations with the
authors of the previous work. The generation method col-
umn indicates the technique used to create the handcrafted
code, which ranged from custom Java or Python programs
for generating an ANML design to the use of a GUI design
tool (Workbench) for crafting automata by hand. The authors
of the ARM [19] and Brill [21] benchmarks provided us with
their original code, including a collection of regular expres-
sions for performing the Brill benchmark. We recreated the
remaining designs, using algorithms and specifications pub-
lished in previous work.

Table 4 lists design statistics for each of the benchmarks.
We compare the lines of code needed to generate ANML,
be it using RAPID or a custom technique in the cases of
ARM and Brill. For ARM, the RAPID code requires six times
fewer lines to represent, and Brill requires about half of the
lines of the hand-crafted solution. The regular expression
representation for Brill is more compact than RAPID. An
author from the previous work [21] noted, however, that
she found developing the regular expressions to be tedious

Submitted Draft

and error-prone and felt that the RAPID program was more
intuitive.

We created the Gappy, Exact, and MOTOMATA bench-
marks using a GUI design tool. For these, we present the
lines of code in ANML, which is roughly equivalent to the
number of actions taken within the design tool. ANML file
sizes are dependent on the specific instance of a problem.
The numbers we present here are for a single instance of
the problem size listed in Table 3. In all cases, the RAPID
program is significantly more compact than the ANML it
generates.

As an approximation for the size of the resulting automa-
ton, we measure the number of STEs generated and the num-
ber of STEs loaded to the AP after placement and routing.
The placement and routing tools modify the original au-
tomaton to better match the architectural design of the AP.
For most benchmarks, RAPID-generated automata contain
fewer device STEs, taking up less space on the device. Only
the Gappy benchmark requires more device STEs. Although
we could optimize the RAPID code to reduce the size of the
generated automaton, we found that this more natural de-
sign, although larger, has comparable placement and routing
efficiency. In the case of MOTOMATA, the RAPID version
requires approximately half the STEs of the hand-crafted
version. The compiled RAPID version makes use of a satu-
rating counter, while the handcrafted version uses positional
encoding.

In Table 5, we present the performance of RAPID pro-
grams compared to hand-crafted ANML based on placement
and routing statistics for the AP. We use version 1.4-11 of
the AP SDK to generate the placement and routing informa-
tion. The total blocks column measures the number of rout-
ing matrix blocks (see Section 4) needed to accommodate
the design; lower numbers represent a more compact design.
STE utilization indicates the percent of used STEs within the
routed blocks; high numbers indicate a design with fewer un-
used STEs. Mean BR allocation is a metric provided by the
AP SDK that approximates of the routing complexity of the
design. Here, a lower number is better, signifying lower con-
gestion within the routing matrix. The clock divisor indicates
whether the clock cycle of the AP must be reduced to accom-
modate a design. In one instance (the RAPID MOTOMATA
program), the clock cycle must be halved due to a limitation
in signal propagation between counters and combinatorial
elements in the current generation AP. However, the RAPID
version is four times more compact. Although this is a per-
formance loss for a single instance, it is a net performance
gain for a full problem, which will fill the AP board: four
times as many instances execute in parallel at half the speed,
for a net improvement factor of two. Although RAPID pro-
vides a higher level of abstraction than ANML, the final de-
vice binaries are more compact, using fewer resources on the
AP.

2015/12/7

Table 3: Description of benchmarks

Benchmark Description Generation Method Sample Instance Size
ARM [19] Association rule mining Python + ANML 24 Ttem-Set

Brill [21] Rule re-writing for Brill part of speech tagging Java 219 Rules

Exact [4] Exact match DNA sequence search Workbench 25 Base Pairs

Gappy [4] DNA string search with allowances for gaps between characters ~ Workbench 25-bp, Gaps < 3
MOTOMATA [16] Fuzzy matching for planted motif Search in bioinformatics Workbench (17,6) Motifs

Table 4: Comparison between RAPID and hand-crafted code
with respect to lines of code (LOC) and STE usage

ANML Device

Benchmark LOC LOC STEs STEs
ARM R 18 214 58 56
H 118 301 79 58

Brill R 688 10,594 3,322 1,429
H 1,292 9,698 3,073 1,514

Re 218 -+ 4075 1,501

Exact R 14 85 29 27
H -t 193 28 27

Gappy R 30 2,337 748 399
H -t 2,155 675 123

MOTOMATA R 34 207 53 72
H -t 587 150 149

R—-RAPID H - Hand-coded Re — Regular Expression
T The GUI-tool does not have a LOC equivalent metric.
 No ANML statistics are provided by the regular expression compiler.

