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Abstract

This paper shows that context switching is not a sig-
nificant factor to be considered when performing general
branch prediction studies. Branch prediction allows for
speculative execution by increasing available instruction
level parallelism (ILP) and hiding the time required to re-
solve branch conditions. Accurate simulation of branch
prediction is important because branch prediction strongly
influences the behavior of processor structures. For this
study, a timesharing framework was developed by modify-
ing SimpleScalar’s branch predictor simulator. A thorough
characterization of the effects of branch predictor config-
uration, branch predictor area, and time slice length is
provided. As further verification, branch predictor perfor-
mance with and without flushing the predictor structures is
compared. Experiments show that operating system context
switches have little effect on branch prediction rate when
using time slices representative of today’s operating sys-
tems. Our findings show that this results from the fact
that time slices are much larger than the training time re-
quired by the branch predictor structures. For all predictor
configurations tested, the predictors train in under 128K
instructions with or without flushing the branch predictor
structures.

1 Introduction

Techniques for taking advantage of parallelism are im-
perative to realize the full potential of contemporary mi-
croprocessors. Branch prediction is one of the most power-
ful and widely-used techniques, which guesses the outcome
of a branch before its condition is resolved. This avoids in-
terruptions in instruction fetch and expands the window of
instructions over which ILP can be exposed. Because the
average size of basic blocks is relatively small (4-10 instruc-
tions), ILP within a block is limited. Therefore, accurate
branch prediction is critical to higher performance, and it
has been suggested that prediction accuracy is the biggest
single architectural lever over performance in uniproces-
sors [11]. For these reasons, branch prediction techniques
have been analyzed from many different perspectives in or-
der to characterize branch behavior or evaluate new predic-
tors. However, most branch prediction experiments have
been performed in isolation from system-level features, in
particular from the effects of context switching due to mul-
tiprogrammed workloads.

In a typical system, the branch predictor structures are
time-shared between active processes. Between succes-

sive time slices for a particular process, intervening pro-
cesses also use the branch predictor and therefore may af-
fect branch predictor decisions for the process by mapping
branches from multiple processes to the same predictor
entries. This aliasing, similar to aliasing among branches
in the same program, can have destructive, constructive,
or neutral effects. Destructive aliasing causes the pre-
dictor to make an incorrect prediction, when originally a
correct prediction would have been made. Constructive
aliasing causes the predictor to make a correct prediction,
when originally a misprediction would have been made. In
neutral aliasing no change in prediction occurs. Context
switching, by increasing the number of branches access-
ing individual entries, may increase the probability that
branch predictor entries suffer destructive aliasing. This
makes it important to understand the impact of context
switching on branch prediction accuracy.

Current research has not systematically explored what
effect realistic time slice lengths might have on branch pre-
dictor performance. Our work characterizes the effects
context switching has on the performance of various branch
predictor configurations and provides more comprehensive
data on a wider range of predictor configurations and pre-
dictor areas than previous research. We explain the ef-
fects of context switching on branch predictor performance
by showing that the training time required by all branch
predictors is much smaller than current time slices. In
this survey, we use a novel instruction-level simulation ap-
proach in which context switching can be modeled without
requiring trace stitching. We find that:

e Branch predictor components train in under 128K in-
structions for CPU-bound workloads. This training
time is shorter than realistic time slice lengths.

e For all but the shortest time slices, even the unreal-
istic behavior of flushing has negligible effect on pre-
dictor accuracy.

e Given the previous two findings, this means that
branch predictor accuracy in the face of context
switching with realistic time slices for CPU-bound
processes is minimally affected. (This is not to say
that context switching has zero effect, but rather, that
with respect to general branch prediction studies, the
effect is small and affects different predictors simi-
larly.)

e With respect to general branch prediction studies,
context switching is not as significant a factor as pre-
viously thought.



Taken together, the results in this paper provide the
data necessary to help researchers choose simulation tech-
nique and accurately model the effects of branch predic-
tion.

The paper is organized as follows. Section 2 describes
necessary background information. Section 3 discusses re-
lated work. Section 4 describes our simulation technique.
Section 5 discusses and analyzes experimental results. Sec-
tion 6 summarizes our findings.

