
Optimal Procrastinating Voltage Scheduling
for Hard Real-Time Systems

Yan Zhang, Zhijian Lu, John Lach, Kevin Skadron, Mircea R. Stan
University of Virginia

Charlottesville, VA 22904, U.S.A.

{zhangyan, zl4j, jlach, skadron, mircea}@virginia.edu

ABSTRACT
This paper presents an optimal procrastinating voltage scheduling
(OP-DVS) for hard real-time systems using stochastic workload
information. Algorithms are presented for both single-task and
multi-task workloads. Offline calculations provide real-time
guarantees for worst-case execution, and online scheduling
reclaims slack time and schedules tasks accordingly. The OP-
DVS algorithm is provably optimal in terms of energy
minimization with no deadline misses. Simulation results show up
to 30% energy savings for single-task workloads and 74% for
multi-task workloads compared to using a constant worst-case
execution voltage. The complexity of the algorithm for multi-task
workloads is linear to the number of tasks involved.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling; D.4.7 [Organization
and Design]: Real-time systems and embedded systems

General Terms
Algorithms, Management, Experimentation.

Keywords
Power Management, Dynamic Voltage Scaling, Real-time
Scheduling, Optimization Algorithm.

1. INTRODUCTION
In modern VLSI system design, power consumption is one of the
most important design constraints. It is especially critical for
portable systems due to their limited battery capacity. Meanwhile,
mobile processors are becoming more advanced and powerful but
this leads to more energy consumption. Thus, the tradeoff
between performance and battery life remains critically important.
Applications that do not work under hard performance constraints
can effectively use dynamic voltage scaling (DVS) to reduce
energy consumption when desired or necessary, but applications
with hard real-time deadlines must work under strict voltage
scaling constraints. However, for such hard real-time systems, if a
given task’s required performance is lower than the system’s
maximum performance, the clock speed and its corresponding

supply voltage can be reduced to the lowest possible level while
still meeting the task’s deadline.
Significant research and development efforts have been expended
on DVS [1,2,3,]. Most of the previously published DVS
algorithms use the minimum voltage and frequency allowable for
worst-case execution to minimize energy consumption. As
pointed out in [4,5,6,7], the optimal DVS approach for
minimizing energy when the task’s execution time is unknown is
to “procrastinate,” i.e. increase the speed as the task progresses.
In this paper, we propose an optimal procrastinating DVS
algorithm (OP-DVS) for frame-based, hard real-time applications,
with the objective of minimizing energy consumption. The
proposed algorithm utilizes information about the task execution-
time distribution (obtained by profiling similar recently executed
tasks), and procrastinates voltage increases as much as possible to
minimize unnecessary energy expenditure. Unlike algorithms
proposed in [4,5,6,7], we not only consider the single-task
scenario but also take into account scenarios with multiple tasks.
There are several papers that have proposed DVS algorithms for
similar frame-based multiple tasks [8,9,10]. However, [8,10] only
change the order of the tasks to reduce energy, and [9] uses a
constant voltage and frequency for each task. In this paper, we
show mathematically that our OP-DVS algorithm can achieve
global energy minimization for frame-based multiple tasks with
known task execution time distributions.

2. SINGLE-TASK OP-DVS
2.1 System Model
We first introduce our application model, on which the OP-DVS
algorithm is based. Consider a periodic multimedia task that has
hard deadlines that are equal to the period. For a single-task
scenario, we only schedule one task per period, and no task can be
scheduled before the current task’s period has expired. As pointed
out in [6], although multimedia applications’ instantaneous CPU
demands vary greatly, the probability distribution of their cycle
demands is stable or changes slowly and smoothly. This
observation makes it possible to schedule the task based on its
workload distribution.
Initially we assume that the processor can attain any speed
between fmin and fmax. Since in most real systems only a certain
number of frequency and voltage settings can be chosen, later on
we modify our algorithm to accommodate any set of discrete
voltage/frequency settings. Given that the time to switch from one
frequency to another is in the microseconds range, and that the
execution time for tasks is normally in the milliseconds range, we
decided to ignore the frequency switching time.
If the threshold voltage VTH is small enough compared to the
supply voltage V, the relationship between the clock frequency f

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2005, June 13 - 17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 $5.00.

