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Abstract

Graphics processors (GPUs) provide a vast number of simple, data-parallel, deeply mul-
tithreaded cores and high memory bandwidths. GPU architectures are becoming increas-
ingly programmable, offering the potential for dramatic speedups for a variety of general-
purpose applications compared to contemporary general-purpose processors (CPUs). This
paper uses NVIDIA’s C-like CUDA language and an engineering sample of their recently
introduced GTX 260 GPU to explore the effectiveness of GPUs for a variety of application
types, and describes some specific coding idioms that improve their performance on the
GPU. GPU performance is compared to both single-core and multicore CPU performance,
with multicore CPU implementations written using OpenMP. The paper also discusses ad-
vantages and inefficiencies of the CUDA programming model and some desirable features
that might allow for greater ease of use and also more readily support a larger body of
applications.
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1 Introduction

Semiconductor scaling limits and associated power and thermal challenges, com-
bined with the difficulty of exploiting greater levels of instruction level parallelism,
have combined to limit performance growth for single-core microprocessors. This
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has led most microprocessor vendors to turn instead to multicore chip organiza-
tions, even though the benefits of multiple cores can only be realized if the pro-
grammer or compiler explicitly parallelize the software.

In this context, graphics processors (GPUs) become attractive because they offer
extensive resources even for non-visual, general-purpose computations: massive
parallelism, high memory bandwidth, and general purpose instruction sets, includ-
ing support for both single- and double-precision IEEE floating point arithmetic
(albeit with some limitations on rounding). In fact, GPUs are really “manycore”
processors, with hundreds of processing elements.

The advent of general purpose computing on GPUs makes it important to under-
stand when GPUs are preferable to conventional, multicore CPUs. As new parallel
computing platforms such as GPUs and multicore CPUs have come to dominate
the market, it also becomes important to revisit parallel programming models and
to find the best balance between programming convenience and hardware imple-
mentation costs. This paper begins to explore the extent to which traditionally CPU
domain problems can be mapped to GPU architectures using current parallel pro-
gramming models. A recent report from Berkeley [1] argued that successful parallel
architectures should perform well over a set of 13 representative classes of prob-
lems, termed dwarves, which each capture a body of related problems.

Inspired by this work, and noting an apparent architectural convergence of CPUs
and GPUs, our goal in this paper is to examine the effectiveness of CUDA as a tool
to express parallel computation with differing sets of performance characteristics—
problems from different dwarves—on GPUs. We quantitatively compare the per-
formance of a series of applications running on an early engineering sample of a
NVIDIA GeForce GTX 260 GPU and on a state-of-the-art multicore CPU system
with dual 3.2 GHz, dual-core, hyperthreaded Intel Xeon processors.

We developed our GPU applications using CUDA and the CPU applications with
OpenMP. We also examine the complexity of mapping CUDA computational ker-
nels to better leverage the GPU’s high core count, software-managed threads, and
unique memory hierarchy, and explore some optimization techniques which are
sometimes non-intuitive. For example, we introduce a pyramid data structure in the
HotSpot benchmark to avoid the need for synchronization between thread blocks,
and we show that lookup tables are useful for avoiding a large control flow over-
head when an application involves many irregular data permutations. All of our
applications show satisfactory speedups, but the main contribution of our work is a
discussion of the advantages and disadvantages of the CUDA programming model
in the context of a more general multicore world. For most of our benchmarks, the
single-threaded, CUDA, and OpenMP code and sample inputs used for this study
are publicly available on our website at http://lava.cs.virginia.edu/
wiki/rodinia.
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Performance results from the the broad application domains we examine, along
with previously published data, demonstrate the tremendous potential of the CUDA
model for parallel computing; however, we also note several modifications that
would allow CUDA and the underlying hardware architecture to improve the ability
of programmers to implement complex applications on the GPU.

2 Related Work

In recent years, a large body of work has explored how to use GPUs for general
purpose computing, sometimes known as “GPGPU.” Before the advent of general
purpose languages for GPGPU, GPU implementations could only be achieved us-
ing existing 3D-rendering APIs: OpenGL [12] or DirectX [16]. The syntax, the
need to pose problems in the context of polygon rasterization, and the limits im-
posed by pixel independence all made this approach cumbersome. Independently
from GPU vendor efforts, several new languages or APIs were created to provide a
general-purpose interface and abstract away the necessary 3D API calls. Brook [4],
Sh [15] and its commercial successor RapidMind, and Microsoft’s Accelerator [27]
are notable examples.

Recognizing the value of GPUs for general-purpose computing, GPU vendors add-
ed driver and hardware support to use the highly parallel hardware of the GPU
without the need for computation to proceed through the entire graphics pipeline
(transforming vertices, rasterization, etc.) and without the need to use 3D APIs at
all. NVIDIA’s solution is the CUDA language, an extension to C described further
in Section 3. AMD’s solution was the combination of a low-level interface, the
Compute Abstraction Layer (CAL) and extensions to Brook.

A wide variety of applications have achieved dramatic speedups with GPGPU im-
plementations. A framework for solving linear algebra problems on graphics pro-
cessors is presented by Krüger et al. [13]. Harris et al. present a cloud dynamics
simulation using partial differential equations [8], and various other N-body (e.g.
[21]) and molecular dynamics simulations (e.g. [23]) have also shown impres-
sive speedups. Some important database operations have also been implemented
on the GPU by using pixel engines [7], and a variety of other applications, such as
sequence alignment [24] and AES encryption [30] have been successfully imple-
mented on GPUs.