Table 5: Placement and routing statistics

Total Clock STE Mean BR

Benchmark Blocks Divisor Util. Alloc.
ARM R 1 1 21.9% 20.8%
H 1 1 234% 20.8%

Brill R 8 1 84.0% 52.6%
H 12 1 57.9% 65.4%

Re 10 1 71.4% 60.6%

Exact R 1 1 10.9% 4.2%
H 1 1 109% 4.2%

Gappy R 2 1 89.5% 70.8%
H 2 1 37.5% 77.1%

MOTOMATA R 1 2 33.6% 75.0%
H 4 1 172% 75.0%

R—-RAPID H-Hand-coded Re — Regular Expression

Finally, we evaluate our tessellation optimization by gen-
erating designs filling the entire AP Board. The Brill bench-
mark is fixed in size and is not applicable for this optimiza-
tion. For the remaining benchmarks, we compare generat-
ing the “full problem” using non-compiled ANML, pre-
compiled designs, and RAPID’s tessellation feature (see
Section 6 for descriptions). The ANML is generated using a
Python script and bindings for the AP tool-chain. We choose
problem sizes for each benchmark to ensure that the worst

Submitted Draft

performing technique would still fit on an AP board (6,144
blocks) in each case.

The results of this optimization are given in Table 6. We
report the average of ten runs of both the ANML genera-
tion and placement and routing steps for each benchmark.
We measured each configuration on the same machine us-
ing both version 1.4-11 and version 1.6-0 of the AP place-
ment and routing tools, reporting the best result obtained.
Neither version of the AP tools could successfully place and
route the ARM baseline or the Gappy benchmark with pre-
compiled designs.

To determine the total number of blocks for RAPID tes-
sellation, we multiply the problem size by the number of
blocks needed for the RAPID program (Table 4) and divide
by the number of automata generated by the tessellation op-
timization. We use compiler output to determine the total
number of blocks for the baseline and pre-compiled tech-
niques.

Our auto-tuning tessellation technique outperforms both
the baseline and pre-compiled designs in terms of time and
space. We hypothesize that the improved block utilization
results from routing complexities within the automata de-
signs. When this complexity is present, the baseline tech-
nique cannot provide a more efficient layout than when us-
ing our tessellation. The Exact benchmark forms chains of
STEs, which are simpler to route, and therefore the place-
ment and routing tools are able to overlap some of the au-
tomata across blocks in the routing matrix using the baseline
technique. Additionally, our technique is up to four orders of
magnitude faster during compilation, placement, and routing
than the baseline and up to three orders of magnitude faster
than using pre-compilation. We do not view the many-hour
place-and-route times of the default approach as efficient in
practice, especially when our tessellation reduces this time to
seconds. Consequently, RAPID tessellation promotes rapid
prototyping of designs. By significantly decreasing design
testing time, tessellation can increase developer productiv-
ity and improve maintainability while maintaining efficient
device utilization.

8. Conclusions and Future Directions
This paper presents RAPID, a language for defining pattern-

matching algorithms. RAPID is motivated by pattern-recognition

processors, such as the Automata Processor, which greatly

2015/12/7

Table 6: Tessellation optimization

Problem Size Generate Time Place and Route Total Time

Benchmark (# instances) Total Blocks (sec) Time (sec) (sec)
ARM BT 8,500 - 5.38 - -
P 8,500 6,100 6.53 771.16 770.70

R 8,500 2,125 3.70 0.41 4.12

Exact B 46 000 4730 24.52 22 011.10 22 035.62
P 46 000 6075 30.17 1676.88 1707.05

R 46 000 5750 0.80 0.08 0.88

Gappy B 2,000 5,354 0.99 9158.00 9158.99
pf 2,000 - 0.99 - -

R 2,000 4,000 9.17 2.20 11.36

MOTOMATA B 1 500 5320 1.49 5874.51 5875.99
P 1500 6001 1.45 210.62 212.07

R 1500 1500 2.26 0.37 2.63

B — Baseline (No Pre-Compilation)

P — Pre-Compiled Designs

R — RAPID Tessellation

T The current AP software is not able to support placement and routing for this benchmark.

accelerate pattern detection in streams of data, but lack easy-
to-use programming models.

We present techniques for converting RAPID programs
to designs that can be executed and accelerated on the Au-
tomata Processor. Although RAPID programs are written at
a higher level of abstraction than current hand-crafted code,
our evaluation indicates that RAPID programs have similar,
if not better, device utilization. We plan to develop additional
conversion techniques to support CPUs and other hardware
architectures.

Additionally, we argue that our auto-tuning tessellation
technique for generating pattern searches spanning the en-
tire AP board increases developer productivity and program
maintainability. Compile times are several orders of magni-
tude faster than current methods and produce device config-
urations that maintain high device utilization.

There many options for extending the RAPID language.
For example, generated automata could be optimized to bet-
ter support the placement and routing tools. The Automata
Processor has specific constraints for routing between spe-
cial elements and states. By optimizing RAPID programs
for these constraints, we can improve device utilization and
also reduce placement and routing times. Further, debug-
ging tools for pattern-matching processor are limited. Tools
aiding developers to generate short input sequences to test
corner cases of their applications as well as techniques for
debugging RAPID would further increase productivity and
maintainability.

