
The Art of Performance Tuning for
CUDA and Manycore Architectures

David Tarjan (NVIDIA)
Kevin Skadron (U. Virginia)

Paulius Micikevicius (NVIDIA)

1

Outline

• Case study with an iterative solver (David)
– Successive layers of optimization

• Case study with stencil codes (Kevin)
– Trading off redundant computation against

bandwidth
• General optimization strategies and tips

(Paulius)

Example of Porting an Iterative
Solver to CUDA

David Tarjan
(with thanks to Michael Boyer)

1

2

MGVF Pseudo-code

MGVF = normalized sub-image gradient
do {

Compute the difference between each
element and its eight neighbors

Compute the regularized Heaviside
function across each matrix

Update MGVF matrix
Compute convergence criterion

} while (not converged)

3

Naïve CUDA Implementation

2.0x 7.7x 0.8x
0x

50x

100x

150x

200x

250x

C C + OpenMP Naïve CUDA
CUDA

Sp
ee

du
p

ov
er

 M
A

TL
AB

•

Kernel is called ~50,000 times per frame
•

Amount of work per call is small

•

Runtime dominated by CUDA overheads:
–

Memory allocation
–

Memory copying
–

Kernel call overhead

4

Kernel Overhead

•

Kernel calls are not cheap!
–

Overhead of one kernel call: 9 μs

–

Overhead of one CPU function: 3 ns

•

Heaviside kernel:
–

27% of kernel runtime due to computation

–

73% of kernel runtime due to kernel overhead

5

Lesson 1: Reduce Kernel Overhead

•

Increase amount of work per kernel call
–

Decrease total number of kernel calls

–

Amortize overhead of each kernel call across
more computation

6

Larger Kernel Implementation

MGVF = normalized sub-image gradient
do {

Compute the difference between each
pixel and its eight neighbors

Compute the regularized Heaviside
function across each matrix

Update MGVF matrix
Compute convergence criterion

} while (! converged)

7

9%

15%

71%

0% 20% 40% 60% 80% 100%

Kernel Execution

Memory Copying

Memory Allocation

Percentage of Runtime

Larger Kernel Implementation

2.0x 7.7x 0.8x 6.3x
0x

50x

100x

150x

200x

250x

C C + OpenMP Naïve CUDA Larger Kernel
CUDA

Sp
ee

du
p

ov
er

 M
A

TL
AB

8

Memory Allocation Overhead

0.01

0.1

1

10

100

1000

10000

1E-07 1E-06 1E-05 0.0001 0.001 0.01 0.1 1 10 100 1000

Megabytes Allocated Per Call

Ti
m

e
Pe

r C
al

l (
m

ic
ro

se
co

nd
s)

malloc (CPU memory) cudaMalloc (GPU memory)

9

Lesson 2:
Reduce Memory Management Overhead

•

Reduce the number of memory allocations
–

Allocate memory once and reuse it throughout
the application

–

If memory size is not known a priori, estimate
and only re-allocate if estimate is too small

10

31%

56%

3%

0% 20% 40% 60% 80% 100%

Kernel Execution

Memory Copying

Memory Allocation

Percentage of Runtime

Reduced Allocation Implementation

2.0x 7.7x 0.8x 6.3x
25.4x

0x

50x

100x

150x

200x

250x

C C + OpenMP Naïve CUDA Larger Kernel Reduced
Allocation

CUDA

Sp
ee

du
p

ov
er

 M
A

TL
AB

11

Memory Transfer Overhead

0.001

0.01

0.1

1

10

100

1000

1E-06 1E-05 0.0001 0.001 0.01 0.1 1 10 100 1000
Megabytes per Transfer

Tr
an

sf
er

 T
im

e
(m

ill
is

ec
on

ds
)

CPU to GPU GPU to CPU

12

Lesson 3:
Reduce Memory Transfer Overhead

•

If the CPU operates on values produced by
the GPU:
–

Move the operation to the GPU

–

May improve performance even if the
operation itself is slower on the GPU

Operation
(GPU)

Time

values
produced
by GPU

values
consumed

by GPU

Memory
Transfer

Operation
(CPU)

Memory
Transfer

13

GPU Reduction Implementation

MGVF = normalized sub-image gradient
do {

Compute the difference between each
pixel and its eight neighbors

Compute the regularized Heaviside
function across each matrix

Update MGVF matrix
Compute convergence criterion

} while (! converged)