2 Background

For this study, four predictor configurations are studied:
bimodal, GAs, PAs, and hybrid. The bimodal or “two-bit
counter” scheme, proposed by Smith [22], contains a ta-
ble of two-bit saturating counters or pattern history table
(PHT), which is indexed by the branch address to provide
the direction prediction. GAs and PAs are types of two-
level predictors proposed by Yeh and Patt [27] and also
Pan, So and Rahmeh [18]. Two-level predictors address
the inability of bimodal predictors to identify branch pat-
tern behavior or inter-branch correlation. The GAs predic-
tion scheme uses global history to make direction predic-
tions. It consists of a global history register (GBHR) which
maintains a history of the outcomes of recent branches en-
countered and a table of two-bit saturating counters (the
PHT). The GBHR is combined with the branch address to
index the PHT and derive the direction prediction. The
PAs prediction scheme uses per-branch history to make di-
rection predictions. It consists of a table of per branch or
local history patterns (branch history table or BHT) and
a PHT. The branch address indexes the BHT. This yields
a history pattern which is combined with the branch ad-
dress to index the PHT and derive a direction prediction.
Finally, hybrid prediction, proposed by McFarling [13], ad-
dresses the fact that different branches are predicted better
with different predictor organizations. A hybrid predictor
combines two predictor components from those previously
described above and adds a selector component which se-
lects the final direction prediction from the two predictions
provided by the components.

Context switches exist to permit multiprogramming.
The processor time is divided between active processes;
each process receives a maximum slice of time on the pro-
cessor to perform computations after which it must re-
linquish the processor, regardless of whether the process
has fully completed or not. This period of time is called
the time slice. Context switches are important to branch
prediction because branch predictor structures are shared
between the running processes. Intervening processes can
cause destructive aliasing in the branch predictor struc-
tures, and if the time slice is very small, the branch predic-
tor might not have enough time to properly train before the
next context switch. Context switches can be categorized
into two main categories: voluntary and involuntary [10].
Voluntary context switches occur when a process willingly
relinquishes the processor due to system calls, I/O, or page
faults. Involuntary context switches occurs when the time
slice has elapsed and the process is forced to relinquish the
processor. In this study, we simulate both involuntary and
voluntary context switches. Typical time slices are 25 ms
for Windows NT and 50-200 ms for Unix varieties'.

1Default time slice lengths for Windows N'T on various plat-

3 Related Work

Several previous branch prediction studies have consid-
ered context switching, but they have used very short time
slices. Our work simulates a range of realistic time slices
for a broad range of predictor configurations and predictor
areas. We focus on benchmarks that are primarily CPU-
bound and our results are directly useful to researchers
using the SPEC benchmarks.

Gloy, et al. [7] analyzed dynamic branch prediction
schemes on system workloads. They quantify the effects
of kernel and user interactions on branch prediction ac-
curacy. They argue that modeling context switching by
flushing the branch predictor structures after each context
switch is unrealistic because interactions with the kernel
and other processes do not necessarily flush branch pre-
dictor state. In their study, kernel level branches were
integrated with user level branches for each benchmark an-
alyzed. They found that inclusion of kernel level branches
significantly affected the branch predictor rate when the
kernel level branches accounted for more than 5% of the
total executed instructions. Time slices used in their ex-
periments were small, however: 10K, 100K and 1M in-
structions. Our work more systematically studies the rela-
tionship among predictor organization, size, and time slice
length, and uses more typical time slices. We also verify
that flushing, although not representative of realistic be-
havior in CPU-bound workloads, minimally affects branch
predictor accuracy in the face of longer, realistic time slice
lengths.

Calder, Grunwald, and Emer [2] performed a system-
level analysis of the performance of various branch archi-
tectures on the Alpha 21064 [3]. Their work demonstrated
that branch performance metrics should include how over-
all system performance is affected. Our work, however,
focuses on whether the modeling of multiprogramming af-
fects predictor behavior. Since we find that it typically
does not, it is unnecessary (and prohibitively expensive)
to obtain IPC measurements.