In conclusion, RAPID raises the level of abstraction for
programming pattern-recognition processors, resulting in
clear, concise, maintainable, and efficient programs. We de-
velop a notion of macros and networks, which we argue
improve program maintainability. The same macro may be
called with differing arguments to generate automata for
varying instances of a pattern-matching problem. This pro-
gram structure maps well to both pattern-recognition prob-

Submitted Draft

lems and also the underlying pattern-recognition hardware.
Additionally, RAPID provides parallel control structures to
support common tasks in pattern-matching algorithms, such
as sliding window searches. Compared to hand-crafted ver-
sions of pattern-matching algorithms, the RAPID definition
is more concise, needing only a fraction of the lines to im-
plement.

Acknowledgments

We acknowledge the partial support of the NSF (CCF
0954024, CCF 1116289); Air Force (FA8750-15-2-0075);
Virginia Commonwealth Fellowship; Jefferson Scholars
Foundation; and C-FAR, one of six centers of STARnet,
a Semiconductor Research Corporation program sponsored
by MARCO and DARPA.

References

[1] R. Alur, P. éerny, P. Madhusudan, and W. Nam. Synthesis
of interface specifications for Java classes. In Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 98—109, 2005.

[2] G. Ammons, D. Mandelin, R. Bodik, and J. R. Larus. Debug-
ging temporal specifications with concept analysis. In Pro-
ceedings of the ACM SIGPLAN 2003 Conference on Program-

ming Language Design and Implementation, pages 182-195,
2003.

[3] K. R. Apt, J. Brunekreef, V. Partington, and A. Schaerf. Alma-
0: An imperative language that supports declarative program-
ming. Technical report, 1997.

[4] C. Bo, K. Wang, Y. Qi, and K. Skadron. String kernel testing
acceleration using the Micron Automata Processor. In Work-
shop on Computer Architecture for Machine Learning, 2015.

[5] Capgemini. Big & fast data : The rise of insight-
driven business. https://wuw.capgemini.com/
resource-file-access/resource/pdf/big_

2015/12/7

fast_data_the_rise_of_insight-driven_
business-report.pdf, 2015.

[6] P. Caron and D. Ziadi. Characterization of Glushkov au-
tomata. Theoretical Computer Science, 233(1):75-90, 2000.

[71 H. D. Cheng and K. S. Fu. VLSI architectures for
string matching and pattern matching. Pattern Recognition,
20(1):125-144, Jan. 1987.

[8] C. S. Corporation. Big data universe beginning to explode.
http://www.csc.com/insights/flxwd/78931-big_
data_universe_beginning to_explode, 2012.

[9] E. W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. Communications of the ACM,
18(8):453-457, Aug. 1975.

[10] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and
H. Noyes. An efficient and scalable semiconductor archi-
tecture for parallel automata processing. IEEE Transactions
on Parallel and Distributed Systems, 25(12):3088-3098, Dec.
2014.

[11] A. Halaas. A systolic VLSI matrix for a family of fundamental
searching problems. Integration VLSI Journal, 1(4):269-282,
Dec. 1983.

[12] A. Halaas, B. Svingen, M. Nedland, P. Setrom, O. Sngve,
Jr., and O. R. Birkeland. A recursive MISD architecture for
pattern matching. [EEE Transactions on Very Large Scale
Integrated Systems, 12(7):727-734, July 2004.

[13] A. Krishna, T. Heil, N. Lindberg, F. Toussi, and S. Vander-
Wiel. Hardware acceleration in the IBM PowerEN processor:
Architecture and performance. In Proceedings of the 21st in-
ternational conference on Parallel architectures and compila-
tion techniques, pages 389-400, 2012.

[14] H. Lu, K. Zheng, B. Liu, X. Zhang, and Y. Liu. A memory-
efficient parallel string matching architecture for high-speed
intrusion detection. IEEE Journal on Selected Areas in Com-
munications, 24(10):1793-1804, 2006.

[15] Micron. Calculating Hamming distance.
//www.micronautomata.com/documentation/
cookbook/c_hamming_distance.html.

http:

[16] 1. Roy and S. Aluru. Finding motifs in biological sequences
using the Micron Automata Processor. In 2014 IEEE 28th In-
ternational Parallel and Distributed Processing Symposium,
pages 415-424, May 2014.

[17] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamlIt: A
language for streaming applications. Proceedings of the 11th
International Conference on Compiler Construction, pages
179-196, Apr. 2002.

[18] Titan IC Systems. RXP regular eXpression proces-
sor soft IP. http://titanicsystems.com/Products/
Regular-eXpression-Processor- (RXP).

[19] K. Wang, M. Stan, and K. Skadron. Association rule mining
with the Micron Automata Processor. In 29th IEEE Interna-
tional Parallel & Distributed processing Symposium, 2015.

[20] H. Yamada, M. Hirata, H. Nagai, and K. Takahashi. A high-
speed string-search engine. IEEE Journal of Solid-State Cir-
cuits, 22(5):829-834, 1987.

Submitted Draft

[21] K. Zhou, J. J. Fox, K. Wang, D. E. Brown, and K. Skadron.
Brill tagging on the Micron Automata Processor. In Proceed-
ings of the 2015 IEEE 9th International Conference on Se-
mantic Computing (IEEE ICSC 2015), pages 236-239, Feb.
2015.

2015/12/7