14

Memory
Transfer

Memory
Transfer

Kernel Overhead Revisited

•

Overhead depends on calling pattern:
–

One at a time (synchronous): 9 μs

–

Back-to-back (asynchronous): 3 μs

Kernel
Call

Kernel
Call

Kernel
Call

Kernel
Call

Kernel
Call

Kernel
Call

Synchronous:

Asynchronous:

Implicit Synchronization

Kernel
Call

Kernel
Call

15

Lesson 1 Revisited:
Reduce Kernel Overhead

•

Increase amount of work per kernel call
–

Decrease total number of kernel calls

–

Amortize overhead of each kernel call across
more computation

•

Launch kernels back-to-back
–

Kernel calls are asynchronous: avoid explicit or
implicit synchronization between kernel calls

–

Overlap kernel execution on the GPU with
driver access on the CPU

16

GPU Reduction Implementation

2.0x 7.7x 0.8x 6.3x
25.4x

60.7x

0x

50x

100x

150x

200x

250x

C C + OpenMP Naïve CUDA Larger Kernel Reduced
Allocation

GPU
Reduction

CUDA

Sp
ee

du
p

ov
er

 M
A

TL
AB

80%

1%

7%

0% 20% 40% 60% 80% 100%

Kernel Execution

Memory Copying

Memory Allocation

Percentage of Runtime

17

Persistent Thread Block

MGVF = normalized sub-image gradient
do {

Compute the difference between each
pixel and its eight neighbors

Compute the regularized Heaviside
function across each matrix

Update MGVF matrix
Compute convergence criterion

} while (! converged)

18

Persistent Thread Block

•

Problem: need a global memory fence
–

Multiple thread blocks compute the MGVF matrix
–

Thread blocks cannot communicate with each other
–

So each iteration requires a separate kernel call

•

Solution: compute entire matrix in one thread
block
–

Arbitrary number of iterations can be computed in a
single kernel call

19

Persistent Thread Block: Example

1 32

4 65

7 98

1 11

1 11

1 11

Canonical CUDA Approach

(1-to-1 mapping between
threads and data elements)

Persistent Thread Block

MGVF Matrix MGVF Matrix

20

SM SM SM

SM SM SM

SM SM SM

Cell
2

Cell
3

Cell
4

Cell
5

Cell
6

Cell
7

Cell
8

Cell
9

SM SM SM

SM SM SM

SM SM SM

Cell
1

Cell
1

Cell
1

Cell
1

Cell
1

Cell
1

Cell
1

Cell
1

Cell
1

GPU

Persistent Thread Block: Example

Cell
1

Canonical CUDA Approach

(1-to-1 mapping between
threads and data elements)

Persistent Thread Block

GPU

SM = Streaming Multiprocessor

21

Lesson 4:
Avoid Global Memory Fences

•

Confine dependent computations to a
single thread block
–

Execute an iterative algorithm until
convergence in a single kernel call

–

Only efficient if there are multiple independent
computations

22

Persistent Thread Block
Implementation

2.0x 7.7x 0.8x 6.3x
25.4x

211.3x

60.7x

0x

50x

100x

150x

200x

250x

C C + OpenMP Naïve CUDA Larger Kernel Reduced
Allocation

GPU
Reduction

Persistent
Thread Block

CUDA

Sp
ee

du
p

ov
er

 M
A

TL
AB

27x

23

Absolute Performance

0.11 0.22 0.83

21.6

0

5

10

15

20

25

MATLAB C C + OpenMP CUDA

Fr
am

es
 p

er
 S

ec
on

d
(F

PS
)

24

Conclusions

•

CUDA overheads can be significant
bottlenecks

•

CUDA provides enormous performance
improvements for leukocyte tracking
–

200x over MATLAB

–

27x over OpenMP
•

Processing time reduced from >4.5 hours
to <1.5 minutes

•

Real-time analysis feasible in near future

When Wasting Computation is a
Good Thing

Kevin Skadron
Dept. of Computer Science

University of Virginia

with material from
Jiayuan Meng, Ph.D. student

Where is the Bottleneck?
• CPU
• CPU-GPU communication/coordination

• GPU memory bandwidth
• Maximize efficiency of memory transactions

• Traversal order, coalescing
• Maximize reuse

• Avoid repeated loading of same data (e.g. due to multiple iterations,
neighbor effects)

• Cache capacity/conflicts
• Important to consider the combined footprint of all threads

sharing a core
• Goldilocks tiles

Where is the Bottleneck, cont.

