The Art of Performance Tuning for CUDA and Manycore Architectures

David Tarjan (NVIDIA)
Kevin Skadron (U. Virginia)
Paulius Micikevicius (NVIDIA)
Outline

• Case study with an iterative solver (David)
 – Successive layers of optimization

• Case study with stencil codes (Kevin)
 – Trading off redundant computation against bandwidth

• General optimization strategies and tips (Paulius)
Example of Porting an Iterative Solver to CUDA

David Tarjan
(with thanks to Michael Boyer)
MGVF Pseudo-code

MGVF = normalized sub-image gradient
do {
 Compute the difference between each
element and its eight neighbors

 Compute the regularized Heaviside function across each matrix

 Update MGVF matrix

 Compute convergence criterion
}
} while (not converged)
Naïve CUDA Implementation

- Kernel is called \(~50,000\) times per frame
- Amount of work per call is small
- Runtime dominated by CUDA overheads:
 - Memory allocation
 - Memory copying
 - Kernel call overhead
Kernel Overhead

• Kernel calls are not cheap!
 – Overhead of one kernel call: 9 μs
 – Overhead of one CPU function: 3 ns

• Heaviside kernel:
 – 27% of kernel runtime due to computation
 – 73% of kernel runtime due to kernel overhead
Lesson 1: Reduce Kernel Overhead

• Increase amount of work per kernel call
 – Decrease total number of kernel calls
 – Amortize overhead of each kernel call across more computation
Larger Kernel Implementation

MGVF = normalized sub-image gradient

do {
 Compute the difference between each pixel and its eight neighbors
 Compute the regularized Heaviside function across each matrix
 Update MGVF matrix
 Compute convergence criterion
} while (! converged)
Larger Kernel Implementation

C
C + OpenMP
Naïve CUDA
Larger Kernel

CUDA

Speedup over MATLAB

2.0x 7.7x 0.8x 6.3x
Memory Allocation Overhead

![Graph showing the relationship between Megabytes Allocated Per Call and Time Per Call (microseconds) for `malloc` (CPU memory) and `cudaMalloc` (GPU memory). The x-axis represents Megabytes Allocated Per Call ranging from 1E-07 to 1000, while the y-axis represents Time Per Call (microseconds) ranging from 1E-07 to 10000. The graph demonstrates a significant difference in performance between CPU and GPU memory allocation methods.]
Lesson 2: Reduce Memory Management Overhead

- Reduce the number of memory allocations
 - Allocate memory once and reuse it throughout the application
 - If memory size is not known a priori, estimate and only re-allocate if estimate is too small
Reduced Allocation Implementation
Memory Transfer Overhead

Transfer Time (milliseconds)

Megabytes per Transfer

CPU to GPU
GPU to CPU
Lesson 3: Reduce Memory Transfer Overhead

• If the CPU operates on values produced by the GPU:
 – Move the operation to the GPU
 – May improve performance even if the operation itself is slower on the GPU
GPU Reduction Implementation

MGVF = normalized sub-image gradient
do {
 Compute the difference between each pixel and its eight neighbors
 Compute the regularized Heaviside function across each matrix
 Update MGVF matrix
 Compute convergence criterion
} while (! converged)
Kernel Overhead Revisited

- Overhead depends on calling pattern:
 - One at a time (synchronous): 9 μs
 - Back-to-back (asynchronous): 3 μs
Lesson 1 Revisited: Reduce Kernel Overhead

• Increase amount of work per kernel call
 – Decrease total number of kernel calls
 – Amortize overhead of each kernel call across more computation

• Launch kernels back-to-back
 – Kernel calls are asynchronous: avoid explicit or implicit synchronization between kernel calls
 – Overlap kernel execution on the GPU with driver access on the CPU
GPU Reduction Implementation

Speedup over MATLAB

- C: 2.0x
- C + OpenMP: 7.7x
- Naïve CUDA: 0.8x
- Larger Kernel: 6.3x
- Reduced Allocation CUDA: 25.4x
- GPU Reduction: 60.7x
Persistent Thread Block

