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“Cache decay” is a set of leakage-reduction mechanisms that put cache lines that have not been
accessed for a specific duration into a low-leakage standby mode. This duration is called the de-
cay interval, and its optimal value varies across applications. This paper describes an adaptation
technique that analytically finds the optimal decay interval through profiling, and shows that the
most important variables required for finding the optimal decay interval can be estimated with
a reasonable degree of accuracy using profiling. This work explicitly trades off the leakage power
saved in putting both the “live” and “dead” lines into standby mode, against its performance and
energy costs. It achieves energy savings close to what can be obtained with an omniscient choice of
per-benchmark optimal decay interval.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memories;
C.1.4 [Processor Architectures]: Parallel Architecture—Mobile processors

General Terms: Algorithms, Design, Performance
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1. INTRODUCTION

Energy efficiency has become a first-class design constraint as a way to improve
battery life in mobile and embedded devices and as a way to reduce operating
costs in desktop and server systems. Active or “switching” power has been the
dominant part of processor power. However, as process technology and thresh-
old voltages scale, static or “leakage” power has grown in importance, growing
exponentially [SIA 2001] and possibly approaching 50% of total power dissi-
pation within the next two or three technology generations. Since L1 caches
form a significant portion of processor power (about 15–20%), there has been
a focus on techniques that reduce their leakage power by shutting down idle
cache lines.

Cache decay [Kaxiras et al. 2001] is one such technique that shuts down
infrequently accessed cache lines to save leakage power. Once a new line is
brought into a cache, it typically gets accessed many times due to the locality
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of the program. After the last access, it remains in the cache until another new
line replaces it. During the time after its last access and before eviction, it idles
in the cache, dissipating leakage power. The time between the arrival of the
cache line or the beginning of a new generation and the last access to it is called
the live time of the generation. The time between two successive accesses to the
same line is called an access interval of the generation. The idle period before
eviction is called the dead time of the generation. Cache decay identifies these
dead times and switches the lines into standby mode by gating off their power
supply (Vdd)—hence saving the leakage power that would have been dissipated
during those dead times.

Cache decay typically uses counters to measure the last time a cache line
was accessed. If the duration since the last access is greater than a partic-
ular threshold, the line is assumed to be dead and is put into standby. This
threshold used to distinguish between live versus dead lines is called the de-
cay interval. If the decay interval is too small, many live lines will be put into
standby. Because gating the Vdd or ground [Yang et al. 2001] results in loss of
cache state, shutting down live lines leads to extra, induced misses to the next-
level cache, which slows the program down. Moreover, these extra misses lead
to additional dynamic energy dissipation in the processor through extra execu-
tion time and also the energy cost of refetching the lines. On the other hand,
if the decay interval is too large, very few dead lines will be put into standby,
hence dissipating unnecessary leakage power. Kaxiras et al. found that the ac-
cess intervals in programs were much shorter than the dead times, thereby
providing a convenient demarcation point for the decay interval. They used a
“competitive algorithm” analysis to obtain a universal decay interval value of
8K cycles. However, the optimal value of the decay interval varies across appli-
cations and across program phases within an application. Decay-based leakage
saving techniques should adapt the decay interval to the value optimal to the
particular application’s behavior. This paper uses profiling and offline analy-
sis to determine the optimal value of the decay interval on a per-application
granularity for maximizing energy savings.

Such an adaptation is much less important for state-preserving techniques
like drowsy cache [Flautner et al. 2002], but recent work has suggested that L1
cache decay using gated-Vdd is more energy-efficient and has less performance
cost for the latencies seen with on-chip L2 caches [Li et al. 2004]. The energy
and performance advantage of gated-Vdd is likely to be even better than that
suggested by Li et al., because it did not account for the energy and performance
cost of replay traps that drowsy-cache “slow hits” would incur, a problem that is
not present for gated-Vdd. Hence, this work focuses on decay interval adaptation
for gated-Vdd.

1.1 Related Work

Cache power optimization by dynamic resizing is a well-researched area
and has given rise to many techniques that save dynamic [Albonesi 1999]
and static power [Kaxiras et al. 2001]. Kaxiras et al.’s work improves upon
a coarser-granularity work [Yang et al. 2001] on instruction caches, which
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shuts down groups of I-cache lines. Both these techniques use the gated-Vdd
technique. Other state-preserving alternatives to gated-Vdd like reverse body
bias [Kobayashi and Sakurai 1994; Nii et al. 1998] and drowsy caches [Flautner
et al. 2002] have been proposed, but may be inferior for L1 caches that are
backed by fast, on-chip L2 caches [Li et al. 2004]. Our work is mainly based
on cache decay that uses gated-Vdd. Although the benefit is greatest for non-
state-preserving techniques, time-based decay using any of these techniques
involves a decay interval and hence our method can be applied to all the above
techniques.