Some recent work has focused on developing sets of parallel primitives to simplify
the development of GPGPU applications. One key example is a set of scan primi-
tives developed by Sengupta et al. [25]. They implemented the classic scan opera-
tion using CUDA, providing a powerful set of library functions to deal with appli-
cations with more irregular data structures, and for the first time showed speedups
for traditionally non-parallel algorithms including quicksort.
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3 CUDA and Tesla Overview

3.1 Key CUDA Abstractions

CUDA is an extension to C based on a few easily-learned abstractions for par-
allel programming, coprocessor offload, and a few corresponding additions to C
syntax. CUDA represents the coprocessor as a device that can run a large number
of threads. The threads are managed by representing parallel tasks as kernels (the
sequence of work to be done in each thread) mapped over a domain (the set of
threads to be invoked). Kernels are scalar and represent the work to be done at a
single point in the domain. The kernel is then invoked as a thread at every point in
the domain. The parallel threads share memory and synchronize using barriers.

Data is prepared for processing on the GPU by copying it to the graphics board’s
memory. Data transfer is performed using DMA and can take place concurrently
with kernel processing. Once written, data on the GPU is persistent unless it is
deallocated or overwritten, remaining available for subsequent kernels.

As a trivial example, the following code transfers two vectors to the GPU and then
sums them.

// CUDA kernel
__global__ void vec_sum(float * in1, float * in2, float * out)
{

// blockIdx,threadIdx and blockDim are variables provided by CUDA
int index = blockIdx.x*blockDim.x + threadIdx.x;

out[index] = in1[index] + in2[index];

return;
}

void host_function(float * h_in1, float * h_in2, float * h_out, int size)
{

// allocate gpu memory for the three vectors
float *d_in1, *d_in2, *d_out;
cudaMalloc( (void**) &d_in1, size);
cudaMalloc( (void**) &d_in2, size);
cudaMalloc( (void**) &d_out, size);

// copy over the two input vectors to the gpu
cudaMemcpy( d_in1, h_in1, size, cudaMemcpyHostToDevice);
cudaMemcpy( d_in2, h_in2, size, cudaMemcpyHostToDevice);

// execute the kernel on the gpu
vec_sum<<<size / 256, 256>>>(d_in1, d_in2, d_out);

// copy the result back to system memory
cudaMemcpy( h_out, d_out, size, cudaMemcpyDeviceToHost);

cudaFree(d_in1);
cudaFree(d_in2);
cudaFree(d_out);

}
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As this example illustrates, kernels consist of conventional, scalar C code repre-
senting the work to be done at a single point in the domain. CUDA’s extensions to
the C programming language are fairly minor. A function declaration can include a
modifier specifying whether the function will execute on the CPU or the GPU, and
each variable declaration in a GPU function can include a type qualifier specify-
ing where in the GPU’s memory hierarchy the variable will be stored. Kernels also
have special thread-identification variables automatically defined to allow threads
to identify their location in the domain and work on separate parts of a data set.

The domain is actually defined with a 5-dimensional structure, in the form of a
2D grid of 3D thread blocks. Thread blocks are limited to 512 total threads. The
significance of the thread block construct is that each thread block is assigned in its
entirety to a single streaming multiprocessor (SM) and runs as a unit to completion
without preemption. All threads within the thread block are simultaneously live
and the threads are temporally multiplexed onto the processing elements in a fine-
grained, time-sliced manner, but their resources cannot be reclaimed until the entire
block of threads completes. The number of thread blocks in a grid can greatly
exceed the hardware resources, in which case fresh thread blocks are assigned to
SMs as previous thread blocks retire.

In addition to global shared memory, each thread block has available a private,
per-block shared memory (PBSM) that is only visible to threads within that thread
block. The amount of this PBSM that will be used must be defined by the kernel
but is limited to 16 kB because it is implemented using fast SRAM, similar to a
first-level cache. The PBSM allows threads within a thread block to cooperate in a
fine-grained fashion by sharing data among themselves with low latency. Data can
also be shared between thread blocks through global memory, which is generally
not cached, but the latency is of course much longer.

Synchronization within a thread block is entirely managed in hardware. Synchro-
nization among thread blocks is achieved by allowing a kernel to complete and
starting a new kernel; in effect, a global barrier. It is important to note that the order
in which thread blocks are assigned to SMs is arbitrary. Because order of execution
among thread blocks within a grid is non-deterministic, and because thread blocks
run to completion, it is important to note that thread blocks should never have a
producer-consumer relationship due to the risk of deadlock. Producer-consumer
relationships must be confined within thread blocks or separated across global bar-
riers (i.e., back-to-back kernels).

By separating the size of the domain from the underlying hardware, CUDA allows
the programmer to focus on available parallelism. The restrictions on communica-
tion among thread blocks define a virtual machine so that the same CUDA program
will run on a wide variety of parallel platforms. Indeed, nothing in the CUDA spec-
ification prevents CUDA applications from running effectively on other platforms.
Recent research has shown that CUDA programs can be compiled to execute effi-
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ciently on multicore CPUs [26]. For CPUs, of course, specialized hardware, such
as support for transcendentals and texturing, must be implemented in software.

For a more detailed description of CUDA, please refer to Nickolls et al. [17].

3.2 GPU Architectural Highlights

NVIDIA’s Tesla unified computing architecture is designed to support both graph-
ics and general purpose computing. The programmable processing elements share
a common, very general-purpose instruction set that is used by both graphics and
general-purpose computation. Each processing element (PE) supports 128 concur-
rent thread contexts, allowing a very simple pipeline. Latencies are simply tolerated
by switching threads. Current Tesla-architecture products can support up to 30720
concurrent threads. Although it describes the previous generation—the GeForce
8800 GTX and related products—Lindholm et al. [14] provide a nice description
of contemporary NVIDIA GPU architectures.

