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Outline

• Case study with an iterative solver (David)
– Successive layers of optimization

• Case study with stencil codes (Kevin)
– Trading off redundant computation against 

bandwidth
• General optimization strategies and tips 

(Paulius)



Example of Porting an Iterative 
Solver to CUDA

David Tarjan
(with thanks to Michael Boyer)
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MGVF Pseudo-code

MGVF = normalized sub-image gradient
do {

Compute the difference between each 
element and its eight neighbors

Compute the regularized Heaviside 
function across each matrix

Update MGVF matrix
Compute convergence criterion

} while (not converged)
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Naïve CUDA Implementation
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•
 

Kernel is called ~50,000 times per frame
•

 
Amount of work per call is small

•
 

Runtime dominated by CUDA overheads:
–

 

Memory allocation
–

 

Memory copying
–

 

Kernel call overhead
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Kernel Overhead

•
 

Kernel calls are not cheap!
–

 
Overhead of one kernel call: 9 μs

–
 

Overhead of one CPU function: 3 ns

•
 

Heaviside kernel:
–

 
27% of kernel runtime due to computation

–
 

73% of kernel runtime due to kernel overhead
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Lesson 1: Reduce Kernel Overhead

•
 

Increase amount of work per kernel call
–

 
Decrease total number of kernel calls

–
 

Amortize overhead of each kernel call across 
more computation
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Larger Kernel Implementation

MGVF = normalized sub-image gradient
do {

Compute the difference between each 
pixel and its eight neighbors

Compute the regularized Heaviside 
function across each matrix

Update MGVF matrix
Compute convergence criterion

} while (! converged)
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Memory Allocation Overhead
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Lesson 2: 
Reduce Memory Management Overhead

•
 

Reduce the number of memory allocations
–

 
Allocate memory once and reuse it throughout 
the application

–
 

If memory size is not known a priori, estimate 
and only re-allocate if estimate is too small
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Memory Transfer Overhead
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Lesson 3: 
Reduce Memory Transfer Overhead

•
 

If the CPU operates on values produced by 
the GPU:
–

 
Move the operation to the GPU

–
 

May improve performance even if the 
operation itself is slower on the GPU

Operation
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GPU Reduction Implementation

MGVF = normalized sub-image gradient
do {

Compute the difference between each 
pixel and its eight neighbors

Compute the regularized Heaviside 
function across each matrix

Update MGVF matrix
Compute convergence criterion

} while (! converged)
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Memory 
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Kernel Overhead Revisited

•
 

Overhead depends on calling pattern:
–

 
One at a time (synchronous): 9 μs

–
 

Back-to-back (asynchronous): 3 μs
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Lesson 1 Revisited: 
Reduce Kernel Overhead

•
 

Increase amount of work per kernel call
–

 
Decrease total number of kernel calls

–
 

Amortize overhead of each kernel call across 
more computation

•
 

Launch kernels back-to-back
–

 
Kernel calls are asynchronous: avoid explicit or 
implicit synchronization between kernel calls

–
 

Overlap kernel execution on the GPU with 
driver access on the CPU



16

GPU Reduction Implementation
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Persistent Thread Block

MGVF = normalized sub-image gradient
do {

Compute the difference between each 
pixel and its eight neighbors

Compute the regularized Heaviside 
function across each matrix

Update MGVF matrix
Compute convergence criterion

} while (! converged)
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Persistent Thread Block

•
 

Problem: need a global memory fence
–

 

Multiple thread blocks compute the MGVF matrix
–

 

Thread blocks cannot communicate with each other
–

 

So each iteration requires a separate kernel call

•
 

Solution: compute entire matrix in one thread 
block
–

 

Arbitrary number of iterations can be computed in a 
single kernel call
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Persistent Thread Block: Example
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Lesson 4: 
Avoid Global Memory Fences

•
 

Confine dependent computations to a 
single thread block
–

 
Execute an iterative algorithm until 
convergence in a single kernel call

–
 

Only efficient if there are multiple independent 
computations
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Persistent Thread Block 
Implementation
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Absolute Performance
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Conclusions