Similar work by Mogul and Borg [16] has explored
caching in the face of context switching. They examined
how cache hit rate varies after a context switch and noted
that the cost of context switches, in terms of how it af-
fects cache performance, can guide cache design. Hwu
and Conte [10] studied the worst-case susceptibility of
programs to context switching. They study how volun-
tary and involuntary context switches affect various bench-
marks with respect to cache miss ratio.

Many studies have evaluated specific branch predictor
choices in light of context switching. Evers, Chang and
Patt [5] proposed the multi-hybrid predictor, which con-
tains at least one quick-training component (i.e., a bimodal
component) which is used when context switches occur,
giving other component structures of the multi-hybrid pre-
dictor time to train. They found the multi-hybrid to be
more accurate than conventional hybrid configurations in
the face of context switching. Context switching was mod-
eled by flushing the predictor structures and setting the
structures back to their initialized state at intervals of 16K,
64K, 256K, and 1M instructions. However, these intervals

forms are listed in [23]. Unix time slice lengths are based on the
output of Solaris 5.5.1 dispadmin utility [15] and examination
of RedHat Linux 6.1 source code [19].



are unrealistically short by today’s standards and exagger-
ate the impact of destructive interference. Our work shows
that even if the branch predictor structures are flushed at
every context switch, the impact is minimal for all but the
smallest time slice lengths. We also present more realistic
results in which we interleave the execution of several pro-
cesses rather than perform single-benchmark simulations.

Juan, Sanjeevan and Navarro [12] explored dynamic
history-length fitting (DHLF), where they showed that
different types of two-level predictors perform differently
depending on the code, input data and the frequency of
context switches, and developed a method for dynami-
cally selecting history length to adjust to the current work-
load. They cite the conventional wisdom that information
in the PHT is periodically lost with every context switch
and that larger PHTs and longer history lengths require
longer warmup times as possible reasons why predictors
with shorter training times have a higher prediction accu-
racy after a context switch. In their study, they used time
slices of 8K through 256K dynamic conditional branches on
the SPECint95 benchmarks. This translates to time slices
of approximately 40K-1.25M instructions. They show that
a dhlf-gshare scheme outperforms the corresponding same-
area gshare predictor with a context switch distance of
70K conditional branches and a step value (the value at
which history length may be adjusted based on observed
behavior) of 16K conditional branches. Our work shows
that 128K instructions is sufficient to properly train the
PHT for CPU-bound processes.

Eden and Mudge [4] show the performance of vari-
ous branch predictor schemes compared to YAGS in the
presence of context switches. For their experiments, they
used a very short time slice of 60K instructions in or-
der to demonstrate the worst-case severity of small time
slices on various anti-aliasing branch predictor configura-
tions. Their data shows that for YAGS, bimode, skew, and
gshare, as the area of the predictor increases, the predic-
tion rate for the various predictor types converges between
predictor areas of 10 KB and 100 KB.

Gummaraju and Franklin [9] studied the problems
involved with performing accurate branch predictions
in single-program multi-threaded processors (SPMT). In
SPMT, a compiler takes a single sequential program and
divides it into groups of up to 8 parallel threads which can
be executed in parallel. The focus of our research is proces-
sors with multiprogrammed workloads, which differs from
SPMT processors. The authors note that for private pre-
dictors there is a “cold start” time for each thread, after
which the prediction rate improves. This result matches
our finding, that branch predictors train to a plateau in
prediction performance within 128K instructions.

Nair [17] discussed dynamic path-based correlation and
studied the robustness of branch prediction in the face of
context switches. Context switches were simulated by pe-
riodically flushing the branch predictor structure. Nair
found that as the time slice length increased, programs
suffered less of a penalty for the flushing. This result was
program-dependent but a plateau was reached at approx-
imately 100K instructions, again matching our findings.

Yeh and Patt [27] explored alternative implementations
of two-level adaptive branch prediction. They discuss the
effect of context switching on the prediction performance

of GAg, PAg, and PAp two-level predictors. The time
slice used was 500K instructions. Context switches were
simulated by flushing branch predictor structures. They
showed that these predictor implementations suffered a
degradation of less than 1% despite the effects of flush-
ing.