Each SM consists of 8 processing elements, called Stream Processors or SPs. To
maximize the number of processing elements that can be accommodated within the
GPU die, these 8 SPs operate in SIMD fashion under the control of a single instruc-
tion sequencer. The threads in a thread block (up to 512) are time-sliced onto these 8
SPs in groups of 32 called warps. Each warp of 32 threads operates in lockstep and
these 32 threads are quad-pumped on the 8 SPs. Multithreading is then achieved
through a hardware thread scheduler in each SM. Every cycle this scheduler selects
the next warp to execute. Divergent threads are handled using hardware masking
until they reconverge. Different warps in a thread block need not operate in lock-
step, but if threads within a warp follow divergent paths, only threads on the same
path can be executed simultaneously. In the worst case, if all 32 threads in a warp
follow different paths without reconverging—effectively resulting in a sequential
execution of the threads across the warp—a 32× penalty will be incurred. Unlike
vector forms of SIMD, Tesla’s architecture preserves a scalar programming model,
like the Illiac [5] or Maspar [2] architectures; for correctness the programmer need
not be aware of the SIMD nature of the hardware, although optimizing to minimize
SIMD divergence will certainly benefit performance.

When a kernel is launched, the driver notifies the GPU’s work distributor of the ker-
nel’s starting PC and its grid configuration. As soon as an SM has sufficient thread
and PBSM resources to accommodate a new thread block, a hardware scheduler
randomly assigns a new thread block and the SM’s hardware controller initializes
the state for all threads (up to 512) in that thread block.

The Tesla architecture is designed to support workloads with relatively little tem-
poral data locality and only very localized data reuse. As a consequence, it does
not provide large hardware caches which are shared among multiple cores, as is the
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case on modern CPUs. In fact, there is no cache in the conventional sense: variables
that do not fit in a thread’s register file are spilled to global memory. Instead, in ad-
dition to the PBSM, each SM has two small, private data caches, both of which only
hold read-only data: the texture cache and the constant cache. (The name texture
comes from 3D graphics, where images which are mapped onto polygons are called
textures.) Data structures must be explicitly allocated into the PBSM, constant, and
texture memory spaces.

The texture cache allows arbitrary access patterns at full performance. It is useful
for achieving maximum performance on coalesced access patterns with arbitrary
offsets.

The constant cache is optimized for broadcasting values to all PEs in an SM and
performance degrades linearly if PEs request multiple addresses in a given cycle.
This limitation makes it primarily useful for small data structures which are ac-
cessed in a uniform manner by many threads in a warp.

4 Methodology

4.1 Application Domains

We use Berkeley’s dwarf taxonomy [1] to choose our applications, which we then
implement using CUDA and OpenMP. Each dwarf represents a set of algorithms
with similar computation and data movement. We limit our focus to a subset of
the dwarves: Structured Grid, Unstructured Grid, Combinational Logic, Dynamic
Programming, and Dense Linear Algebra. Previous work has covered several other
dwarves, such as Fast Fourier Transform (FFT) [18], N-Body [21], and Monte
Carlo [20]. Our applications exhibit different parallelism and data-sharing char-
acteristics, and thus take advantage of the GPU’s parallel computing resources to
different degrees. The level of programmer effort required to achieve satisfactory
performance also varies widely across different applications. As Figure 1 illus-
trates, the application access patterns range from bit-level parallelism to row-level
parallelism. Each application is discussed in detail in Section 6.

4.2 Experimental Setup

We chose representative commercial products from both the CPU and GPU mar-
kets: a dual-socket machine with 4GB of main memory and two hyperthreaded Intel
Xeon dual-core processors, each running at 3.2 GHz with 2MB of L2 cache, and an
NVIDIA GeForce GTX 260 with NVIDIA driver version 177.11 and CUDA ver-
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Fig. 1. Communication patterns of different applications: (a) in SRAD and HotSpot, the
value of each point depends on its neighboring points; (b) DES involves many bit-level
permutations; (c) Back Propagation works on a layered neural network; (d) in SRAD and
Back Propagation, parallel reductions can be performed using multiple threads; (e) the
parallel Needleman-Wunsch algorithm processes the score matrix in diagonal strips.

sion 1.1. The GTX 260 is comprised of 24 streaming multiprocessors (SMs). Each
multiprocessor has 8 streaming processors (SPs) for a total of 192 SPs. Each group
of 8 SPs shares one 16kB of fast per-block shared memory (similar to scratch-
pad memory). Each group of three SMs (i.e., 24 SPs) shares a texture unit. An SP
contains a scalar ALU and can perform floating point operations. Instructions are
executed in a SIMD fashion across all SPs in a given multiprocessor. The GPU
we used for performance measurements is actually an engineering sample of the
GTX 260, in which the SPs are clocked at 1.08 GHz instead of the 1.24 GHz clock
rate of the commercial version. The commercial board has only 896 MB of device
memory while our engineering sample has 1 GB of device memory. The current,
top-of-the-line GeForce GTX 280 has 240 SPs and 1 GB of device memory.

We developed the GPU versions of the applications using NVIDIA’s CUDA API,
and we developed our multithreaded CPU code using the OpenMP API. The perfor-
mance of each GPU implementation is compared against both single-threaded and
four-threaded versions of the CPU implementation. Given the same input dataset,
the speedup is calculated by taking the wall-clock time required by the application
on the CPU divided by the time required on the GPU. Times are measured after
initial setup (e.g., after file I/O) but do include the time required to transfer data
between the disjoint CPU and GPU memory spaces. The parallelizable sections
of code that we implemented for our GPU kernels all consume within the range
of 95.8%–99.7% percent of the total of execution time of their respective single-
thread implementations. Our graphs only shows the speedups of these parallel code
sections.

When we are only interested in the performance of a specific section of a kernel, we
calculate the number of cycles executed using the clock() function provided by
CUDA. Note that since each SP is time-sliced among different warps, the number
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of cycles returned by this function does not necessarily represent the actual number
of cycles spent executing the thread of interest, but may also include cycles spent
executing other warps [19].

5 Hardware Specific Features

Effective CUDA programming requires knowledge of the GPU’s underlying hard-
ware architecture. Specific features of the GPU architecture, such as memory trans-
fer overhead, shared memory bank conflicts, and the impact of control flow need
to be considered when programming. Programmers can reduce the overhead and
improve the performance of their applications by tailoring their algorithms specifi-
cally for execution on the GPU.