Adaptation of decay interval according to the application behavior has been
looked at by Kaxiras et al. [2001], Zhou et al. [2003], and Velusamy et al. [2002].
Kaxiras et al. use a per-line adaptation scheme that adapts the decay interval
of each line according to the time at which a miss occurs after shutting down
a line. Zhou et al.’s Adaptive Mode Control (AMC) and Velusamy et al.’s Inte-
gral Miss Controller (IMC) are global schemes, which adapt the decay interval
at the granularity of the whole cache. They keep the tag array always pow-
ered on to measure the application’s true behavior without decay. AMC adapts
the decay interval by making the application’s decay behavior track its true
nondecay behavior while IMC uses formal feedback control to enforce a limit
on the performance degradation. While all these techniques indirectly exploit
shutting down both live and dead lines to save leakage power, the performance
versus energy trade-off is not made explicit by them. For IMC and AMC, it lies
hidden under the tunable parameters of the schemes (set-point for IMC and
performance factor (PF) for AMC). For per-line adaptive decay, it depends on
the choice of its decay interval. Furthermore, IMC and AMC also suffer from the
difficulty in tuning these parameters according to application behavior. In this
paper, we compare our work to each of the above adaptation techniques.

1.2 Terminology

Since this work is based on cache decay, it is useful to first state the common
terminology used in decay-based leakage saving policies. The energy saved in
decay schemes is dependent on four main variables:

(1) The turn-off ratio (tor), which is the fraction of time spent by the cache
lines in the low-leakage standby mode. This is the measure of the fraction
of cache leakage power saved. Lower decay intervals lead to higher turn-off
ratios and vice versa. It is to be noted that higher turn-off ratios do not
always translate into higher energy savings because they could come at a
cost of increased performance loss or increased energy dissipation due to
extra misses to the lower level.

(2) The dynamic energy cost incurred in going to a farther cache due to turning
off live lines. This consists of two parts:
(a) An extra induced miss (im) resulting on the next access to a live line

that has been turned off.
(b) When a live line is turned off, it could have been dirty and could have

resulted in a write-back. If this write-back is an extra write-back, which
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was not present in the default program behavior without decay, it is
called an induced write-back (iwb). (It is to be noted that write-backs
that occur during the decay of a live line need not always be induced.
They could also be eager write-backs [Lee et al. 2000] that are just
happening ahead of time.)

(3) The energy overhead due to any additional hardware used to implement
the decay policies. In case of constant cache decay [Kaxiras et al. 2001],
this is due to the counters used to measure the time of last access. In case
of the adaptive decay policies IMC [Velusamy et al. 2002] and AMC [Zhou
et al. 2003], this additionally includes the energy of keeping the cache tags
on for measuring the im.

(4) The energy cost of performance degradation. Since the program runs longer,
additional energy is spent during these extra cycles the program takes to
complete. Since the same computation is performed in the program with
or without decay, this energy could either be idling energy (where the pro-
cessor does not perform any useful computation) or recomputation energy
(where the processor repeats some of the original computation due to re-
duced IPC because of pipeline stalls). Energy spent in the clock network
and leakage energy in the whole processor constitute this idling energy,
while energy spent in the bypass network, issue logic, queues, and so on
due to pipeline stalls constitutes the recomputation energy.

1.3 Contributions

This paper provides a profile-based technique for decay interval adaptation that
chooses the optimal decay interval through offline analysis. We find that most
of the variables mentioned above, which determine the energy saved due to
decay, can be estimated with a reasonable degree of accuracy through profiling.
Furthermore, this work explicitly considers the energy versus delay trade-off
of shutting down live lines. It performs almost as well as an “energy optimal”
omniscient choice of per-benchmark individual-best decay interval. A similar
framework should be easy to apply to other cache-like structures like the L1
I-cache, L2 cache, branch-prediction structures, trace cache, value predictor,
and so on.

The remainder of the paper is organized as follows: Section 2 presents the
motivation behind our work, Section 3 describes our estimation technique,
Section 4 describes our evaluation framework, Section 5 discusses the results,
and Section 6 concludes the paper.

2. MOTIVATION

Variability. The optimal decay interval for an application depends on the
nature of its memory accesses. As application behavior varies, the optimal de-
cay interval also varies. Table I shows a sample of this variability for three
SPEC2000 benchmarks. Two of these three benchmarks (art and eon) form
the extreme cases in our study and the third (twolf) is one of the applications
with “close-to-average” behavior. The first column of the table shows statistics
about access intervals. The second column shows statistics about dead times.
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Table I. Access Interval, Dead Time, Ideal Turn-off Ratio, and Best Decay Interval
Statistics for a Subset of SPEC2000 Benchmarks

Access Interval Dead Time
(cycles) (cycles) Ideal tor Best Interval

avg stdev max avg stdev max (%) (cycles)
art 13 27 4K 4K 6K 42K 99.02 256
twolf 254 2K 298K 29K 23K 447K 87.21 4K
eon 751 100K 363M 66K 1.8M 462M 10.93 16K

Variability across applications is evident in both cases. Further, not only are the
means different, so are the standard deviations—that is, the variability within
applications is also different. The last column shows the optimal decay interval
that we find in terms of energy savings. Since the applications vary so much
in their memory behavior, the optimal decay interval also varies. This suggests
that there is room for adaptation in cache decay.