MGVF = normalized sub-image gradient

do {
 Compute the difference between each pixel and its eight neighbors
 Compute the regularized Heaviside function across each matrix
 Update MGVF matrix
 Compute convergence criterion
} while (! converged)
Persistent Thread Block

- Problem: need a global memory fence
 - Multiple thread blocks compute the MGVF matrix
 - Thread blocks cannot communicate with each other
 - So each iteration requires a separate kernel call

- Solution: compute entire matrix in one thread block
 - Arbitrary number of iterations can be computed in a single kernel call
Persistent Thread Block: Example

MGVF Matrix

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Canonical CUDA Approach

(1-to-1 mapping between threads and data elements)

MGVF Matrix

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Persistent Thread Block
Persistent Thread Block: Example

Canonical CUDA Approach
(1-to-1 mapping between threads and data elements)

Persistent Thread Block

SM = Streaming Multiprocessor
Lesson 4: Avoid Global Memory Fences

- Confine dependent computations to a single thread block
 - Execute an iterative algorithm until convergence in a single kernel call
 - Only efficient if there are multiple independent computations
Persistent Thread Block Implementation

- Speedup over MATLAB
 - C: 2.0x
 - C + OpenMP: 7.7x
 - Naïve CUDA: 0.8x
 - Larger Kernel: 6.3x
 - Reduced Allocation CUDA: 25.4x
 - GPU Reduction: 60.7x
 - Persistent Thread Block: 211.3x
Absolute Performance

![Bar Chart](chart.png)

Frames per Second (FPS)

- MATLAB: 0.11
- C: 0.22
- C + OpenMP: 0.83
- CUDA: 21.6

MATLAB C C + OpenMP CUDA
Conclusions

• CUDA overheads can be significant bottlenecks
• CUDA provides enormous performance improvements for leukocyte tracking
 – 200x over MATLAB
 – 27x over OpenMP
• Processing time reduced from >4.5 hours to <1.5 minutes
• Real-time analysis feasible in near future
When Wasting Computation is a Good Thing

Kevin Skadron
Dept. of Computer Science
University of Virginia

with material from
Jiayuan Meng, Ph.D. student
Where is the Bottleneck?

- CPU
- CPU-GPU communication/coordination

- GPU memory bandwidth
 - Maximize efficiency of memory transactions
 - Traversal order, coalescing
 - Maximize reuse
 - Avoid repeated loading of same data (e.g. due to multiple iterations, neighbor effects)

- Cache capacity/conflicts
 - Important to consider the combined footprint of all threads sharing a core
 - Goldilocks tiles
Where is the Bottleneck, cont.

• Global synch costs
 • \textit{Global barriers/fences are costly}
 • Block-sized tasks that can operate asynchronously—braided parallelism—may be preferable to multi-block data parallelism

• Processor utilization
 • Maximize occupancy, avoid idle threads
 • This gives more latency hiding, but beware contention in the memory hierarchy
 • Avoid SIMD branch/latency divergence
 • Minimize intra-thread-block barriers (\texttt{__syncthreads})
 • Match algorithm to architecture – work-efficient PRAM algorithms may not be optimal

• Resource conflicts can limit utilization
 • e.g., bank conflicts
Prioritizing = Modeling

• Improving reuse may require more computation – find optimum?
• Solution 1: Trial and error
• Solution 2: Profile, build a performance model
• Solution 3: Auto-tune
 • Mainly useful for tuning variables within an optimized algorithm, e.g. threads/block, words/load
 • Costs of auto-tuning can outweigh benefits
Iterative Stencil Algorithms
Ghost Zone Technique

redundant execution
How accurate is it?