905

53.4

and the supply voltage V can be approximated as 1−⋅≈ αVKf ,
where K is a system constant and α is the velocity saturation
factor, which varies from 1 to 2. For the sake of simplicity, in the
rest of this paper we assume α=2, but the calculations remain
valid for other values of α. The dynamic energy e is directly
proportional to the square of the supply voltage: e~V2 [5].

2.2 Single-Task OP-DVS Algorithm
We now describe our Single-Task OP-DVS algorithm. We
assume that the workload distribution for a task S has been
“binned” in ascending order in terms of number of clock cycles
{c1,c2,c3,…,ck} and their associated probabilities {p1,p2,p3,…,pk}.
Our OP-DVS algorithm will calculate a set of scheduling voltages
V(S)={V1,V2,…,Vk} that are based on the workload distribution of
task S and deadline T. During runtime, we select different
operating voltages and corresponding clock frequencies as the
execution of task S progresses. We formulate OP-DVS as a
constrained optimization problem as follows.
Find a set of scheduling voltage V(S)={V1,V2,…,Vk}
Minimize:

2 2 2
1 1 1 2 1 1 2 1 2

2 2 2
1 1 2 1 1 1

(()) (()) ...

(() ... ())k k k k

e V S p c V p c V c c V

p c V c c V c c V−

= + + − + +

+ − + + −
 (1)

Subject to:

T
KV

cc
KV

cc
KV

cc
KV
c

k

kk =
−

++
−

+−+ −1

3

23

2

12

1

1 ... (2)

By solving the above optimization problem, we obtain:

()() ()

KT

pccpccc
V

k

i
ikk

3/11

1
1

3/1
1121

1

1...1

−−++−−+

=
∑

−

=
−

 (3)

3/1

1

1

1

1

1

−
=

∑
−

=

j

i
i

j

p
VV j=2,…,k (4)

Using the optimal V(S), we can get the expected energy as
follows:

()() ()

22

33/11

1
1

3/1
1121 1...1

))((
TK

pccpccc

SVe

k

i
ikk

−−++−−+

=

∑
−

=
−

 (5)

One important observation is that V1,V2,…,Vk are in ascending
order. Thus, optimal voltage scheduling is to begin executing a
task at a low voltage and gradually increase it as the task
progresses. Another important observation is that given a
workload distribution for task S, V(S) is proportional to 1/T. For a
different deadline T, we only need to scale V(S) accordingly.
We consider realistic bounds on the voltage and force the the
supply voltage to be always in the range [Vmin, Vmax]. If V1<Vmin,
we just set V1=Vmin and calculate the rest of the period as a new
deadline T’. Using this new deadline, we can reschedule the rest
of the workloads. If Vi>Vmax, we use a similar method: set
Vk=Vmax and calculate the rest of period as a new deadline;
reschedule the rest of workloads using this new deadline.

If only a finite set of discrete voltage/frequency are available, we
just round up the voltage scheduling and ensure the deadline is
never missed. The optimal number of “bins” k for the workload
distribution is related to the number of available discrete
voltage/frequency settings but we do not explore this relationship.
All of the above calculations are done offline. At runtime, since a
task may finish before its worst-case execution time, we can set
the processor to a low power mode for the rest of period. Figure 1
shows the proposed OP-DVS algorithm for a single task.

Offline:
1.Given task S, deadline T, workload distribution {c1,c2,c3,…,ck}
and corresponding probability {p1,p2,p3,…,pk}.
2.Calculate optimal schedule V(S)={V1,V2,…,Vk} using equations
(3) and (4).
Online:
3.Initial_voltage_frequency(S): V=V1 , f=KV1.
4.On number of clock cycles finished equal to ci-1, change
voltage and frequency to: V=Vi , f=KVi , i=2,…,k
5.Upon task_finish: set processor to low power mode until T
6.Back to Step3 for next task.