5.1 Memory Overhead

In modern PCs, the graphics card is connected via a PCI-Express bus to a North
Bridge chip, which also connects the CPU and main memory. The data transfer rate
of this bus is crucial to the performance of GPGPU applications. Unlike OpenMP—
a shared memory programming model—CUDA requires programmers to explicitly
manage the data communication between main memory and GPU memory. This
memory overhead can have a significant impact on the overall application perfor-
mance. The time necessary to transfer data increases linearly with the amount of
data.

Programmers should thus try to avoid frequent data transfer between the GPU and
CPU memories. Often it is better to replicate computation on the GPU rather than
increase the amount of communication required with the CPU, and when possible
programmers should overlap computation and data communication.

5.2 Bank Conflicts

In the GTX 260, each multiprocessor has a 16 kB, on-chip, software-controlled
shared memory which enables efficient data-sharing among threads within a thread
block. Physically, each shared memory unit is organized into 16 banks, with suc-
cessive 32-bit words mapped onto successive banks. Simultaneous accesses to dif-
ferent banks occur in parallel while simultaneous accesses to different addresses
within the same bank must be serialized [19]. To measure the overhead of this
serialization, we created a kernel which traverses either columns or rows in par-
allel within a matrix that is comprised of 16 × 16 data blocks. When traversing
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Fig. 2. Overhead of Bank Conflicts.

columns, the kernel exhibits maximal bank conflicts; when traversing rows, the
kernel exhibits no bank conflicts. As Figure 2 illustrates, the existence of bank con-
flicts approximately doubles the kernel’s execution time. Although recent work has
partially automated the process of detecting bank conflicts [3], it is ultimately the
programmer’s responsibility to structure their memory accesses in such a way as
to avoid bank conflicts, which can require significant performance tuning. On the
other hand, dealing with bank conflicts is generally lower priority than maximizing
parallelism and data locality.

5.3 Control Flow Overhead

In CUDA, control flow instructions, such as those generated from if and switch
statements, can significantly impact the instruction throughput if threads within the
same warp follow different branches. When executing divergent branches, either
the execution of each path must be serialized or all threads within the warp must
execute each instruction, with predication used to mask out the effects of instruc-
tions that should not be executed [19]. Either way, the performance of the warp
suffers. We measured the overhead of divergent control flow by executing a simple
kernel containing 32 threads, since there are 32 threads in a warp. If the number
of divergent threads is zero, all 32 threads in a warp execute the same sequence of
instructions; when it is one, one thread is executing a different path than the other
31 threads. As illustrated in Figure 3, the overhead of divergent control flow in-
creases linearly as the number of divergent threads increases. Programmers should
try to avoid excessive use of control flow instructions, or ensure that the value of
the controlling condition is the same across the entire warp.
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6 Application Performance

In this section, we discuss the performance of our CUDA implementations of a va-
riety of applications, and we describe the algorithmic changes we made to better
map the applications onto the GPU hardware. We also compare the programming
effort and resulting performance of the CUDA programs executed on the GPU and
the single-threaded and multithreaded OpenMP programs executed on the multi-
core CPU.

6.1 Structured Grid

Structured grid applications are at the core of many scientific computations. Some
notable examples include Lattice Boltzmann hydrodynamics [29] and Cactus [6]. In
these applications, the computation is regionally divided into sub-blocks with high
spatial locality, and updating an individual data element depends on a number of
neighboring elements. A major challenge of these applications comes from dealing
with the elements that lie at the boundary between two sub-blocks. In this work, we
examine two flavors of structured grid applications: Speckle Reducing Anisotropic
Diffusion (SRAD) and HotSpot.

6.1.1 SRAD

SRAD is a diffusion method for ultrasonic and radar imaging applications based on
partial differential equations. It is used to remove locally correlated noise, known
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as speckles, without destroying important image features [31]. Our CUDA imple-
mentation is based on MATLAB code provided by Prof. Scott Acton’s group in the
U.Va. Department of Electrical Engineering. The inputs to the program are ultra-
sound images. Each point in the computational grid represents a pixel in the image.
Our CUDA implementation of SRAD is composed of three kernels. In each grid up-
date step, the first kernel performs a reduction in order to calculate a reference value
based on the mean and variance of a user specified image region which defines the
speckle. Using this value, the second kernel updates each data element using the
values of its cardinal neighbors. This communication pattern is shown in Figure 1a.
The third kernel updates each data element of the result grid of the second kernel
using the element’s north and west neighbors. The application iterates over these
three kernels, with more iterations producing an increasingly smooth image.

For this application, CUDA’s domain-based programming model is a good match.
The whole computational domain can be thought of as a 2D matrix which is in-
dexed using conceptual 2D block and thread indices. Also, since the application
involves computation over sets of neighboring points, it can take advantage of the
on-chip shared memory. While accessing global memory takes 400 to 600 cycles,
accessing shared memory is as fast as accessing a register, assuming that no bank
conflicts occur. Thus, for improved performance, the application prefetches data
into shared memory before starting the computation. However, the working size
of each thread block is limited by the size (16 kB) of the shared memory of each
multiprocessor; therefore, multiple thread blocks are needed, and the data set must
be divided among them. Because the execution of different thread blocks cannot be
efficiently synchronized, in order to deal with the issue of boundary data needed by
different thread blocks, for each 16 × 16 data block we actually declare a 18 × 18
data block and read the bordering elements into the block.

Figure 4 illustrates the performance of the CUDA version of SRAD in comparison
to the two CPU versions as a function of the size of the input. For a 2048 × 2048
input, the CUDA version achieves a 17× speedup over the single-threaded CPU
version and a 5× speedup over the four-threaded CPU version. For this application,
the development of the CUDA version was more difficult than the development of
the OpenMP version. This was chiefly due to the need to explicitly move data and
deal with the GPU’s heterogeneous memory model in the CUDA version, whereas
the OpenMP version was simply an extension of the single-threaded CPU version
using compiler pragmas to parallelize the for loops.