Live lines. The penultimate column of Table I also shows something more
interesting. It shows the dead time as a fraction of total time in these applica-
tions. Since this is the highest turn-off ratio (tor) that can be obtained by putting
only the dead lines into standby, it is called “ideal tor.” This value is very high
for “art” and “twolf” indicating that in these applications, most of the benefit
in leakage savings can be reaped by turning off dead lines. However, in “eon,”
the case is different: dead times contribute only to 11% of the total time. We
also observe that, of the remaining 88% live time, more than 15% comes from
access intervals that are greater than 1M cycles. However, these access inter-
vals only form an infinitesimal (0.008%) portion of the total number of accesses.
This means that the time contribution of these live lines is very high (because
they are long) in spite of their occurring very infrequently. Turning off such live
lines benefits us in two ways: First, it saves a large amount of leakage energy
as the lines stay off for the entire long duration of the access interval. Second, it
leads to very little performance loss because of its infrequent occurrence. This
indicates that, by explicitly considering the trade-off of shutting down live lines
against the possible performance loss, we might potentially be able to obtain
energy savings higher than otherwise.

The above two observations suggest that there is potential for an adaptive
technique that explicitly considers the trade-off of putting live lines into standby
mode. In order to consider such a trade-off, we take the approach of analytically
deriving the variables that determine the energy savings from the access and
dead time data obtained through profiling. Once these variables have been
estimated, the choice of the best decay interval is simple. It is that decay interval
corresponding to the variables that result in the maximum energy savings. We
find that such a profile-based scheme performs almost equal to an omniscient
selection of the individual-best decay interval.

3. METHODOLOGY

This section outlines the profile-based estimation technique used to choose the
optimal decay interval. More details can be found in the technical report version
of this paper [Sankaranarayanan and Skadron 2004].
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3.1 Normalized Leakage Savings

Among the four variables mentioned in Section 1.2, which the energy saved in
cache decay depends on, the energy due to overhead hardware has been shown
to be negligible [Kaxiras et al. 2001] and hence can be omitted. However, it can-
not be omitted for AMC or IMC, since the tag array dissipates a nonnegligible
fraction of the total cache power. Moreover, assuming ideal clock gating and
neglibible recomputation energy, the energy cost of performance degradation is
primarily idling energy due to leakage in the rest of the processor.

In order to express the energy savings in a normalized fashion, we take the
same approach as Kaxiras et al. We express the energy savings due to decay as
a ratio of baseline cache leakage energy. This leads to the following expression
for the normalized cache leakage savings (esav):

esav = tor−l2 ratio×(im per cycle+iwb per cycle)−idle ratio×perc slowdown
(1)

In the above expression, l2 ratio is the ratio of the dynamic energy of an L2
access per cycle to the L1 D-cache leakage energy per cycle. We use a value of
10 for this, which is the same as in Kaxiras et al. [2001]. perc slowdown is the
ratio of the difference in running times with and without decay to the baseline
running time. idle ratio is the ratio of the idling energy spent in the whole of
the processor per cycle to the cache leakage energy per cycle. In other words,
Equation (1) just says that the net energy savings due to cache decay is the
difference between the leakage energy saved due to putting lines into standby
mode and the dynamic energy cost of the decay process (which mainly occurs
in the form of extra accesses to the lower level cache and the extra execution
time of the program).

In order to determine the value of idle ratio, we use the Wattch 1.02 power
simulator [Brooks et al. 2000] to first find the ratio of the L1 D-cache power
to the total CPU power for a cache configuration that closely resembles Alpha
21364. We use Wattch’s linear scaling model for technology parameters and
obtain 0.13µ numbers for Vdd =1.3 V at a clock speed of 3 GHz. This ratio turns
out to be 10.6%. We assume that this ratio holds good also for leakage power.
Furthermore, assuming the rest of the processor is not using any decay policy,
and using the average leakage savings value of 75% from Kaxiras et al. [2001],
idle ratio can be found to be (100 − 10.6 × 0.75)/10.6 = 8.7. Including the effect
of nonideal clock gating and recomputation energy spent in pipeline stalls will
slightly increase this value. So, we use a value of 10 for idle ratio. It is to be
noted that these constants, while affecting the energy savings number, do not
affect the estimation method itself.

3.2 Estimation of Variables

Equation (1) shows the relationship of normalized leakage energy savings to
the four variables, namely, tor, im per cycle, iwb per cycle, and perc slowdown.
Our goal is to obtain expressions for each of these variables as a function of the
decay interval. Let us suppose that the frequency distributions of the access
intervals and the dead times are available for all the decay intervals t1 · · · tn
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that we are interested in. This is not an unreasonable assumption because we
could obtain it through profiling for the discrete set of decay intervals we are
interested in. Note that like Kaxiras et al., we assume decay intervals to be
successive powers of two.

Let us begin with im per cycle. Induced misses are those accesses to a par-
ticular live cache line whose interoccurrence time is greater than the decay
interval. Then and only then, cache decay would have wrongly identified those
live lines as dead lines. If a(ti) denotes the number of access intervals that lie
between ti and ti+1 (i.e., the function a is the frequency histogram of the access
intervals), then the total number of access intervals that are greater than or
equal to ti is given by

∑n
j=i a(t j ). Let this be denoted by A(ti). Hence, if ti is

the decay interval we are interested in, then the number of induced misses
corresponding to that is given by

im(ti) = A(ti) =
n∑

j=i

a(t j ) (2)

Now, let us obtain an expression for the number of decayed lines correspond-
ing to a specific decay interval. The lines put into standby in cache decay can
either be live lines or dead lines. Live lines lead to induced misses and leakage
savings while dead lines lead only to leakage energy savings. If d (ti) denotes
the number of dead times that lie between ti and ti+1, similar to the num-
ber of induced misses, the number of dead lines that are closed down is given
by

∑n
j=i d (t j ). Let this be called D(ti). Hence, the number of decayed lines is

A(ti) + D(ti). Of those decayed lines, induced misses are the erroneous predic-
tions of dead lines. Thus, the misprediction rate of the decay mechanism in
identifying the dead lines is given by A(ti )

A(ti )+D(ti )
.