Figure 1. Single-Task OP-DVS algorithm.
The above discussion considers scheduling only one task per
period. In the next section, we discuss multi-task workloads and
propose two modified OP-DVS algorithms for reducing energy.

3. MULTI-TASK OP-DVS
3.1 System Model
We examine the frame-based multi-task model introduced in
[8,9]. There are n tasks per period, all available at time zero. The
task set is denoted by S={Sn,Sn-1,…,S1}. All tasks in a frame have
an identical deadline that is equal to their period. The mutual
deadline/period (frame length) for n tasks is denoted by T. We
also assume that the execution of tasks has been ordered so that Sn
is the first task to be executed and S1 is the last. Each task may
have its own workload distribution, denoted as {c1,c2,c3,…,ck}m
and corresponding probabilities {p1,p2,p3,…,pk}m, m=n,n-1,…,1.
One obvious application of this frame-based task model is
decoding MPEG video. Each frame in that case involves a series
of steps: entropy decoding, IDCT (inverse discrete cosine
transform), motion compensation, and dithering.

3.2 Local OP-DVS Algorithm
In the Local OP-DVS algorithm, we extend the single-task OP-
DVS in a straightforward way. First, we assign time budgets
(deadlines) for each task in the frame based on the task’s average
workload length. At runtime, the tasks to be executed can utilize
the slack time due to early termination of previous tasks.
Local OP-DVS provides a simple and effective solution to
schedule multiple tasks for energy efficiency. However since it
doesn’t consider the interaction between different tasks in the
frame, as explained next, the solution is not globally optimal.

3.3 Global OP-DVS Algorithm
Before we detail our Global OP-DVS algorithm, let’s have a look
at one simple example. Assume we have two tasks, S1 and S2, to
be executed sequentially and having a mutual deadline (T=4.7).
Both tasks have the same distribution of execution cycles; for

906

example, each task has only two possible execution times, c1=1
and c2=2, with a probability of 0.6 and 0.4, respectively.

Figure 2. Voltage/frequency scheduling for two tasks with a
mutual deadline using Local OP-DVS.

Figure 2 shows how the tasks are scheduled using the Local OP-
DVS. We assign half of the deadline to each task as its time
budget. For each task, we apply Single-Task OP-DVS algorithm,
and two voltage levels are assigned for each task. At run-time, S1
will finish earlier than worst-case with probability of 0.6, and S2
can be re-scheduled based on its newly extended time budget.
With another probability of 0.4, S1 will use its entire time budget
and S2 will be scheduled in the same way as that in the offline
schedule. We obtain e(S1,S2,T)=1.608 by using Local OP-DVS.

Figure 3. Optimal voltage/frequency scheduling for two tasks

with a common deadline using Global OP-DVS algorithm.
An optimal voltage scheduling is shown in Figure 3 using Global
OP-DVS which leads to an improved e(S1,S2,T)=1.53. Notice that,
compared with the schedule shown in Figure 2, the offline
scheduling in the optimal solution does not let the two tasks share
the global deadline evenly, even though the two tasks have
exactly the same distribution in their execution time.
We derive our Global OP-DVS algorithm as follows. Examining
equation (5), which is the calculation of minimum expected
energy e for a single task, we can find that for a given workload
distribution, eT2 is a constant.
Theorem: Given task set S={Sn,Sn-1,…,S1}, their workload
distributions {c1,c2,c3,…,ck}m, {p1,p2,p3,…,pk}m (m=n-1,n-2,…,1)
and mutual deadline T, eT2 is a constant determined only by the
workload distributions, where e is the minimum expected energy
to execute these n tasks.
This theorem can be proved by induction.
When n=1, it becomes the single-task case and the claim is
obvious as shown in equation (5). We denote the minimum energy

e as e(1) and the constant as A(1) for n=1. We can re-write
equation (9) as follows.
Assuming that for n-1 tasks, our claim is true, we denote the
minimum expected energy e for optimal scheduling V(Sn-1),V(Sn-