6.1.2 HotSpot

We use HotSpot to demonstrate a technique for reducing synchronization among
different thread blocks. HotSpot [9] is a widely used tool to estimate processor tem-
perature based on an architectural floorplan and simulated power measurements.
The thermal simulation iteratively solves a series of differential equations for block
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Fig. 4. Speedup of the CUDA version of SRAD over the CPU versions. The x-axis repre-
sents the size of the x- and y-dimensions of the computation grid.

temperatures. The inputs to the program are power and floorplan files. Each output
cell in the computational grid represents the average temperature value of the corre-
sponding area of the chip. Our CUDA implementation re-implements the transient
thermal differential equation solver from HotSpot. Similarly to SRAD, the result of
the computation of a cell in the grid is obtained by referencing its neighboring cells,
and at the end of each iteration, the data that lies on the boundaries between blocks
must be exchanged. Our original solution incurred a substantial global memory
overhead which significantly reduced performance.

Fig. 5. Pyramid structure used in the CUDA version of HotSpot. In this example, starting
with an 8 × 8 block, it takes one iteration to compute the result of the inner 6 × 6 block.

To ameliorate the effects of this synchronization problem, we want to avoid ex-
changing data between blocks at the end of each iteration. A novel solution, based
on the pyramid structure shown in Figure 5, can improve the performance. In this
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approach, we assign to each thread block a region that is larger than the final re-
sult. If the pyramid base is an N × N data block, then after one iteration, the inner
(N−2)×(N−2) data block contains valid results. For instance, if we want to com-
pute the result of a grid which is comprised of many 4 × 4 blocks, we can instead
designate 16×16 blocks and load each block into shared memory local to each SM
for computation. The data processed in adjacent blocks overlaps so that, after all
of the iterations have completed, each of the inner cells in the grid contains a valid
result. So in this case, after 6 iterations, we can get the result of 4 × 4 block by
each SM, and then write the result back to the global memory. Using this approach
can reduce global memory read/write traffic by a factor of five, compared to the
original solution. Again, effective use of the on-chip shared memory is important
for an efficient implementation.

50 100 150 200 250 300 350 400 450
2

3

4

5

6

7

8

Input Size

S
pe

ed
up

 

 

 

Speedup (single thread)
Speedup (four threads)

Fig. 6. Speedup of the CUDA version of HotSpot over the CPU versions. The x-axis repre-
sents the size of the x- and y-dimensions of the computation grid.

Figure 6 shows the speedup of the CUDA version of HotSpot compared to the
two CPU versions. Using the pyramid data layout, the CUDA version achieves a
maximum speedup of approximately 7× over the single-threaded CPU code. How-
ever, the speedup of the CUDA version over the four-threaded OpenMP version
decreases as the size of the input increases. Although the pyramid architecture
can effectively reduce communication between thread blocks, it also increases the
amount of computation and memory required. For example, if the result grid is
comprised of a number of 4×4 blocks, and each block is expanded to 16×16, then
the simulation requires six iterations to converge. For a 256 × 256 grid, both algo-
rithms need to allocate 642 = 4096 blocks. However, the original algorithm only
needs to allocate 4×4 blocks, whereas the pyramid algorithm must allocate 16×16
blocks, increasing the amount of memory required by a factor of 16 and increas-
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ing the number of computations by a factor of almost six. Even with this increased
memory and computational overhead, the decreased communication overhead of
the pyramid structure significantly improves the performance of HotSpot compared
to both our original CUDA implementation and both CPU implementations.

6.2 Unstructured Grid

In structured grid applications, the connectivity of each data element is implic-
itly defined by its location in the grid. In unstructured grid applications, however,
connectivity of neighboring points must be made explicit; thus, updating a point
typically involves first determining all of its neighboring points [1]. Our chosen
unstructured grid application is Back Propagation, which is a machine-learning al-
gorithm that trains the weights of connecting nodes on a layered neural network.
The communication structure of this application is shown in Figure 1c. The appli-
cation is comprised of two phases: the Forward Phase, in which the activations are
propagated from the input to the output layer, and the Backward Phase, in which the
error between the observed and requested values in the output layer is propagated
backwards to adjust the weights and bias values [28]. In each layer, the processing
of all the nodes can be done in parallel.

We implement the data structure required by back propagation in a way that can
take advantage of CUDA’s domain-based programming model. For each two ad-
jacent layers, we create a weight matrix, with each data element representing the
weight of the corresponding column of the input layer and corresponding row in
the output layer. In this way, the whole computational domain can be partitioned in
a straightforward manner.

To calculate the value of each node in the output layer, we must compute the sum
of all of the values of the input nodes multiplied by the corresponding weights
connecting to the output node. These multiplications can be done in a massively
parallel fashion. There are several methods for performing such reductions using
CUDA. In each iteration of the reduction, the number of working threads in a block
reduces to half, requiring log

2
(N) iterations for N threads. The communication

pattern of a reduction operation is shown in Figure 1d. The reduction process can
share data efficiently through the local shared memory; however, for larger inputs,
the program must also process the partial sums which are written to global memory
by different thread blocks.

Because manual, parallel reductions are complex and error-prone, an abstraction
for parallel reductions is helpful. Currently, CUDA programmers can choose to
use functions from the CUDPP library, while OpenMP provides a native reduction
directive.

Figure 7 shows that for a network containing 65,536 input nodes, our CUDA im-
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Fig. 7. Speedup of the CUDA version of Back Propagation over the CPU versions. The
x-axis represents the log2 of the number of input nodes in the neural network.

plementation achieves more than a 8× speedup over the single-threaded CPU ver-
sion and approximately a 3.5× speedup over the four-threaded CPU version. How-
ever, efficiently implementing multithreaded parallel reductions is non-intuitive for
programmers who are accustomed to sequential programming. For such program-
mers—the vast majority of them—the OpenMP reduction is much simpler since
it is a relatively straightforward extension of the sequential CPU reduction using
the OpenMP reduction pragma. The CUDA version performs a manual reduction
using a combining tree. However, the scan primitives [25] developed for CUDA
provide a convenient and efficient way for CUDA programmers to perform parallel
reductions through library functions.