In order to find an expression for iwb, let us consider the number of access
intervals that lie between ti and ti+1 such that the cache line corresponding
to that interval is dirty at the beginning of the interval. We shall denote it
by a′(ti). Similarly, let d ′(ti) be the number of dead times that begin with a
dirty line. Then, if A′(ti) = ∑n

j=i a′(t j ) and if D′(ti) = ∑n
j=i d ′(t j ), It can be seen

that the number of dirty lines that were put into standby mode is given by
A′(ti) + D′(ti). Out of these, induced write-backs are the mispredictions. Hence,
with a reasonable degree of approximation, iwb can be obtained by multiplying
this by the misprediction rate. that is,

iwb(ti) = A(ti)
A(ti) + D(ti)

(A′(ti) + D′(ti)) (3)

This equation is approximate because it does not account for eager write-backs.
We will show later that in spite of such approximations, our estimation method
is able to obtain the values of the variables with a reasonable degree of accuracy.

The next important variable to be estimated is the turn-off ratio tor. It is
determined by the time spent both by the live and dead cache lines in the
standby mode. Assuming a uniform distribution of the dead times and ac-
cess intervals between ti and ti+1, the expected value of the time scale—the
midpoint, lies at the geometric mean of the end points of the range (ti and ti+1).
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We take the geometric mean here instead of the arithmetic mean because of
our exponential scale of decay intervals, which are successive powers of two.
The value of this geometric mean is ti

√
2. Hence, the average time contribution

of the access intervals between ti and ti+1 is a(ti) × ti × √
2. The total live time

contribution of all access intervals greater than or equal to ti is
∑n

j=i t j a(t j )
√

2.
Since cache decay closes down only those lines which have not been accessed
for the duration of the decay interval, the standby time contribution due to live
lines includes only the access intervals greater than the decay interval. Hence,
if we denote

∑n
j=i t j a(t j ) by AT(ti), then the total standby time contribution due

to switching live lines into standby mode is given by AT(ti)
√

2. Similarly, if we
denote

∑n
j=i t j d (t j ) by DT(ti), then the total standby time contribution due to

switching off dead lines is given by DT(ti)
√

2. However, we have not considered
the cost of waiting for a period equal to the decay interval before switching
the lines into standby mode. This total waiting time is given by the product
of the decay interval and the number of lines decayed, that is, ti(A(ti) + D(ti)).
Putting all this together, the total standby time for a decay interval ti is given
by (AT(ti) + DT(ti))

√
2 − ti(A(ti) + D(ti)). This standby time is for all lines in

the cache. Hence, the standby time per cache line is obtained by dividing this
value by the number of lines in the cache, n lines. The ratio of this standby time
per line to the total running time of the program in cycles (n cycles) gives the
turn-off ratio. that is,

tor(ti) = (AT(ti) + DT(ti))
√

2 − ti(A(ti) + D(ti))
n lines × n cycles

(4)

The above equation is accurate under the assumption that the access intervals
and dead times are uniformly distributed in the interval ti to ti+1. Otherwise,
the mean of the distribution will not lie at the geometric mean of the extremi-
ties of the range. In order to deal with this skewness in the distribution within
an interval, we take a heuristic approach. We assume that the distribution is
identical across all ranges. Hence, its mean will lie at a constant distance from
the geometric mean of the range. Thus, the mean of the distribution can be
obtained by multiplying the geometric mean of the extremities by a constant
multiplicative factor. The factor is multiplicative and not additive because of
the exponential scale of our time range. In order to find the value of this multi-
plicative factor, we make use of the fact that tor(0) = 1 (if the decay interval is
zero, then the cache is never powered on). We substitute ti = 0 in Equation (4).
If the distribution is uniform, the right side of the equation should be equal
to 1. Otherwise, it will be off by a constant factor. This factor is the corrective
term that is used to multiply the

√
2 term in Equation (4). In our estimation

method, we use Equation (4) with the correction described above to deal with
the skewed distribution within an interval.

From the equations above (especially (4) for tor), it can be observed that
there is an explicit consideration of closing down of live lines. So, the above
estimation could, for instance, result in an explicit quantitative choice that, for
a particular application, in spite of some performance loss, it is beneficial in
terms of energy optimization to shut down live lines. Hence, this makes the
energy versus performance trade-off more explicit and visible.
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The fourth and final variable in the esav equation is the performance degra-
dation. This is because of the induced misses and hence depends on im per cycle.
Actually, it is the product of im per cycle and the average latency to fetch from
the lower level. This effective latency is much less than the nominal access la-
tency to the lower level: most of the access latency is hidden by the instruction-
level parallelism available in the program. Moreover, out-of-order superscalar
issue, speculation and nonblocking caches make this effective latency variable.
The effective latency also depends on the criticality of the loads that access the
live lines that are turned off. Since there are many complex factors involved,
we have so far been unable to come up with an analytical expression for the
effective latency as a function of the decay interval. In order to make a rea-
sonable estimate of this variable, we observed the performance degradation in
going from a perfect L1 data cache to a normal data cache for all the SPEC2000
benchmarks. The extra cycles were divided by the number of L1 data cache
misses to obtain the various effective latencies. Averaging them across the in-
teger benchmarks gave a value of about 2 cycles. The floating-point average
was about 0.2 cycles. We use these constants as the estimates for the effective
latency. This is only one of the two factors determining the performance degra-
dation; we determine the other factor (im per cycle) analytically. Also, in the
estimation of energy savings, merely a trend that is indicative of the best decay
interval is sufficient. The absolute energy savings are not necessary to pick the
right decay interval. For these reasons, we expect this treatment of effective la-
tency not to produce dramatically different results. In fact, our results confirm
this: The estimation-based prediction of the optimal decay interval matched
the actual optimum with a reasonable degree of accuracy. Hence, the equation
we use for performance degradation is