2),…,V(S1) as e(n-1) and the constant as A(n-1). Thus we have e(n-
1)T2=A(n-1). We can then prove that our claim is also true for n
tasks. (The detailed derivation is omitted for space.)
The general equations for optimal schedule V(Sn)={Vj, j=1,2,…,k}
can then be written as follows:

jj U
T
WV ⋅=

0
,

1/3(1)A nW
K

− =

 (6)

0
11 2 1

1 2

11 ... k k
k

TT
c cc c c

K WU WU WU
−

=
 −−+ + + +

,

3/1
3/1

1

3
13

1

1

1

211

1

...1

⋅+

 −
++−+−+

=

∑
∑

=

+=
+

+

+

−

−−−

k

ji
i

k

ji
ij

j

jj

k

kkkk

j
j

p
pU

WU
cc

WU
cc

W
cc

p
U

j=1,2,…,k-1 and Uk=1
The optimal voltage schedule can be calculated offline according
to equation (6). Online scheduling is done by scaling the offline
schedule V(S). Figure 4 shows the Global OP-DVS algorithm for
frame-based task sets.

Offline:
1.Given task set S={Sn,Sn-1,…,S1}, workload distribution for each
task {c1,c2,c3,…,ck}m ,{p1,p2,p3,…,pk}m, m=n,n-1,…,1, and mutual
deadline T.
2.Schedule(S1): calculate V(S1) using Single-Task OP-DVS
algorithm under deadline T and obtain constant A(1).
3.Schedule(S2,A(1)): calculate V(S2) using equation (6) under
deadline T and obtain constant A(2).
4.Repeat until V(Sn) and A(n) are obtained.
Online:
5.Execute first task Sn using voltage schedule V(S n).
6.Upon Sn is finished: V(Sn-1)=V(Sn-1)*T/(T-t(Sn))
7.Repeat until all tasks in the frame are finished.
8.Set processor to low power mode until T.
9.Back to Step5 for next frame.

Figure 4. Global OP-DVS for frame-based task sets.
For discrete voltage/frequency settings, we use a similar round-up
method as that used in the single-task scenario.

4. SIMULATION RESULTS
Simulation results were obtained for OP-DVS under both the
single-task and multi-task scenarios.

4.1 Single-Task OP-DVS
The baseline result for single-task DVS is for the approach of
using the worst-case voltage Vwc, which is equal to ck/(KT). Figure
5 shows the energy savings of Single-Task OP-DVS compared
with the execution at Vwc. The first four benchmarks are Gaussian,
Uniform, Exponential Decreasing (EXP(-)), and Exponential

T

V/f S1 S2

V/f
 S1 S2

V/f

T

 S1 S2

(a)

(b)

(c)

Pr=0.6

Pr=0.4
T/2

T T/2

T/2

TT/2

V/f
 S1 S2

(b)

Pr=0.6

Pr=0.4

T T/2

V/f
 S1 S2

(c)
V/f

T

 S1 S2

(a)

T/2

907

Increasing (EXP(+)) workload distributions, respectively. The last
benchmark (MPEG) is the workload using mpegplay to decode an
MPEG-1 video stream.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Gaussian Uniform EXP(-) EXP(+) Mpeg

En
er

gy
 S

av
in

g

Single OP-DVS Single OP-DVS with discrete voltage/frequency

Figure 5. Energy savings provided by Single-Task OP-DVS.

From the simulation, we observe energy savings of up to 30%
with Single-Task OP-DVS. We notice that when the workload
distribution is EXP(-), OP-DVS provides the smallest energy
savings, as tasks have a higher probability of finishing near the
worst-case execution time. For systems with discrete
voltage/frequency settings (0.8V-2.5V, step size of 25mV), there
are slightly smaller savings than for continuous ranges. Coarser
ranges will lead to even less savings.