6.3 Combinational Logic

The combinational logic dwarf encompasses applications implemented with bit-
level logic functions. Applications in this dwarf exhibit massive bit-level paral-
lelism. DES is a classic encryption method using bit-wise operations. The DES
algorithm encrypts and decrypts data in 64-bit blocks using a 64-bit key. It takes
groups of 64-bit blocks of plaintext as input and produces groups of 64-bit blocks
of ciphertext as output by performing a set of bit-level permutations, substitutions,
and iterations. Figure 1b provides an example of a bit-level permutation that might
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be employed by DES. In our CUDA DES implementation, we use a straightforward
mapping of data to threads in 64-thread blocks. Since different 64-bit data blocks
have no interdependencies, they can be assigned to different thread blocks and pro-
cessed completely in parallel. Inside each thread block, the intermediate data can
all reside in shared memory for efficient access.

While developing this application, we found that the entire DES algorithm is too
large to fit in a single CUDA kernel. When compiling such a large kernel, the
compiler runs out of registers to allocate. To reduce the register allocation pressure
and allow the program to compile, we divided the large kernel into several smaller
ones. However, because the data in shared memory is not persistent across different
kernels, dividing the kernel results in the extra overhead of flushing data to global
memory in one kernel and reading the the data into shared memory again in the
subsequent kernel.
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Permutation (lookup table)

Fig. 8. Overhead of control flow in the CUDA implementations of DES. The x-axis repre-
sents the number of bits to be permuted.

Some standard sequential programming techniques are inappropriate in the context
of massively multithreaded GPUs. For example, although DES exhibits a great deal
of data-parallelism in many phases of execution, most of the parallelism is in the
form of irregular data permutations and shifts. In a sequential program, a program-
mer might use if statements to specify such permutations. However, as we saw
earlier in Section 5.3, using such an approach in a CUDA program will signifi-
cantly degrade performance. Our original CUDA implementation of DES exhibited
very poor performance because of the dominance of control flow. To improve the
performance, we modified the program to use lookup tables to reduce the number
of control flow instructions. Figure 8 demonstrates the control flow overhead by

17



showing the number of cycles required to execute two versions of the CUDA pro-
gram: the original version implemented using if statements and the new version
implemented using lookup tables. The results demonstrate that using if statements
can degrade performance by a factor of 2.6 to 5.5 compared to using lookup tables.
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Fig. 9. Speedup of the CUDA version of DES over the CPU versions. The x-axis represents
the log2 of the number of bits to be encoded.

Figure 9 shows the speedup of the CUDA version of DES over the CPU versions.
The improved CUDA version significantly outperforms both of the CPU versions
due to the massive parallelism that is exploited among different blocks. For an
input size of 218, the CUDA version achieves a speedup of more than 37× over
the single-threaded CPU version and more than 12× over the four-threaded CPU
version. In addition, we are currently exploring further optimizations to our CUDA
implementation of DES, and expect to obtain even more significant performance
improvements. For example, some permutation lookup tables are read many times
and thus might benefit from being allocated in the GPU’s constant memory—which
is cached on-chip—for faster access.

6.4 Dynamic Programming

A dynamic programming application solves an optimization problem by storing
and reusing the results of its subproblem solutions. Needleman-Wunsch is a nonlin-
ear global optimization method for DNA sequence alignments. The potential pairs
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of sequences are organized in a 2D matrix. In the first step, the algorithm fills the
matrix from top left to bottom right, step-by-step. The optimum alignment is the
pathway through the array with maximum score, where the score is the value of
the maximum weighted path ending at that cell. Thus, the value of each data ele-
ment depends on the values of its northwest-, north- and west-adjacent elements.
In the second step, the maximum path is traced backward to deduce the optimal
alignment.

Our CUDA implementation only parallelizes the first step, the construction of the
matrix. Naively, only a strip of diagonal elements can be processed in parallel, as
shown in Figure 1e). By assigning one thread to each data element, our first imple-
mentation exhibited poor performance because of the high overhead of accessing
global memory.

Fig. 10. A graphical representation of the parallelism within the Needleman-Wunsch algo-
rithm. Small blocks represent individual data elements and large blocks represent all of the
data elements assigned to a single thread block. Blocks at either scale on the same diagonal
line can be processed in parallel.

We reconsidered this algorithm and found that each data element is used four times
to calculate the values of four different elements, which provides an opportunity to
make use of shared memory. In our second implementation, the CUDA program has
two levels of parallelism with similar patterns: one among threads within a single
block and one among several blocks that can be processed in parallel. Figure 10
demonstrates these two levels of parallelism. Each cell represents a single data
element, while the larger blocks represent thread blocks. Data elements on the same
diagonal within a thread block can be processed concurrently. Likewise, thread
blocks on the same diagonal within the overall matrix (i.e., thread blocks with the
same color in the figure) can be processed concurrently.

Figure 11 shows the speedup of this less naı̈ve CUDA version over the CPU im-
plementations. For a 4096 × 4096 input, the CUDA version can achieve a 2.9×
speedup over the single-threaded CPU version. This limited speedup is due to the
fact that this application is not inherently computationally intensive. Interestingly,
unlike other applications, the four-threaded CPU version outperforms the CUDA
version. We still have not performed any extensive performance tuning, such as
working to reduce bank conflicts, and our CUDA version is wasteful of resources.
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Fig. 11. Speedup of the CUDA version of Needleman-Wunsch over the CPU versions. The
x-axis represents the size of the x- and y-dimensions of the computation grid.