• Global synch costs
• Global barriers/fences are costly
• Block-sized tasks that can operate asynchronously—braided

parallelism—may be preferable to multi-block data parallelism
• Processor utilization

• Maximize occupancy, avoid idle threads
• This gives more latency hiding, but beware contention in the memory

hierarchy
• Avoid SIMD branch/latency divergence
• Minimize intra-thread-block barriers (__syncthreads)
• Match algorithm to architecture – work-efficient PRAM algorithms may

not be optimal
• Resource conflicts can limit utilization

• e.g., bank conflicts

Prioritizing = Modeling

• Improving reuse may require more
computation – find optimum?

• Solution 1: Trial and error
• Solution 2: Profile, build a performance model
• Solution 3: Auto-tune

• Mainly useful for tuning variables within an
optimized algorithm, e.g. threads/block, words/load

• Costs of auto-tuning can outweigh benefits

Iterative Stencil Algorithms

Ghost Zone Technique
redundant execution

How accurate is it?

• Performance at predicted trapezoid height no worse than 98% opt (ICS’09)
• Then use auto-tuning to find the optimum

Establishing an analytical
performance model

Computation vs. Communication
• LoadSten: loading all

input data for a trapezoid
(including the ghost
zone)

• Commit: Storing the
computed data into the
global memory

• MiscComp: Computation
time spent in initialization
(get thread and block
index, calculate borders,
etc)

• IterComp: The major
computation within
iterations (assuming
mem. latency is 0)

• GlbSync: Global
synchronization, or
kernel restart overhead

Normalized to trapezoid height = 1

When to apply ghost zones?

 Lower dimensional stencil operations
 Narrower halo widths
 Smaller computation/communication ratio
 Larger tile size
 Longer synchronization latency

Summary

• Find bottlenecks
• Be willing to modify the algorithm
• Consider auto-tuning

Thank you!

Backup

Related Work


Redundant computation partition [L. Chen Z.-Q.
Zhang X.-B. Feng.]



Ghost zone + time skewing (static analysis) [S.
Krishnamoorthy et al.]



Optimal ghost zone size on message-passing grid
systems [M. Ripeanu, A. Iamnitchi, and I. Foster]



Adaptive optimization on grid systems [G. Allen et al.]



Data replication and distribution [S. Chatterjee, J.R.
Gilbert, and R. Schreiber][P. Lee]



Ghost zone on GPU [S. Che et al.]

Experiments
Architecture parameters

Benchmark parameters



Dynamic Programming


ODE solver


PDE solver


Cellular Automata

(Conway's Game of Life)

Model Validation

Although the prediction error ranges from 2% to 30%, the performance
model captures the overall scaling trend for all benchmarks.

How to optimize performance?

 Gathering architecture parameters (once for
each architecture)

 Profiling application parameters (small input
suffice, once for each application)

 Calculate the optimal ghost zone size using
the analytical performance model

 Adjust the code accordingly/Automatic code
generation

Tuning Kernel Performance

Paulius Micikevicius

NVIDIA

Keys to Performance Tuning

• Know what limits your kernel performance

– Memory bandwidth

– Instruction throughput

– Latency– Latency

• Often when not hitting the memory or instruction

throughput limit

• Pick appropriate performance

– For example, Gflops/s not meaningful for

bandwidth-bound apps

Memory Throughput

• Know the achievable peak
– Theoretical peak = clock rate * bus width

– About 75-80% is achievable in a memcopy

• Two ways to measure throughput
– App: bytes accessed by the app / elapsed time– App: bytes accessed by the app / elapsed time

– Hw: bytes moved across the bus / elapsed time
• Use Visual Profiler

• Keep in mind that total kernel (not just mem) time is used

• App and Hw throughputs can be different
– Due to access patterns

– Indicates how efficiently you are using the mem bus

Optimizing Memory-bound Kernels

• Large difference between app and hw throughputs

– Look to improve coalescing (coherent access by a warp, see
SC09 CUDA tutorial slides, CUDA Best Practices Guide for
more details)

– Check whether using texture or constant “memories” suits
your access patternyour access pattern