perc slowdown(ti) = eff lat × im per cycle(ti) (5)

Apart from the performance degradation, we expect some difference between
the estimated and the actual values for the other variables too. This is because,
we do not directly account for eager write-backs in the analytical expressions.
Furthermore, as the decay process slows down the program, a few access inter-
vals and dead times may become longer than they actually are in the original
program. The decay process also changes the default replacement behavior of
the cache because lines that are in the standby mode get evicted before those
that are active—regardless of the replacement policy. Since the events associ-
ated with these effects should be infrequent, we expect these differences to be
negligible. Our results also confirm this expectation.

3.3 Choice of the Best Decay Interval

From Equations (1)–(5), it can be seen that all these variables are fundamen-
tally derived from the general access interval and dead time histograms (a(ti),
d (ti)), and from the histograms for dirty lines (a′(ti), d ′(ti)). All four of these
histograms for the ti ’s we are interested in (256 to 1M cycles) can be gener-
ated by profiling. The profile data thus generated are analyzed as explained by
the equations above to produce the energy savings (esav). The decay interval
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corresponding to the best esav value is chosen as the optimal decay interval.
We call this the esav-pred method.

3.4 Profiling and Dynamic Adaptation

In this work, we use software profiling and offline analysis. However, we believe
profiling in hardware and extension to online adaptation are feasible—an inter-
esting area for future work. In order to do the profiling in hardware and obtain
the four histograms, extra table space within the CPU is required. Since de-
cay intervals of lesser than 256 cycles and greater than 128K cycles are hardly
needed, the total number of different decay intervals of interest is 10. If each
table entry is a 32-bit counter, a total of 40 such counters and hence 1.3 kbits
of extra table space would be required. This is just to record the data and is
comparable in energy cost to keeping the tags powered on as in IMC or AMC.
Measurement of intervals can be done using the same counter architecture used
by Kaxiras et al. The extra hardware cost could still be cost-effective because
our technique chooses the correct decay interval.

Even if the extra profiling hardware is not justified, our technique could be
used in a dynamic optimization framework like dynamo [Bala et al. 2000] to
collect profile data in software and then run natively in hardware. Phase detec-
tion and adaptation techniques as in Huang et al. [2003] and Sherwood et al.
[2002] could be used to select different profiling points, and the dynamic trans-
lation infrastructure [e.g., Scott et al. 2003] could be used to run the profiler
in software. Once the profiling phase is over, the optimal decay interval for
the phase could be cached and reused whenever the phase recurs. Everytime
a new phase is discovered, the profiling step could be run in software for that
particular phase.

4. EVALUATION

The three adaptive techniques against which we compare our technique are
Velusamy et al.’s IMC, Zhou et al.’s AMC, and Kaxiras et al.’s per-line adaptive
cache decay. AMC tries to track the default program behavior without decay by
monitoring the actual miss rate and the induced miss rate. It forces the induced
miss rate to track the actual miss rate within a margin of a fixed threshold. This
threshold is called its PF. IMC takes the approach of formal feedback control
in adapting the decay interval. The set-point to the controller is given in terms
of induced misses per cycle which the controller tracks by adapting the decay
interval. Per-line adaptive cache decay uses a per-cache-line adaptive scheme.
After a line is decayed, a counter is used to gauge the time of the next access.
Depending on when the next miss occurs (sooner or later), the decay interval is
increased or decreased.

4.1 Simulation Setup

The profiling described in the previous section is implemented in the
SimpleScalar 3.0c simulator toolset [Burger et al. 1996]. The estimation equa-
tions of the previous section are implemented as Perl scripts that operate on the
profile data produced by the above-mentioned simulator. In order to evaluate
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Table II. Summary Statistics of the Benchmarks Used to Evaluate the Techniques in this Study

Integer Floating Point

L1 D-cache best-t L1 D-cache best-t
benchmark Miss Rate (%) IPC (K cycles) benchmark Miss Rate (%) IPC (K cycles)
mcf 26.5 0.31 1 art 32.8 2.30 0.25
gap 0.3 1.74 2 swim 8.6 0.65 1
vpr 5.0 1.06 4 lucas 9.8 0.66 1
vortex 1.0 2.22 4 wupwise 1.7 1.53 2
bzip2 1.1 2.34 4 applu 6.0 1.11 2
twolf 5.9 1.52 4 equake 10.7 0.43 2
gzip 1.8 2.06 8 facerec 2.6 2.25 2
perlbmk 0.6 2.25 8 mesa 0.3 2.42 4
gcc 1.0 1.97 16 galgel 3.0 2.57 4
crafty 0.9 2.19 16 ammp 4.7 1.52 4
parser 2.0 1.65 16 fma3d 3.3 1.08 4
eon 0.1 2.02 16 mgrid 3.4 1.24 8

sixtrack 0.2 2.46 16
apsi 2.1 1.84 16

All benchmarks use reference inputs.

other adaptive techniques like per-line adaptive cache decay, IMC, and AMC,
we extend the simulator used by Velusamy et al. in their IMC work, which in
turn was extended from the simulator used by Kaxiras et al. in their cache
decay work.