For example, we universally assign 16 threads to each block, but the number of
actual working threads increases from 1 to 16 and then decreases from 16 to 1.
Thread blocks of 16 are chosen to maximize SM occupancy: a few large thread
blocks fill up the per-block shared memory quickly, because a single thread block
of N threads loads a data block of N×N into the PBSM–in fact, the largest possi-
ble thread block is only 64 threads. Smaller thread blocks therefore allow greater
utilization of each SM, and indeed thread blocks of 16 gave best performance. Con-
sidering both the performance and programming cost, OpenMP may prove a better
choice for Needleman-Wunsch, but the exercise provides us with important insights.

6.5 Data Mining

Data mining algorithms are classified into clustering, classification, and association
rule mining, among others [22]. Many data mining algorithms show a high degree
of task parallelism or data parallelism. K-means is a clustering algorithm used
extensively in data mining and elsewhere, important primarily for its simplicity.
Our reference OpenMP implementation of k-means is provided by the Minebench
suite [22]. Our goal with this benchmark is to test the applicability of CUDA to
data mining.

In k-means, a data object is comprised of several values, called features. By di-
viding a cluster of data objects into k sub-clusters, k-means represents all the data
objects by the mean values or centroids of their respective sub-clusters. In a basic
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implementation, the initial cluster center for each sub-cluster is randomly chosen
or derived from some heuristic. In each iteration, the algorithm associates each
data object with its nearest center, based on some chosen distance metric. The new
centroids are calculated by taking the mean of all the data objects within each sub-
cluster respectively. The algorithm iterates until no data objects move from one
sub-cluster to another [22].

In our CUDA implementation, the clusters of data objects are partitioned into thread
blocks, with each thread associated with one data object. The task of searching for
the nearest centroid to each data object is completely independent, as is the task of
computing the new centroid for each cluster. Both of these steps can take advantage
of the massive parallelism offered by the GPU.

In addition to implementing the computation of the nearest centroid for each data
object in a straightforward manner, we applied several optimizations to the CUDA
version to make better use of the GPU:

• The data access pattern in the inner loop of the distance recomputation loop was
optimal for the single-threaded version, but meant that each thread in a warp
accessed a different cache line in each iteration, leading to poor utilization of
the external bandwidth. By reorganizing the main data structure from an array
of structures into a structure of arrays, all threads in a warp access adjacent data
elements and make efficient use of the available bandwidth.

• We recognized that the array holding the centroids is small enough to fit in con-
stant memory, which is cached. Since the centroid array is also accessed in the
inner loop, this optimization eliminates half the accesses to external memory.

• We bound the main array (which is read-only) to a texture to take advantage
of the texture cache. The texture cache is useful in reducing external memory
bandwidth during the centroid calculation, because the memory accesses are not
perfectly aligned on 64 byte boundaries, which would be required to get the best
performance when using normal memory accesses.

• We moved a large fraction of the computation of the new centroids to the GPU.
Each recomputation is basically a number of parallel reductions. We imple-
mented a parallel per thread block reduction, which reduces the number of ad-
ditions performed by the CPU from the number of data points to the number of
thread blocks.

Figure 12 shows the speedup of the CUDA version of k-means over the CPU
versions, using a dataset from an intrusion detection problem in the 1999 KDD
Cup [11]. For a dataset with 819,200 elements, the CUDA version achieves a 72×
speedup compared to the single-threaded CPU version and a 35× speedup com-
pared to the four-threaded CPU version. Because the CPU is ultimately responsible
for calculating new cluster centroids, the memory transfer overhead is relatively
large. In each iteration, we first copy data to the GPU in order to compute the mem-
bership of each data object and perform part of the reduction, and then we copy the
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Fig. 12. Speedup of the CUDA version of k-means over the CPU versions. The x-axis
represents the number of input elements divided by 100.

partial reduction data back to the CPU to complete the reduction. Clearly this ap-
plication would benefit from further optimization. Also, data mining applications
often work on very large datasets which may not fit into a GPU’s limited device
memory. When computation of a result requires the entire dataset, programmers
must be conscious of the overhead of transferring data between the CPU and GPU.

6.6 Summary

In developing these applications, we have gained some insights into GPU program-
ming and the CUDA programming model in particular:

• To get good performance, programmers must understand some basic proper-
ties of the underlying architecture in addition to the programming model. The
most important aspect is the heavy focus on throughput (via deep multithread-
ing) at the expense of individual thread performance, requiring users to expose
large quantities of fine-grained parallelism. Other important aspects are the warp
concept, the role of SIMD execution within thread blocks (requiring a focus on
data rather than task parallelism and—within warps—coherent control flow) and
the lack of thread-private local storage (a small number of registers per thread),
which requires efficient use of other fast local memories (per-block shared mem-
ory, constant, and texture).

• Programmers must find efficient mappings of their applications’ data structures
to CUDA’s domain-based model. For matrix-like data structures, this is straight-
forward. The Back Propagation algorithm also presents a simple mapping of
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an unstructured grid, but for more complex and irregular applications—such as
applications in the Graph Traversal dwarf—-with complex structures built with
indirection, it can be non-intuitive. This can be true even when the application
exhibits a high degree of data parallelism!

• Programmers must be aware of the data-locality and memory access patterns
implied by the implementation of their algorithms in order to take advantage of
a GPU memory hierarchy. The most important factor is localizing data access
patterns and inter-thread communication within thread blocks and the SM’s lo-
cal data storage units. For frequently accessed, read-only values shared across
a warp, cached constant memory is a good choice; per-block shared memory is
small but has far lower memory access latency than global memory; and exces-
sive global memory accesses are undesirable due to both latency and bandwidth
considerations. Almost all of our implementations use shared memory.

• For large, read-only data structures, binding those data structures to textures
to exploit the benefits of texture caches can be beneficial. To benefit from the
small texture caches, programmers need to make sure data reuse is local (be-
tween threads in a thread block) and that most threads in a warp touch the same
cache line for a given load, so as not to thrash the texture cache.