4.2 Multi-Task OP-DVS
Figure 6 shows the energy savings obtained from using Local and
Global Multi-Task OP-DVS compared with a constant Vwc. These
results assume that each frame contains five tasks. In the
Gaussian, Uniform, EXP(-), EXP(+), and MPEG benchmarks, all
tasks in each frame have the same workload distribution.
From the results shown in Figure 6, we can see that Global OP-
DVS achieve as high as 74% energy savings over Vwc. Even with
discrete voltage/frequency settings, we still obtain very good
energy savings. Furthermore, Global OP-DVS outperforms Local
OP-DVS for every benchmark. Therefore, we draw the conclusion
that interactions between tasks within a frame have to be taken
into account in order to achieve global energy minimization.

5. CONCLUSION
This paper presents an optimal procrastinating DVS (OP-DVS)
algorithm for hard real-time tasks with known execution time
distributions, with the objective of minimizing energy
consumption. For a single task, the Single-Task OP-DVS
algorithm reduces energy consumption by gradually increasing
the supply voltage and operating frequency until the task is
completed while guaranteeing that the deadline is met. Simulation
results show Single-Task OP-DVS achieves up to 30% energy
savings over execution at the worst-case voltage.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

ALL
Gaussian

ALL Uniform ALL EXP(-) ALL EXP(+) Mpeg

E
ne

rg
y

S
av

in
g

Local OP-DVS
Local OP-DVS with discrete voltage/frequency
Global OP-DVS
Global OP-DVS with discrete voltage/freqency

Figure 6. Energy savings provided by multi-task OP-DVS.

For frame-based multiple tasks, Local OP-DVS and Global OP-
DVS were presented. Local OP-DVS is an extension of Single-
Task OP-DVS that utilizes the slack time from adjacent tasks.
Global OP-DVS provides further energy reduction by taking into
account the interactions of tasks within each frame. Global OP-
DVS was mathematically proven to achieve global energy
optimization for frame-based task sets, and simulation results
show that it can reduce energy consumption up to 74% compared
to execution at the worst-case voltage.

REFERENCES
[1] D. Grunwald, et al. Policies for Dynamic Clock Scheduling. In Proc.

of the 4th Symposium on OSDI, 2000.

[2] Y-H. Lee and C. Krishna. Voltage-Clock Scaling for Low Power
Energy Consumption in Real-Time Embedded Systems. In Proc. of
the 6th Intl. Conference RTCSA, 1999.

[3] T. Pering, T. Burd, and R. Brodersen. Voltage Scheduling in the
lpARM Microprocessor System. In Proc. of ISLPED, 2000.

[4] J. R. Lorch and A.J. Smith. PACE: A New Approach to Dynamic
Voltage Scaling. IEEE Tran. on Computers, July 2004.

[5] F. Gruian. Hard Real-Time Scheduling for Low-Energy Using
Stochastic Data and DVS Processors. In Proc. of ISLPED, 2001.

[6] W. Yuan and K. Nahrstedt. Energy-Efficient Soft Real-Time CPU
Scheduling for Mobile Multimedia Systems. In Proc. of SOSP, 2003.

[7] D. Roychowdhury, I. Koren, C. M. Krishna, Y.H.Lee. A voltage
scheduling heuristic for real-time task graphs. In Proc. of Intl. Conf.
On Dependable Systems and Networks, June 2003.

[8] F. Gruian and K. Krzysztof. Uncertainty-Based Scheduling: Energy-
Efficient Ordering for Tasks with Variable Execution Time. In Proc.
of ISLPED, 2003.

[9] C. Rusu, et al. Maximizing the System Value while Satisfying Time
and Energy Constraints. In Proc. RTSS'02, 2002.

[10] L. Leung, C. Tsui, and W. Ki, Minimizing Energy Consumption of
Hard Real-Time Systems with Simultaneous Tasks Scheduling and
Voltage Assignment using Statistical Data, ASP-DAC, 2004.

908