The microarchitectural configuration we use to evaluate the techniques re-
sembles Alpha 21364 as closely as possible. The core processor has an 80-entry
RUU and can issue up to 4 integer and 2 floating-point instructions per cycle.
L1 caches are each 64K, 2-way with 64 byte blocks and an access latency of
2 cycles. L2 cache is 4 MB, 8-way with 128 byte blocks and a 12-cycle access la-
tency. The latency to main memory is 225 cycles. We do not model replay traps.
Finally, as described in the previous section, we use Wattch 1.02 power simula-
tor [Brooks et al. 2000] to make educated assumptions about the constants in
Equation (1).

4.2 Benchmarks

We evaluate our results using all the benchmarks of the SPEC2000 bench-
mark suite. Summary statistics are given in Table II. The benchmarks are
compiled and statically linked for the Alpha instruction set using the Compaq
Alpha compiler with SPEC peak settings and include all linked libraries but no
operating-system or multiprogrammed behavior. For each program, we use the
train input set for profiling and the reference input set to evaluate the effective-
ness of the various techniques. For the profiling runs using the train input set,
we execute the programs to completion. For the evaluation runs using the ref-
erence input set, we fast-forward to a single representative sample of 1 billion
instructions. The location of this sample is chosen using the data provided by
SimPoint [Sherwood et al. 2002]. Simulation is conducted using SimpleScalar’s
EIO traces to ensure reproducible results for each benchmark across multiple
simulations.
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5. RESULTS

5.1 Accuracy of Estimation

Before we compare our technique to other techniques, it is first essential to
ascertain its prediction accuracy. This helps us both to verify the validity of
the analysis described in Section 3 and to understand which of the sources of
inaccuracies mentioned there (performance slowdown, replacement policy, and
so on) are substantial with respect to the choice of a decay interval.

As a candidate, we study a typical benchmark, gcc. We compare the values
of the four variables estimated by profiling against the actual values simu-
lated across a range of decay intervals (256 to 1M cycles). It is to be noted that
unlike the experiments evaluating the effectiveness of the various adaptation
techniques, here we use the same reference input set, both for profiling and
actual measurement. This is just to understand the accuracy of our estimation
method. We present the summary statistics here and encourage the readers
to look at the technical report version of this paper [Sankaranarayanan and
Skadron 2004] for more details. We find that the estimated values of tor and
im per cycle + iwb per cycle track their actual values very closely, while those
of perc slowdown are offset by a factor. The root mean square (RMS) values
of the percentage error in the first two cases are 2.4% and 4.2%, respectively,
indicating that the equations in Section 3 estimate those parameters with a
reasonable degree of accuracy. However, the performance degradation shows
a larger difference between the actual and estimated values. This is because,
the heuristic value of the effective latency (2 cycles for integer benchmarks) is
higher than the actual value for gcc. Since the performance degradation also
depends on the im per cycle number, which is estimated more accurately us-
ing analysis, the estimated values of performance degradation show the same
trend as the actual values. This is also further substantiated by the fact that the
correlation coefficient between the actual and estimated performance degrada-
tion is high at 99.5%. Hence, it can be concluded that the estimation method
performs as expected with a reasonable degree of accuracy. In other words, the
factors unaccounted for in the equations of Section 3, namely, eager write-backs,
change in replacement behavior, and elongation of dead times and access in-
tervals during decay do not impact the accuracy of estimation substantially.
Furthermore, the heuristic calculation of the effective latency leads to inaccu-
racy in the estimation of performance degradation while preserving the shape
of the trend. The fact that the actual value of the best decay interval for gcc
(16K cycles) matches the estimated value for the above-mentioned experiment
shows that the tracking behavior of performance degradation overweighs its
estimation inaccuracy.

5.2 Prediction of the Optimal Decay Interval

Now, we evaluate how well our profiling technique predicts the optimal decay
interval. Profiling is done for the benchmarks using the train input set and the
predicted optimal value for the decay interval is compared against the actual
optimum obtained by simulating cache decay using the reference input set. The

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Profile-Based Adaptation for Cache Decay • 317

Table III. Optimal Decay Interval—Actual and Predicted Values (in K cycles)