Despite the fact that many studies have examined con-
text switching or have considered other system-level ef-
fects, our work approaches context switching more sys-
tematically and completely. The simulator we developed
allows dynamic interleaving of processes and thus allows us
to study a variety of workloads and time slices. This allows
us to thoroughly characterize the interaction between time
slice length, predictor organization, and predictor area as
it affects branch predictor accuracy. We show that with
realistic time slices and a CPU-bound workload, all pre-
dictor types train within 128K instructions, which is much
shorter than realistic time slice length. This explains our
finding that for time slices longer than 781K instructions
branch predictor accuracy is minimally affected.

4 Simulation Technique

Simulation Framework. Experiments were per-
formed using the SimpleScalar 3.0 Toolkit [1] and MPI 2.0
(Message Passing Interface) [14]. SimpleScalar’s branch
predictor simulator, sim-bpred, was modified to use shared
memory segments for all branch predictor structures, so
that the predictor may be shared between the various pro-
cesses. One copy of the simulator is spawned for each
benchmark that is part of the workload to be simulated.
Any number of processes may be interleaved. MPI was
only used to control multiple processes for interleaving and
to synchronize the sharing of the branch predictor. The
active process requires ownership of a token to the branch
predictor. Ownership of the branch predictor token is lim-
ited to one process at a time. During the initialization
phase of sim-bpred, the first process spawned creates the
shared branch predictor and the remaining processes at-
tach to the predictor structure created. Context switching
to the next process is accomplished by passing the token
and is performed on the specified number of instructions
corresponding to the time slice’s expiration or upon sys-
tem calls which require I/O. This means that number of
instructions until a context switch is performed is poten-
tially shorter than the specified time slice length for the
experiment. When the first process has fully completed its
execution, it detaches from the shared predictor, and sub-
sequent processes each receive one more time slice before
the simulation is terminated and the shared predictor is
deallocated. This termination policy prevents the statis-
tics from skew arising from one process executing much
longer than the others.

Since CPU-bound benchmarks were selected for this
study, round-robin scheduling was selected. Most popu-
lar operating systems, such as UNIX and Windows NT,
use multilevel feedback queues or priority with aging for
process scheduling. In both of these scheduling schemes,
processes with the same priority are serviced in round-
robin fashion [20].

Because different operating systems have differing av-
erage time slices, a time slice from the shorter end of the
range was chosen. Longer time slices will only reduce the



impact of context switching on branch predictor accuracy.
Windows NT has an average time slice of 25 ms [23], while
various flavors of Unix have a time slice which ranges from
50-200 ms [15, 19]. Some operating systems vary the time
slice according to the process priority, but generally CPU-
bound processes have time slices in the 100-200 ms range.

As processor clock speeds continue to increase, the num-
ber of instructions completed in an average context-switch
interval will increase. For simplicity, our simulator spec-
ifies time slices in numbers of instructions. We assume
a 25 ms time slice with an average IPC of 1.75-2 and a
clock rate of 1 GHz. This corresponds to roughly 50M
instructions per time slice, which we use as our baseline
time slice. For our simulations, if a system call requiring
I/O was encountered during the course of the time slice,
a context switch was performed immediately. In all other
cases, the full time slice length was used.

Benchmarks. Eight CPU-bound benchmarks were se-
lected as the workload to be studied. Six benchmarks from
SPECint95 [24] were chosen: compress, gec, go, ijpeg, perl,
and xlisp. In addition, radiosity from SPLASH-2 [26] and
gnuchess from the IBS suite[25] were selected to make up
the system workload. These benchmarks were started si-
multaneously and given access to the branch predictor in
round-robin fashion. Equal time slices are given to each
process, but a process is required to yield the time slice
upon any system call requiring I/O. The static and dy-
namic branch footprints for the sections of the benchmark
which were tested are shown in Figure 1. The benchmarks
were compiled for SS PISA [1] using gce v. 2.6.3. Linking
is static, so the benchmarks include all library code.

All results are presented in terms of the prediction ac-
curacy for conditional branch directions. The SPECint
benchmarks run for many billions of instructions, which is
prohibitive to simulate to completion. In addition, most
benchmarks contain some initial behavior which is not rep-
resentative of the general behavior of the program.