- Performance at predicted trapezoid height no worse than 98% opt (ICS’09)
- Then use auto-tuning to find the optimum
Establishing an analytical performance model

\[CPS = GlbSync + MemAcc + CPT \times \frac{T}{M} \]

\[\text{stages} = \frac{T}{\text{ConcurBlks}} \]

\[\text{MemCycles}(n) = \text{stages} \times [\text{UncontendedLat} + \frac{n \times \text{CyclesPerReq}(x \times \text{CoalesceDegree})}{\text{stages} \times \text{CoalesceDegree}}] \]

\[\text{CompCycles} = \text{NumWarpInsts} \times \text{ActiveWarpsPerBlock} \times \text{CPI} \]

\[\text{GlbSync} = 3350 \]
Computation vs. Communication

- LoadSten: loading all input data for a trapezoid (including the ghost zone)
- Commit: Storing the computed data into the global memory
- MiscComp: Computation time spent in initialization (get thread and block index, calculate borders, etc)
- IterComp: The major computation within iterations (assuming mem. latency is 0)
- GlbSync: Global synchronization, or kernel restart overhead
When to apply ghost zones?

- Lower dimensional stencil operations
- Narrower halo widths
- Smaller computation/communication ratio
- Larger tile size
- Longer synchronization latency
Summary

• Find bottlenecks
• Be willing to modify the algorithm
• Consider auto-tuning
Thank you!
Backup
Related Work

- Redundant computation partition [L. Chen Z.-Q. Zhang X.-B. Feng.]
- Ghost zone + time skewing (static analysis) [S. Krishnamoorthy et al.]
- Optimal ghost zone size on message-passing grid systems [M. Ripeanu, A. Iamnitchi, and I. Foster]
- Adaptive optimization on grid systems [G. Allen et al.]
- Data replication and distribution [S. Chatterjee, J.R. Gilbert, and R. Schreiber][P. Lee]
- Ghost zone on GPU [S. Che et al.]
Experiments

Architecture parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>clock rate</td>
<td>1.3 GHz</td>
</tr>
<tr>
<td>coalesce width</td>
<td>16</td>
</tr>
<tr>
<td>warp size</td>
<td>32</td>
</tr>
<tr>
<td>number of SMs</td>
<td>30</td>
</tr>
<tr>
<td>concurrent blocks per SM</td>
<td>8</td>
</tr>
<tr>
<td>number of SPs per SM</td>
<td>8</td>
</tr>
<tr>
<td>SP pipeline depth</td>
<td>4</td>
</tr>
<tr>
<td>average CPI</td>
<td>4</td>
</tr>
<tr>
<td>memory bandwidth</td>
<td>141.7 GBytes/sec</td>
</tr>
<tr>
<td>maximum number of threads per block</td>
<td>512</td>
</tr>
<tr>
<td>maximum memory pitch</td>
<td>262144 bytes</td>
</tr>
</tbody>
</table>

Benchmark parameters

<table>
<thead>
<tr>
<th></th>
<th>PathFinder</th>
<th>HotSpot</th>
<th>Poisson</th>
<th>Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>stencil dimensionality</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>stencil size</td>
<td>3</td>
<td>3 x 3</td>
<td>3 x 3</td>
<td>3 x 3 x 3</td>
</tr>
<tr>
<td>halo width</td>
<td>2</td>
<td>2 x 2</td>
<td>2 x 2</td>
<td>2 x 2 x 2</td>
</tr>
<tr>
<td>NumStencilArrays</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NumElemPerOp</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Profiling</td>
<td>100,000</td>
<td>500 x</td>
<td>500 x</td>
<td>60 x 60</td>
</tr>
<tr>
<td>Input Size(N)</td>
<td></td>
<td>500</td>
<td>500</td>
<td>x60</td>
</tr>
<tr>
<td>InstsPerSM<sub>MC</sub></td>
<td>1998</td>
<td>13488</td>
<td>12825</td>
<td>71603</td>
</tr>
<tr>
<td>InstsPerSM<sub>LC</sub></td>
<td>1859</td>
<td>16645</td>
<td>12474</td>
<td>220521</td>
</tr>
</tbody>
</table>
Although the prediction error ranges from 2% to 30%, the performance model captures the overall scaling trend for all benchmarks.
How to optimize performance?