• Consider “compression” when storing data

– For example, do arithmetic as fp32, but store as fp16

• Illustration: Mike Clark’s (Harvard) work on QCD (SC09 CUDA tutorial
slides)

• Consider resizing data tile per threadblock

– May reduce the percentage of bandwidth consumed by halo

Instruction throughput

• Possible limiting factors:

– Raw HW instruction issue rate

– Serialization within warps, due to:

• Divergent conditionals• Divergent conditionals

• Shared memory bank conflicts

Instruction Issue Rate
• Know the kernel instruction mix

– fp32, fp64, int, mem, transcendentals

– These have different throughputs

– Could look at PTX (virtual assembly)
• Not the final optimized code

– Machine-language disassembler coming soon

• Know the hw throughput rates for various instruction types• Know the hw throughput rates for various instruction types
– Programming guide / Best practices guide

• Visual Profiler reports instruction throughput
– Currently it’s the ratio:

(instructions issued) / (fp32 instructions that could have been issued in the same elapsed time)

– Could go over 1.0 if dual-issue happens

– Currently not a good metric for fp64, or transcendental instruction-
bound codes

Serialization

• One of:
– Smem bank conflicts, const mem bank conflicts

– Warp divergence

– A few others (much less frequent)

• Profiler reports serialization and divergence counts• Profiler reports serialization and divergence counts

• Impact on performance varies from kernel to kernel

• Assess impact before optimizing
– The below will give a perf estimate, but incorrect output

– Smem: change indexing to be either broadcasts or just
thread ID

– Divergence: change the condition to always take the same
path (try both paths to see what each costs)

Latency

• Often the cause when neither memory nor
instruction throughput rates are close to the
peak rate

– Insufficient threads per multiprocessor to hide latency

• Consider grouping independent accesses by a thread• Consider grouping independent accesses by a thread

– Too few threadblocks when using many barriers per
kernel

• In these cases should aim at 3-4 concurrent threadblocks per
multiprocessor

• Fermi will have some performance counters to
help detect

Threads per Multiprocessor and

Latency Hiding

• Memcopy kernel, one word per thread

• Quadro FX5800 GPU (102 GB/s theoretical)

Another Perf Measurement Hack

• Separate and time kernel portions that access memory
and do “math”
– Easier for codes that don’t have data-dependent accesses or

arithmetic

• Comment out as much math as possible to get “memory-
only” kernelonly” kernel

• Comment out memory accesses to get “math-only” kernel
• Commenting reads is straightforward

• Can’t comment out writes = compiler will throw away “dead” code

• Put writes in an if-statement that always fails (but compiler can’t
figure that out)

• Comments also work well for assessing barrier
(__syncthreads) impact on performance

	Example of Porting an Iterative Solver to CUDA
	MGVF Pseudo-code
	Naïve CUDA Implementation
	Kernel Overhead
	Lesson 1: Reduce Kernel Overhead
	Larger Kernel Implementation
	Larger Kernel Implementation
	Memory Allocation Overhead
	Lesson 2:�Reduce Memory Management Overhead
	Reduced Allocation Implementation
	Memory Transfer Overhead
	Lesson 3:�Reduce Memory Transfer Overhead
	GPU Reduction Implementation
	Kernel Overhead Revisited
	Lesson 1 Revisited:�Reduce Kernel Overhead
	GPU Reduction Implementation
	Persistent Thread Block
	Persistent Thread Block
	Persistent Thread Block: Example
	Persistent Thread Block: Example
	Lesson 4:�Avoid Global Memory Fences
	Persistent Thread Block Implementation
	Absolute Performance
	Conclusions
	cuda-bof-v2.pdf
	When Wasting Computation is a Good Thing
	Where is the Bottleneck?
	Where is the Bottleneck, cont.
	Prioritizing = Modeling
	Iterative Stencil Algorithms
	Ghost Zone Technique
	How accurate is it?
	Establishing an analytical performance model
	Computation vs. Communication
	When to apply ghost zones?
	Summary
	Slide Number 12
	Backup
	Related Work
	Ghost zone on GPUs
	Experiments
	Model Validation
	How to optimize performance?
	How accurate it is?

	cuda bof title slide.pdf
	The Art of Performance Tuning for CUDA and Manycore Architectures
	Outline

	cuda bof title slide.pdf
	The Art of Performance Tuning for CUDA and Manycore Architectures
	Outline