• Programmers should strive to avoid the overhead of global synchronization as
much as possible. For example, our HotSpot implementation uses novel data
structures to reduce global communication to manageable levels.

• Control flow instructions can have a significant impact on performance. Our
DES implementation illustrates one useful approach, namely using lookup ta-
bles rather than control flow instructions.

7 Discussion of the CUDA Programming Model

We have shown the GPU’s potential to support interesting applications with di-
verse performance characteristics. In the course of developing these applications,
we made many observations about the CUDA programming model.

Threads in CUDA are scalar, and the kernel is therefore a simple scalar program,
without the need to manage vectorization, packing, etc. as is common in some other
programming models. In fact, in CUDA data accesses do not need to be contiguous
at all, that is to say each thread can access any memory location and still obtain the
benefits of SIMD execution as the instruction sequence stays in lockstep within a
warp. Although non-contiguous memory references may reduce effective memory
bandwidth, this is only a concern for applications that are memory bound. Even in
that case, packing is not a prerequisite for working code, but rather an optimization
step, which dramatically reduces the software development burden.

The CUDA model is not a purely data-parallel model. For example, programmers
can specify task parallelism within a warp, but they must keep in mind that this
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might cause a severe performance penalty due to thread divergence. Alternatively,
task parallelism can be specified between warps within a thread block, but programs
are limited to synchronizing all warps via syncthreads()—thread blocks can
perform different work, but cannot have producer-consumer relationships except
across kernel calls.

Barrier synchronization is widely perceived as inefficient, but can actually be more
efficient than a large quantity of fine-grained synchronizations. Barriers are mainly
detrimental in those cases where the program is forced to synchronize all threads
to satisfy the needs of only a few. It is not clear how often this is a concern. Bar-
riers also provide a much simpler abstraction to the programmer. These tradeoffs
are poorly understood when the synchronization occurs on chip with hardware syn-
chronization primitives.

Currently, programmers must specify the number of working threads explicitly for
a kernel, and threads cannot fork new threads. Often some thread resources are
wasted, as in our Needleman-Wunsch implementation. Add to these limitations a
lack of support for recursion, and the interface is missing a set of powerful, key
abstractions that could hinder their uptake as programmers struggle to restructure
their old code as CUDA programs.

Lack of persistent state in the per-block shared memory results in less efficient com-
munication among producer and consumer kernels than might be otherwise possi-
ble. The producer kernel has to store the shared memory data into device memory;
the data is then read back over the bus by the consumer kernel. This also undercuts
the efficiency of global synchronization which involves kernel termination and cre-
ation; however, a persistent shared memory contradicts the current programming
model, in which thread blocks run to completion and by definition leave no state
afterwards. Alternatively, a programmer can choose to use a novel algorithm that
involves less communication and global synchronization, such as the pyramid al-
gorithm that we use in HotSpot, but this often increases program complexity.

CUDA’s performance is hurt by its inability to collect data from a set of producer
threads and stream them to a set of consumer threads. Intermediate data has to be
stored in device memory before it is consumed by another thread in a new kernel.

8 Conclusions and Future Work

This work compared the performance of CPU and GPU implementations of six
naturally data-parallel applications. Our experiments used NVIDIA’s C-like CUDA
language and compared performance on an NVIDIA GeForce GTX 260 engineer-
ing sample with that on an Intel dual dual-core, hyperthreaded Xeon based system
with OpenMP. Even though we did not perform extensive performance tuning, the
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GPU implementations of these applications obtained impressive speedups and add
to the growing body of GPGPU work showing the potential of CUDA for gen-
eral purpose computing on GPUs. We generally found CUDA convenient to work
with; in fact, across all our applications, we were able to offload work to the GPU
responsible for 95.8–99.7% of the applications’ original, single-threaded execution
time excluding disk I/O. We also found CUDA far easier than traditional rendering-
based GPGPU approaches using OpenGL or DirectX. CUDA’s focus on available
parallelism, the availability of local (per-block) shared memory, and the kernel-
domain abstraction made these applications vastly easier to implement than tradi-
tional SPMD/thread-based approaches. In the case of k-means, CUDA was prob-
ably a bit more difficult than OpenMP, chiefly due to the need to explicitly move
data and deal with the GPU’s heterogeneous memory model. In HotSpot, with the
pyramidal implementation, CUDA’s “grid-of-blocks” paradigm was a natural fit
and probably simplified implementation compared to OpenMP.

The work we presented in this paper only shows a developmental stage of our
work. We are continuing to use CUDA to examine the programmability of various
applications with different data structures and memory access patterns and hope
to be able to draw general lessons about how to best use manycore architectures.
With greater architectural convergence of CPUs and GPUs, our goal is to find a
parallel programming model that can best aid developers to program in today’s
high-performance parallel computing environments, including GPUs and multicore
CPUs. However, new metrics are needed to better understand the convenience and
efficiency with which a particular application maps to different architectures.

Our sample applications mapped nicely onto CUDA and would map easily enough
to most parallel programming environments. In all cases, however, managing data
placement, communication, and synchronization becomes a nuisance at best—and
intractable at worst—with more complex applications. Higher-level programming
APIs are needed! Ideally, these should promote use of higher-level data structures
and programming primitives that implicitly convey information about dependencies
and data layout to the compiler or middleware, which can then manage much of
the concurrency, data placement, communication, and synchronization. Operations
on these data structures then would implicitly convey parallelism while preserv-
ing a more natural, quasi-sequential programming style [10]. Ideally, programmers
should still be able to “drill down”—to manage the hardware themselves using a
lower-level API such as CUDA—albeit at their own risk.

Finally, our results show the benefits of exploiting fine-grained parallelism by max-
imizing total throughput with a large number of simple, deeply multi-threaded pro-
cessors, even at the expense of poor single-thread latency.
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