- Gathering architecture parameters (once for each architecture)
- Profiling application parameters (small input suffice, once for each application)
- Calculate the optimal ghost zone size using the analytical performance model
- Adjust the code accordingly/Automatic code generation
Tuning Kernel Performance

Paulius Micikevicius

NVIDIA
Keys to Performance Tuning

• **Know what limits your kernel performance**
 – Memory bandwidth
 – Instruction throughput
 – Latency
 • Often when not hitting the memory or instruction throughput limit

• **Pick appropriate performance**
 – For example, Gflops/s not meaningful for bandwidth-bound apps
Memory Throughput

• **Know the achievable peak**
 – Theoretical peak = clock rate * bus width
 – About 75-80% is achievable in a memcopy

• **Two ways to measure throughput**
 – **App**: bytes accessed by the app / elapsed time
 – **Hw**: bytes moved across the bus / elapsed time
 • Use Visual Profiler
 • Keep in mind that **total** kernel (not just mem) time is used

• **App and Hw throughputs can be different**
 – Due to access patterns
 – Indicates how efficiently you are using the mem bus
Optimizing Memory-bound Kernels

• **Large difference between app and hw throughputs**
 – Look to improve coalescing (coherent access by a warp, see SC09 CUDA tutorial slides, CUDA Best Practices Guide for more details)
 – Check whether using texture or constant “memories” suits your access pattern

• **Consider “compression” when storing data**
 – For example, do arithmetic as fp32, but store as fp16
 • Illustration: Mike Clark’s (Harvard) work on QCD (SC09 CUDA tutorial slides)

• **Consider resizing data tile per threadblock**
 – May reduce the percentage of bandwidth consumed by halo
Instruction throughput

• Possible limiting factors:
 – Raw HW instruction issue rate
 – Serialization within warps, due to:
 • Divergent conditionals
 • Shared memory bank conflicts
Instruction Issue Rate

• **Know the kernel instruction mix**
 – fp32, fp64, int, mem, transcendentals
 – These have different throughputs
 – Could look at PTX (virtual assembly)
 • Not the final optimized code
 – Machine-language disassembler coming soon

• **Know the hw throughput rates for various instruction types**
 – Programming guide / Best practices guide

• **Visual Profiler reports instruction throughput**
 – Currently it’s the ratio:
 (instructions issued) / (fp32 instructions that could have been issued in the same elapsed time)
 – Could go over 1.0 if dual-issue happens
 – Currently not a good metric for fp64, or transcendental instruction-bound codes
Serialization

- One of:
 - Smem bank conflicts, const mem bank conflicts
 - Warp divergence
 - A few others (much less frequent)

- Profiler reports serialization and divergence counts

- Impact on performance varies from kernel to kernel

- Assess impact before optimizing
 - The below will give a perf estimate, but incorrect output
 - Smem: change indexing to be either broadcasts or just thread ID
 - Divergence: change the condition to always take the same path (try both paths to see what each costs)
Latency

• Often the cause when neither memory nor instruction throughput rates are close to the peak rate
 – Insufficient threads per multiprocessor to hide latency
 • Consider grouping independent accesses by a thread
 – Too few threadblocks when using many barriers per kernel
 • In these cases should aim at 3-4 concurrent threadblocks per multiprocessor

• Fermi will have some performance counters to help detect
Threads per Multiprocessor and Latency Hiding

- Memcopy kernel, one word per thread
- Quadro FX5800 GPU (102 GB/s theoretical)
Another Perf Measurement Hack

- Separate and time kernel portions that access memory and do “math”
 - Easier for codes that don’t have data-dependent accesses or arithmetic
- Comment out as much math as possible to get “memory-only” kernel
- Comment out memory accesses to get “math-only” kernel
 - Commenting reads is straightforward
 - Can’t comment out writes = compiler will throw away “dead” code
 - Put writes in an if-statement that always fails (but compiler can’t figure that out)
- Comments also work well for assessing barrier (__syncthreads) impact on performance