Jumping forward to the desired location in the program
to begin collecting simulation statistics saves time. This is
known as fastforwarding. Fastforwarding involves select-
ing a portion of the instructions which will be executed
in “fast” mode in which some aspects of the simulation
are left out in order to save time in reaching the desired
instruction from which statistics will be collected. Work
has been done by Skadron, Martonosi, and Clark [21] to
determine reasonable fastforward intervals that skip unrep-
resentative behavior. The benchmarks used in this study
were each fastforwarded according to the intervals shown in
Table 1 before beginning to collect statistics. Branch pre-
dictors were always updated during the last 50M instruc-
tions of the fastforwarding period to provide a warmed up
predictor. This is roughly equivalent to a 25 ms time slice.

Benchmark| Input Stat. Dyn. Cond. 1/0 Fastfwd | #Inst  Sim.
Br. Ct. Br. Ct. Calls after FF
compress ref.in 234 441,043,245 0 1.648B 3,271,875,000
gee sim-outorder.i 19,596 467,603,714 27 220M 3,254,233,938
gnuchess gnuchess.in2 805 306,147,429 65 150M 3,168,768,290
go 9stone21.in 5658 368,952,908 0 925M 3,271,875,000
iipeg vigr.ppm 1415 190,739,643 0 823M 3,271,875,000
perl scrabble.pl 675 424,129,244 0 600M 3,271,875,000
radiosity -p 1 -batch -room 183 302,859,859 0 300M 3,271,875,000
xlisp 9queens.Isp xit.Isp 316 504,101,948 0 270M 3,260,584,722

Table 1: Inputs, fastforward, and simulation numbers for
benchmarks. (Fastforward distances are taken from [21]).

Experimental Parameters. The parameters used in
the experiments were time slice length, predictor type and
predictor area. Time slices of 390K, 781K, 3.125M, 12.5M,
50M, and 200M instructions were used. GAs, PAs, bi-
modal and hybrid predictor (bimodal-GAs hybrid) types
were examined using areas of 2, 4, 8, 16, 32, 64, and 128
Kbits. Predictor area was calculated as the total number
of bits used for the BHT, PHT, and selector. Specific pre-
dictor configurations are listed in Tables 2 and 3. Due to
the large design space of hybrid branch predictors, only
the configurations listed in Table 3 are studied.

Bimodal GAs PAs

Predictor L1 L2 Hist. L1 L2 Hist.
Area Ent. Ent. Width|| Ent. Ent. Width
2 Kbits 1K 1K 5 512 512 2

4 Kbits 2K 2K 5 512 1K 3

8 Kbits 4K 4K 6 1K 2K 4

16 Kbits 8K 8K 6 1K 4K 8

32 Kbits 16K 16K 7 2K 8K 8

64 Kbits 32K 32K 7 4K 16K 8

128 Kbits | 64K 64K 8 8K 32K 8

Table 2: Bimodal, GAs, PAs branch predictor configurations

Hybrid
Comp. 1 Comp. 2 | Selector

Predictor L1 L2 Hist. | Bimod. Ent.
Area Ent. Ent. Width| Ent.

2 Kbits 128 128 2 512 256
4 Kbits 256 256 2 1K 512
8 Kbits 512 512 2 2K 1K
16 Kbits 512 1K 3 4K 2K
32 Kbits 1K 2K 4 8K 4K
64 Kbits 2K 8K 8 8K 8K
128 Kbits | 8K 16K 8 8K 8K

Table 3: Hybrid branch predictor configurations

5 Experimental Results

Overview. Our experiments show that when using
a contemporary time slice length, branch prediction di-
rection rate is minimally affected compared to when very
short time slices are used. Misprediction rate was chosen
over IPC as a metric because it has been found that IPC
simulations are highly sensitive to configuration parame-
ters [6]. Our survey seeks to avoid tying the predictors to
particular configuration parameters.

The baseline for comparison in our experiments is the
prediction rate of each benchmark when executed as a sin-
gle process and run to completion with no intervening pro-
cesses. Each benchmark is executed for the same num-
ber of instructions (shown in Table 1) for all experiments.
We always use the following order: gcc, compress, perl,
go, ijpeg, xlisp, radiosity, gnuchess. Other orderings were
tested but in all cases we found that this changes predic-
tion rate by less than 0.15%. The only exception was ijpeg
which performed up to 1.45% worse for some orderings
due to the fact that it has a longer average basic block
size and therefore requires more time to train; and obtains
some constructive aliasing when following go.