•
 

CUDA overheads can be significant 
bottlenecks

•
 

CUDA provides enormous performance 
improvements for leukocyte tracking
–

 
200x over MATLAB

–
 

27x over OpenMP
•

 
Processing time reduced from >4.5 hours 
to <1.5 minutes

•
 

Real-time analysis feasible in near future



When Wasting Computation is a 
Good Thing

Kevin Skadron
Dept. of Computer Science

University of Virginia

with material from 
Jiayuan Meng, Ph.D. student



Where is the Bottleneck?
• CPU 
• CPU-GPU communication/coordination

• GPU memory bandwidth
• Maximize efficiency of memory transactions 

• Traversal order, coalescing
• Maximize reuse

• Avoid repeated loading of same data (e.g. due to multiple iterations, 
neighbor effects)

• Cache capacity/conflicts
• Important to consider the combined footprint of all threads 

sharing a core
• Goldilocks tiles



Where is the Bottleneck, cont.

• Global synch costs
• Global barriers/fences are costly
• Block-sized tasks that can operate asynchronously—braided 

parallelism—may be preferable to multi-block data parallelism
• Processor utilization

• Maximize occupancy, avoid idle threads
• This gives more latency hiding, but beware contention in the memory 

hierarchy
• Avoid SIMD branch/latency divergence
• Minimize intra-thread-block barriers (__syncthreads)
• Match algorithm to architecture – work-efficient PRAM algorithms may 

not be optimal
• Resource conflicts can limit utilization

• e.g., bank conflicts



Prioritizing = Modeling

• Improving reuse may require more 
computation – find optimum?

• Solution 1: Trial and error
• Solution 2: Profile, build a performance model
• Solution 3: Auto-tune

• Mainly useful for tuning variables within an 
optimized algorithm, e.g. threads/block, words/load

• Costs of auto-tuning can outweigh benefits



Iterative Stencil Algorithms



Ghost Zone Technique
redundant execution



How accurate is it?

• Performance at predicted trapezoid height no worse than 98% opt (ICS’09)
• Then use auto-tuning to find the optimum



Establishing an analytical 
performance model



Computation vs. Communication
• LoadSten: loading all 

input data for a trapezoid 
(including the ghost 
zone)

• Commit: Storing the 
computed data into the 
global memory

• MiscComp: Computation 
time spent in initialization 
(get thread and block 
index, calculate borders, 
etc)

• IterComp: The major 
computation within 
iterations (assuming 
mem. latency is 0)

• GlbSync: Global 
synchronization, or 
kernel restart overhead

Normalized to trapezoid height = 1



When to apply ghost zones?

 Lower dimensional stencil operations
 Narrower halo widths
 Smaller computation/communication ratio
 Larger tile size
 Longer synchronization latency



Summary

• Find bottlenecks
• Be willing to modify the algorithm
• Consider auto-tuning



Thank you!



Backup



Related Work


 
Redundant computation partition [L. Chen Z.-Q. 
Zhang X.-B. Feng.]


 

Ghost zone + time skewing (static analysis) [S. 
Krishnamoorthy et al.]


 

Optimal ghost zone size on message-passing grid 
systems [M. Ripeanu, A. Iamnitchi, and I. Foster]


 

Adaptive optimization on grid systems [G. Allen et al.]


 

Data replication and distribution [S. Chatterjee, J.R. 
Gilbert, and R. Schreiber][P. Lee]


 

Ghost zone on GPU [S. Che et al.]



Experiments
Architecture parameters

Benchmark parameters


 
Dynamic Programming


 
ODE solver


 
PDE solver


 
Cellular Automata 

(Conway's Game of Life)



Model Validation

Although the prediction error ranges from 2% to 30%, the performance 
model captures the overall scaling trend for all benchmarks.



How to optimize performance?