Integer Floating Point
bench esav-best esav-pred esav-self bench esav-best esav-pred esav-self
mcf 1 2 1 art 0.25 0.25 0.25
gap 2 8 2 lucas 1 1 1
twolf 4 4 4 swim 1 2 2
vpr 4 8 4 applu 2 2 2
bzip2 4 4 8 equake 2 4 2
vortex 4 16 8 wupwise 2 8 2
gzip 8 8 8 facerec 2 4 4
perlbmk 8 16 8 galgel 4 2 4
parser 16 8 8 ammp 4 2 4
gcc 16 16 16 fma3d 4 4 4
crafty 16 16 16 mesa 4 2 8
eon 16 16 16 mgrid 8 4 8

apsi 16 8 4
sixtrack 16 16 16

real optimum is computed by running the benchmarks with different decay
intervals ranging from 256 to 1M cycles and choosing the best interval based
on the esav metric. Table III shows the results of the comparison. The esav-
best column shows the actual optimum and the esav-pred column shows the
predicted optimum. Values that match are shown in bold face font. It can be
seen that esav-pred is off the esav-best at most by a factor of 4. The average
number of power-two steps by which it is off is 0.7. This shows that the profile-
based estimation tracks the actual optimum reasonably well. However, it is not
quantitatively clear from this data, how much of the difference is due to cross-
training as opposed to inaccuracy in estimation. Isolating these will help us
understand the accuracy of estimation better. Hence, we compare the optimal
decay interval values obtained by self-training to the actual optima. That is,
we use the same reference input set, both for profiling and the cache decay
simulation process. The results for this experiment are shown in the esav-self
column. It can be seen that the number of mispredictions drops from 15 to 7.
Similarly, the average number of steps by which the prediction is off, goes from
0.7 to 0.3. Thus, it can be seen that more than half of the mismatch stems from
cross-training.

5.3 Overall Performance of the Schemes

In this section, we present the results of our evaluation of the various schemes.
We compare the different adaptive schemes against an omniscient choice of
the individual-best decay interval with respect to energy savings. This ora-
cle scheme is called esav-best. We also evaluate a nonadaptive scheme corre-
sponding to the original cache decay work, which sets the decay interval to a
constant value of 4K cycles. This is the single-best constant decay interval in
terms of energy savings. This static technique is called esav-avg. Our profile-
based decay interval estimation is called esav-pred. In order to understand the
impact of cross-training, we also consider the self-training version of esav-pred,
called esav-self. The various adaptive schemes we evaluate are: IMC, AMC,
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Fig. 1. (a) Normalized leakage energy savings and (b) percentage slow down for the various decay
interval adaptation schemes.

and per-line counter-based adaptive decay. The details of the parameters cho-
sen for these techniques can be found in the technical report version of this
paper [Sankaranarayanan and Skadron 2004]. Also, to understand the poten-
tial of the adaptive schemes to adapt to the optimum decay interval, we consider
two more ideal schemes, imc-ideal and amc-ideal. These assume that the in-
duced misses can be measured magically without keeping the tags powered on
always. Studying these two ideal schemes helps us understand the cost–benefit
trade-off in keeping the tags on versus online adaptivity.

Figure 1(a) shows the normalized leakage energy savings for the above-
mentioned decay schemes in the order of their performance while Figure 1(b)
shows the percentage slowdown. In these graphs, the absence of per-line
counter-based adaptive cache decay is conspicuous. It is not included because
per-line adaptive decay selects overly aggressive decay intervals that lead to
much higher slowdowns when compared to other schemes. While the average
slowdown of other schemes is less than 1.2% of the baseline execution time,
the average for per-line adaptive decay is 4.4%. This leads to its poor perfor-
mance both in terms of energy and delay. This behavior is also reported in Zhou
et al. [2003]. The normalized leakage energy savings for this scheme averages
around 3.2% of the total cache leakage energy, which is much smaller than the
savings obtained by other schemes. Our belief is that this problem arises due
to lack of sufficient hysteresis in the two-bit counters to be able to filter out the
noise in the access interval pattern. Hence, per-line adaptive decay has been
omitted from the graph above and will not be included in further discussions
below.

Graphs in Figure 1 show three groups. The leftmost group shows averages
over all SPEC2000 benchmarks. The middle group shows averages over all
benchmarks except galgel. We observe that galgel has very different access
pattern during profiling and measurement. The decay interval predicted by
esav-pred (2K cycles) is off from the optimal value (4K cycles) by just one step.
This amounts to very minimal difference in energy savings in the profile data
but leads to a substantial difference of 50% in the reference execution. This dif-
ference between profiling and measurement shifts the average by a substantial
value in a way that impacts the profile-based schemes negatively. In order to
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show this cross-training behavior, we indicate the data from all benchmarks ex-
cept galgel separately. The results of the esav-self technique also illustrate this
behavior clearly. It can be seen that it matches closely with the cross-training
(esav-pred) results unless galgel is included.

The rightmost group shows averages only among those benchmarks whose
optimal decay interval is farther from the average-best decay interval. Since
4K is the average-best decay interval, we chose to exclude benchmarks with
2K, 4K, and 8K cycles as their optimal points. This is done to highlight the
adaptive behavior of our profile-based technique. These 10 “extreme” applica-
tions are the main motivation behind adaptive techniques like ours. A good
adaptive technique should perform at least as well as a nonadaptive scheme
in the average case and should perform much better in the extreme cases. Our
esav-pred scheme performs slightly better in the average case and much better
in the extreme cases. The extreme cases are shown separately to emphasize
this point.