Our survey of the effects of time slice length on branch
predictor organization and branch predictor area are sum-



marized in Figure 1, which plot the results for GAs, PAs,
bimodal, and hybrid results respectively. The horizontal
lines in each graph in Figure 1 gives the misprediction rate
as a function of time slice length for one predictor area;
2,4, 8,16, 32, 64, and 128 Kbit predictor areas were sur-
veyed. The flatter the line, the lesser the effect of context
switching on branch predictor accuracy. The gaps between
the lines show the improvement in misprediction rate due
to increasing predictor area. Naturally, these gaps are the
same when context switching has no effect, because un-
der these conditions, each line is relatively flat. This does
not mean that context switching has no effect. Rather,
the small variances in the branch prediction rate between
simulating context switching and not simulating context
switching do not affect the overall relationship of how var-
ious branch predictor configurations perform relative to
one another.

Graphs displaying flushing results show that for all pre-
dictor types, when using a realistic time slice such as
50M instructions or greater, flushing has negligible effect.
Flushing shows more of an effect at 390K and 781K in-
structions (except bimodal), but these time slices are much
shorter than contemporary time slices.

The general shape of the curves between predictor or-
ganizations is mostly similar; all the curves are nearly flat
for time slices longer than 3.125M instructions. This shows
that context switching has very little effect on branch pre-
dictor accuracy. At short time slice lengths (up to 3.125M
instructions), flushing increases the misprediction rate on
GAs, PAs, and hybrid predictors. Bimodal predictors do
not suffer from any significant change in misprediction rate
even with flushing. This result shows that for realistic time
slices, flushing minimally impacts branch predictor accu-
racy.

Overall, for contemporary time slices (longer than
50M), the difference between the observed misprediction
rate with context switching and the baseline misprediction
rate is minimal(the lines are flat). Our training time exper-
iments find that branch predictor structures train within
128K instructions, which is much smaller than these real-
istic time slices, and this explains the insensitivity due to
context switching.

The remainder of this section discusses the following:
1) the results of giving one process a longer time slice than
other processes, 2) the relationship between static branch
footprint and branch predictor performance, 3) the number
of branches at which branch prediction rate stabilizes, and
4) the upper bound of predictor training time for primarily
CPU-bound workloads.

Larger Time Slice. Since predictors train rapidly,
and we have already seen that branch prediction is insen-
sitive to context switching. We would expect that giving
different time slice lengths to different programs should
have no effect. Experiments in which one process was given
a longer time slice than the other running processes were
conducted on 16 Kbit GAs, 16 Kbit PAs, and 64 Kbit hy-
brid predictors. In separate simulations, each process was
given a time slice of 150M instructions, which was three
times the time slice given to the rest of the processes. Gen-
erally for all predictor types, the process which was given
more of a time slice had a prediction rate which was slightly
better (less than 0.5%) than when it was given an equal

time slice as all the others. Indeed, the longer time slice
had minimal effect. These small differences are due to de-
creased constructive aliasing when receiving more of a time
slice. Gce encounters a 2% decrease in prediction accuracy
when xlisp receives more of a time slice and a 1.8% decrease
when gnuchess receives more of a time slice. This occurs
because xlisp and gnuchess have relatively high dynamic
conditional branch counts, so when they receive more of
a time slice they cause more destructive interference for
gec’s large static footprint. Curiously, gec and go have no
interaction.

100%
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Figure 2: Context switching on a GAs predictor by number
of branches

Large Static Branch Footprint versus Small
Static Branch Footprint. The benchmarks used have
very different static branch counts (see Table 1). For exam-
ple, gce has a very large static branch footprint of 19,704
branches, with go having an intermediately sized static
branch footprint of 5094, and compress having a relatively
small footprint of 233 static branches.