 Gathering architecture parameters (once for 
each architecture)

 Profiling application parameters (small input 
suffice, once for each application)

 Calculate the optimal ghost zone size using 
the analytical performance model

 Adjust the code accordingly/Automatic code 
generation



Tuning Kernel Performance

Paulius Micikevicius

NVIDIA



Keys to Performance Tuning

• Know what limits your kernel performance

– Memory bandwidth

– Instruction throughput

– Latency– Latency

• Often when not hitting the memory or instruction 

throughput limit

• Pick appropriate performance

– For example, Gflops/s not meaningful for 

bandwidth-bound apps



Memory Throughput

• Know the achievable peak
– Theoretical peak = clock rate * bus width

– About 75-80% is achievable in a memcopy

• Two ways to measure throughput
– App: bytes accessed by the app / elapsed time– App: bytes accessed by the app / elapsed time

– Hw:  bytes moved across the bus / elapsed time
• Use Visual Profiler

• Keep in mind that total kernel (not just mem) time is used

• App and Hw throughputs can be different
– Due to access patterns

– Indicates how efficiently you are using the mem bus



Optimizing Memory-bound Kernels

• Large difference between app and hw throughputs

– Look to improve coalescing (coherent access by a warp, see 
SC09 CUDA tutorial slides, CUDA Best Practices Guide for 
more details)

– Check whether using texture or constant “memories” suits 
your access patternyour access pattern

• Consider “compression” when storing data

– For example, do arithmetic as fp32, but store as fp16

• Illustration: Mike Clark’s (Harvard) work on QCD (SC09 CUDA tutorial 
slides)

• Consider resizing data tile per threadblock

– May reduce the percentage of bandwidth consumed by halo



Instruction throughput

• Possible limiting factors:

– Raw HW instruction issue rate

– Serialization within warps, due to:

• Divergent conditionals• Divergent conditionals

• Shared memory bank conflicts



Instruction Issue Rate
• Know the kernel instruction mix

– fp32, fp64, int, mem, transcendentals

– These have different throughputs

– Could look at PTX (virtual assembly)
• Not the final optimized code

– Machine-language disassembler coming soon

• Know the hw throughput rates for various instruction types• Know the hw throughput rates for various instruction types
– Programming guide / Best practices guide

• Visual Profiler reports instruction throughput
– Currently it’s the ratio:

(instructions issued ) / (fp32 instructions that could have been issued in the same elapsed time)

– Could go over 1.0 if dual-issue happens

– Currently not a good metric for fp64, or transcendental instruction-
bound codes



Serialization

• One of:
– Smem bank conflicts, const mem bank conflicts

– Warp divergence

– A few others (much less frequent)

• Profiler reports serialization and divergence counts• Profiler reports serialization and divergence counts

• Impact on performance varies from kernel to kernel

• Assess impact before optimizing
– The below will give a perf estimate, but incorrect output

– Smem: change indexing to be either broadcasts or  just 
thread ID

– Divergence: change the condition to always take the same 
path (try both paths to see what each costs)



Latency

• Often the cause when neither memory nor 
instruction throughput rates are close to the 
peak rate

– Insufficient threads per multiprocessor to hide latency

• Consider grouping independent accesses by a thread• Consider grouping independent accesses by a thread

– Too few threadblocks when using many barriers per 
kernel

• In these cases should aim at 3-4 concurrent threadblocks per 
multiprocessor

• Fermi will have some performance counters to 
help detect



Threads per Multiprocessor and 

Latency Hiding

• Memcopy kernel, one word per thread

• Quadro FX5800 GPU (102 GB/s theoretical)



Another Perf Measurement Hack

• Separate and time kernel portions that access memory 
and do “math”
– Easier for codes that don’t have data-dependent accesses or 

arithmetic

• Comment out as much math as possible to get “memory-
only” kernelonly” kernel

• Comment out memory accesses to get “math-only” kernel
• Commenting reads is straightforward

• Can’t comment out writes = compiler will throw away “dead” code

• Put writes in an if-statement that always fails (but compiler can’t 
figure that out)

• Comments also work well for assessing barrier 
(__syncthreads) impact on performance
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