From the graphs above, it can clearly be seen that the ideal scheme esav-best
and the self-training profile-based scheme esav-self perform better than the
rest. It can also be seen that esav-pred technique performs better than all of
the nonomniscient schemes. Also, it is close to the omniscient esav-best scheme
for the most part. Though on an average, it bridges only about half the gap (3%
of the total cache leakage) between esav-avg and esav-best, it is almost as good
as esav-best for most of the applications. As the middle graph in Figure 1(a)
shows, out of the maximum possible improvement of 6.1% of the total cache
leakage, it achieves about 5%, falling short only by 1.1%. Also, it performs a lot
better in the extreme cases, improving upon esav-avg by 14%. It should also be
noted that if we had the luxury of self-training, esav-pred performs virtually
equal to the omniscient esav-best scheme. Also, from the slowdown graph in
Figure 1(b), it can be observed that the slowdown due to all the above decay
techniques is minimal (<1.2%).

The energy savings graph also shows that both the ideal and nonideal dy-
namic adaptation schemes do not perform as well as esav-pred or even esav-avg.
In case of AMC, this is mainly because of failure in adaptation. The average
decay interval during the execution of the program for AMC is off the static
optimal value by about 2.1 steps on the average. While IMC is accurate in this
respect (better than esav-avg and even esav-pred), its poor performance is be-
cause of noise and phase difference in adaptation. By the time IMC adapts to
a decay interval, the current optimum changes. Moreover, it goes into periods
of oscillation when a decay interval chosen is too small (or large) while its next
online choice is too large (or small). This results in its alternating between
the two suboptimal intervals even while the average of the two is close to op-
timum. This mainly happens when the decay interval is close to mid range.
This is evident from Figure 1 because the ideal versions of both IMC and AMC
perform better than esav-avg for extreme applications but do worse for the
others. The high level of noise inherent to access interval patterns and the dif-
ficulty in tuning their parameters are further problems in these online decay
adaptation schemes. The PF of AMC and the set-point for IMC are difficult
parameters to tune. They vary depending on the application behavior. This is
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where a profile-based scheme like ours wins. Also, an offline scheme or a scheme
that operates at much coarser granularities (like program phases and so on)
filters out the noise through large-scale averaging. Apart from these problems
in adaptation, the nonideal versions of these schemes are also affected by the
cost of keeping their tags on. This is the reason why in spite of their ideal ver-
sions performing better than esav-avg, the nonideal versions perform poorly in
case of extreme applications.

It was pointed out in Section 3 that a difference in replacement behavior
arises between profiling and actual measurement of decay. Our equations in
Section 3 do not take this into account. Hence, in order to explore the im-
pact of this change in replacement behavior on the effectiveness of our profile-
based schemes, we ran experiments evaluating the various decay adaptation
schemes by changing the associativity of the 2-way cache used in previous eval-
uations to 1-way and 4-way. The trend in order of performance of the scheme
remained the same across different associativities. We do not provide the re-
sults here but the details can be found in the technical report version of this
paper [Sankaranarayanan and Skadron 2004].

The results and the discussions presented above show that the profile-based
decay adaptation scheme esav-pred performs almost as well as an omniscient
choice of per-benchmark decay interval. The scheme is robust in terms of adap-
tation, performs reasonably well in the average case, and is vastly superior for
the extreme-case applications.

6. CONCLUSION AND FUTURE WORK

This paper introduces a profile-based adaptive scheme for cache decay. The key
insight behind this work is that the most important variables determining the
energy saved in a decay mechanism can be estimated from analyzing profile
data. The decay interval chosen by such an analysis matches the optimal de-
cay interval with a reasonable degree of accuracy. This makes a profile-based
scheme that optimizes for normalized leakage energy savings (esav-pred) better
than the dynamic adaptive schemes and almost as good as an omniscient choice
of individual-best decay interval. The “esav-pred” scheme performs better than
online adaptive techniques because of their failure in robust adaptation and the
cost of keeping the tags powered on. It is also difficult to tune their parameters,
especially in the case of noisy access-interval patterns. In contrast, “esav-pred”
chooses the decay interval best for the program, eliminating noise in the cache
access pattern and without having to keep the tags powered on. Hence, the
profile-based decay adaptation scheme “esav-pred” achieves its adaptation tar-
get successfully: it performs slightly better than the average-best case for most
benchmarks and much better than the average-best case for the extreme-case
applications.

We also find that the primary source of inaccuracy in the estimation of the
optimal decay interval arises from the heuristic calculation of the effective la-
tency of the cache. This work also shows that the luxury of self-training could
improve the potential of the profiling scheme even more. This makes it inter-
esting to explore the effect of extending the analysis described in this paper to
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dynamic adaptation as opposed to static profiling. Such a dynamic scheme will
have the advantage of sampling the actual input data set itself.

The results of this paper show not only the importance of adaptation to
program behavior but also the opportunities afforded by profiling in the context
of energy efficiency. Similar to Magklis et al. [2003], we find that our profile-
based optimization performs better than hardware-based adaptation schemes
(IMC and AMC).

Future work in this direction could explore the estimation of effective la-
tency. It will not only be useful to the schemes described in this paper but
also the profiling community in general. The extension of this study to state-
preserving leakage saving techniques is one more area for further exploration.
Also, extension of this work to make it dynamically adaptive by combining it
with phase detection research is another interesting venue for future research.
Application of this technique to the instruction cache, lower level caches and
other structures within the CPU is another fruitful direction for future work.
Extension of this work to the level of per-line adaptation could provide interest-
ing insights on cache behavior. Furthermore, studying the implications of the
profiling scheme in the context of SMT and CMP is another potential future
direction.
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