To isolate the effect of branch footprint size we con-
ducted two experiments to compare a two-program work-
load in which both benchmarks have large static branch
footprints to a workload in which one benchmark has a
large static footprint and the other has a small static
branch footprint. Each experiment consists of a work-
load of two processes with a time slice of 50M instruc-
tions run on 4 Kbit bimodal, 16 Kbit PAs, 16 Kbit GAs,
64 Kbit hybrid predictors. Resulting prediction rates are
compared to baseline prediction rates. In the first exper-
iment, a process with large static footprint is run concur-
rently with another process with a large static footprint
(gcc and go). Gec’s prediction rate for all predictor types
is between 0.01%-0.03% worse than the baseline. This is
a result of destructive aliasing. Go’s prediction rate im-
proves for all predictor types between 0.29%-0.7%. This is
a result of constructive aliasing between gcc and go. These
variances in the prediction rate are tiny, of course.

In the second experiment, a process with a large static
footprint is run concurrently with another process with a
small static footprint (gcc and compress). Gec’s prediction
rate matches its baseline prediction rate, while compress’s
prediction rate decreases by 0.08%-0.1%. This means that
compress suffers from a tiny amount of destructive aliasing
due to gcc’s branches.

Overall, as with varying time slice, the size of the static
branch footprint is also not important.

Transition Point in Branch Predictor Perfor-
mance. In order to determine the boundary point at
which predictor performance reaches a plateau or begins to
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Figure 1: Misprediction rate as a function of time slice length
Left to right: Bimodal, GAs, PAs, hybrid.

degrade, we conducted experiments using context switch-
ing based on the number of branches encountered. Con-
text switches were made every X branches on a base-10
exponential scale (10, 100, ... 1G) and the branch pre-
diction rate was noted for each process. Figure 2 shows
the change in prediction accuracy by context switching on
various numbers of branches for each benchmark for the
16 Kbit GAs predictor. The results for other predictor
types were similar. For most of the benchmarks there is
a distinct “knee” in the curve at 100 branches after which
the prediction rate quickly plateaus and approaches the
baseline prediction rate.

The plateau is reached between 1K and 100K branches,
which is far shorter than realistic time slices. A basic block
is 4-10 instructions on average, so this graph shows that
the training time necessary for branch predictor structures
is between 4K-1M instructions. The following section nar-
rows the range found here and shows that the training time
for most predictor structures studied to be no more than
128K instructions.

Branch Predictor Training Time Evaluation. Ex-
periments to capture the training time of the branch pre-
dictor structures were performed. For each time slice
length, predictor type (GAs, PAs, and bimodal only), and
predictor size, misprediction rates and PHT occupation by
each process were tracked during the course of the context
switch interval. These statistics were gathered on an in-
creasing base-2 log scale starting from 1 through 128K in-
structions. Results show that for the largest predictor size
(hence potentially the longest training time) and small-
est time slice for all predictor types (hence maximum im-
pact of context switching), the time to reach steady state
for conditional branch misprediction rate is approximately
128K instructions. These results are shown for the largest
predictor because a large predictor has more entries to fill,
it may take longer to train, since there will be less aliasing
than occurs in a smaller predictor. Results for 2K predic-
tor area for a time slice length of 390K were similar to the
results for the 128K predictor area, with all benchmarks’
misprediction rates reaching steady state by 128K instruc-
tions (less than 1K instructions for compress, which has a
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predictor area w/out flushing (top) and w/flushing (bottom).

very small static branch footprint).

This result explains the results of some small pilot ex-
periments with flushing carried out at the University of
Maryland by Gummaraju [8] which found that flushing
has very little effect on prediction rate. Our experiments
were run both with and without flushing to determine
whether inter-process aliasing affects results. When flush-
ing was used, the branch predictor’s PHT and BTB were
re-initialized to random values at the beginning of each
time slice. Results show that prediction rates without
flushing are slightly better, due to retained state and due
to constructive aliasing. Data is shown for gcc and com-
press for the 128Kb GAs predictor and 390K instruction
time slice.

The graphs in Figure 3 plots the average instantaneous
misprediction rate over the course of a 390K instruction
time slice. The misprediction rate plot is divided into mis-
predictions made by PHT entries owned by the process
(self), PHT entries owned by another process (other), and
PHT entries which are untouched by any process (empty).
Data was collected at an exponentially (base 2) increasing
number of instructions from the beginning of each time
slice and was also collected at the end of the time slice.
The data was then averaged across time slices to create
summary graphs.

From Figure 3 it is clear that even for the largest predic-
tor area studied, GAs has misprediction rates that reach
a plateau within 128K instructions for the gcc and com-
press. Even for flushing, the misprediction rate for gcc
and compress also stabilizes by 128K instructions. With-
out flushing, the graphs show that the misprediction rate
stabilizes sooner, by 64K instructions for gcc and 32K in-
structions for compress. Compress trains the predictors
more quickly due to its small static branch footprint. The
falling curve for gcc for empty predictions in flushing and
other predictions in non-flushing is due to its changing
branch footprint. PAs and bimodal have graphs that are
very similar, and also stabilize by 128K instructions. In
terms of flushing or not flushing the predictors, there is
no significant difference between flushing and not flushing
in terms of total misprediction rate (summed across the
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three curves). This is because any interference in the PHT
caused by other processes basically behaves the same as
an entry that is initialized to a random value.

The PHT occupation graphs in Figure 4 track percent-

age of PHT entries by ownership (self, other, empty) dur-
ing the course of a time slice. The slowly rising curve for
self entries is again due to gec’s changing footprint. For
gee with flushing, over the course of a time slice the num-
ber of PHT entries starts at 0% and rises to 5% by the
end of the time slice. For compress, since it has such a
small static branch footprint, the percentage of the PHT
occupied is negligible throughout the course of the time
slice. Without flushing, gcc starts with 41% of the PHT
entries and over the course of the time slice, rises to 42%.
Compress starts with 8% of the PHT and remains steady
at this level throughout the time slice. The large difference
in PHT occupation between flushing and not flushing re-
sults from retained state. Despite context switching, some
state in the PHT is being retained due to the large area
of the branch predictor. However, much of this state is
generally unused by gcc during the course of its execution.
Furthermore, the difference in total misprediction rate be-
tween flushing and not is negligible.

The combination of the misprediction rate and PHT

occupation graphs in Figures 3 and 4 shows that regardless
of the size of a benchmark’s branch footprint, the predictor
structures train quickly, within 128K instructions.
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Figure 3: Misprediction rates for 128K GAs predictor w/out

flushing (top) and w/flushing (bottom) using a 390K instruc-
tion time slice for gcc (left) and compress (right)

6 Conclusions and Future Work

This work provides a thorough characterization of the

interaction between branch predictor configuration, branch
predictor size, and time slice length. Experimental results
show that for time slices common in contemporary operat-
ing systems and contemporary hardware, context switch-
ing has little effect on branch predictor performance. Al-
though prediction accuracy improves with increasing pre-
dictor area, the improvement is not related to context
switching, but rather a matter of alias reduction during
each process’ time slice.
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Figure 4: PHT occupation for 128K GAs predictor w/out
flushing(top) and w/flushing (bottom) using a 390K instruc-
tion time slice for gcc (left) and compress (right)

Specifically, this paper shows that:

e Branch predictor components train in under 128K in-
structions for CPU-bound workloads. This training
time is shorter than realistic time slice lengths.

e For all but the shortest time slices, even the unreal-
istic behavior of flushing has negligible effect on pre-
dictor accuracy.

e Given these two findings, this means that branch pre-
dictor accuracy in the face of context switching with
realistic time slices for CPU-bound processes is min-
imally affected.

e Even when context switching changes branch pre-
diction rate slightly, it does not affect the impact
of changing branch predictor area or organization,
which behaves like an offset. This does not apply for
the smallest time slices, but these are unrealistically
small.

o Despite the assumption of an eight-process workload,
the effect of context switching is negligible. For a
fewer-process workload, the prediction accuracy will
approach that of a single-process workload.

e Whether or not flushing is used, the impact is negli-
gible for realistic time slices.

Taken together, the results in this paper provide the
data necessary to help researchers choose simulation tech-
nique and accurately model the effects of branch predic-
tion.

Processor clock speeds will continue to increase, there-
fore the number of instructions completed per time slice
will increase. Therefore, context switching in multipro-
grammed environments with CPU-bound processes is not
likely to have a significant effect on the prediction accu-
racy of today’s branch predictors and need not be a factor
included in general branch prediction studies.

As part of our future work, we hope to measure the
amount of conflict mispredictions that occur in multipro-
grammed workloads.
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