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Abstract: The authors examine differential multithreading (dMT) as an attractive organisation for
increasing throughput in simple, small-scale, pipelined processors like those used in embedded
environments. dMT copes with pipeline stalls due to hazards and data- and instruction-cache misses
by using duplicated pipeline registers to run instructions from an alternate thread. Results show that
dMT boosts throughput substantially and can in fact replace dynamic branch prediction or can be
used to reduce the sizes of the instruction and data caches.

1 Introduction

Previous research has demonstrated the effectiveness
of multiple hardware contexts for improving through-
put, hiding memory latency and supporting thread-level
and instruction-level parallelism in CPU-intensive
computations. Differential multithreading (dMT) is a low-
cost version of hardware multithreading in which multiple
instruction streams share a single pipeline, and the processor
squashes pipeline stalls from one thread by executing
instructions from another thread. (When we refer to a
‘thread-switch’, we mean a pipeline switch between its
active instruction streams and not an OS-level switch among
kernel threads.) These threads might be separate,
independent processes or cooperating threads within a
single process. A simpler version of this technique, block
multithreading or BMT, was first described by Farrens and
Pleszkun in [1]. dMT extends BMT by adding the ability to
switch active threads in response to misses in the
instruction- and data-caches.

Conventional pipelines fall short of maximum throughput
because stalls in the pipeline prevent the retirement of an
instruction in every cycle. The objective of dMT, like BMT,
is to asymptotically approach the maximum throughput of
one instruction per cycle (1 IPC) by switching among
multiple instruction streams in response to stall conditions.
This is in contrast to other techniques (like larger,
more highly associative caches or data forwarding

(bypassing data from later instructions to earlier ones to
avoid data hazards) which increase pipeline utilisation for
only a single instruction stream.

Although single-issue (‘scalar’) organisations are no
longer used in high-performance processors, they remain
common even in new processor designs for small-scale,
embedded devices. Some embedded processors in fact omit
the data-cache altogether, a configuration for which dMT is
especially valuable. Overall, multithreading benefits
embedded workloads for which throughput is as important
as the single-thread execution time, and in particular,
workloads that would run on the simpler, single-issue base
architecture we consider and are prevalent in embedded
environments. Specific examples include embedded
applications such as video game units, portable personal
organisers, and process-control systems. BMT and dMT are
especially useful for multithreaded workloads. Video game
systems are an example; they must simultaneously support
artificial intelligence manipulation of multiple computer-
controlled characters, background music playback, player
input processing, and data (pre)fetch from the game ROM.
Unfortunately, finding a suitable, non-proprietary multi-
threaded workload has proven difficult, and our evaluations
focus on the throughput of multiple, semi-independent
applications.

Not only does dMT increase throughput, it does this so
effectively that other processor structures, such as caches or
branch predictors, can be made smaller or even eliminated.
For example, we will show in Section 5 that dMT allows the
use of a smaller cache or the complete elimination of
branch-prediction hardware. In [2], we also found that dMT
is highly effective in chip-multiprocessor configurations,
more so than non-multithreaded dual-issue processor cores.

Our contribution stems from our extensions to BMT
which can be thought of as combining aspects of the BMT
[1] and Runahead [3] pipelines. BMT uses dual-decoder
logic to perform instruction interleaving at the end of
decode, where the issue logic selects one instruction to
promote to the next stage of the pipeline. Placing the
interleaving mechanism solely in this early stage of the
pipeline allows BMT to respond to data hazards and long-
latency branch delays; it cannot, however, avoid stalls that
result from misses in the instruction or data caches. Our
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implementation, dMT, gains this ability by capturing and
storing in-flight instructions when an instruction stream
encounters a stall for all sources of pipeline stalls.

We also re-examine BMT in light of more modern
benchmarks. The original BMT work used only the
Livermore loops. Our studies use the MiBench [4],
MediaBench [5], and SPECint95 [6] suites.

2 Related work

Our work is most closely related to BMT [1]. It describes
three different policies for interleaving instructions: every-
cycle, blocked and prioritised. Every-cycle switches threads
after every clock cycle, and blocked only in response to
stalls. For prioritised, the thread with priority resumes
execution as soon as its stall condition resolves, regardless
of the status of the other thread; this policy is useful for real-
time workloads. By resuming its execution as soon as its
stall condition resolves, the thread with priority will incur no
penalty beyond what it would if it were executed alone, thus
preserving the predictability of its execution time. We find
that the blocked and prioritised policies give a fairly similar
performance for both BMT and dMT, and that every-cycle
is consistently the worst. We will only present data on
results with the blocked policy; results for prioritised and
every-cycle can be found in [7].

Traditional multithreaded architectures such as the Tera
[8] achieve performance gains by every-cycle scheduling.
Every-cycle scheduling among the Tera’s 128 hardware
contexts allows the Tera to hide latencies experienced by
individual threads, and indeed, the time required to service
all 128 contexts masks memory latency and permits the Tera
to be completely cacheless. Simultaneous multithreaded
(SMT) architectures [9, 10] take a different approach,
extending wide-issue superscalar architectures by allowing
multiple hardware contexts to issue instructions to the
execution units: in any given cycle, a mix of instructions
from several different threads might issue. Neither the Tera
nor SMT is readily deployable into an embedded system
that needs high performance and yet is still constrained by
cost, size and power. In particular, it is not obvious how to
cost-effectively extrapolate the Tera and SMT approaches to
a scalar, single-issue pipeline.

Two more systems that are related to BMT are APRIL
[11] and Runahead [3]. Like dMT, APRIL thread-switches
on a cache miss; however, APRIL uses a more heavyweight
thread switch in which the pipeline must drain. The
consequent ten-cycle delay is not suitable for hiding
pipeline stalls. Runahead microprocessors speculatively
execute instructions past a first-level D-cache miss. These
instructions are not committed; their purpose is to uncover
subsequent memory instructions whose target address is
calculable. Even although the result of these references is
discarded, they serve as lightweight prefetches. Unlike
dMT, Runahead does not attempt to fill in the stall cycles
with instructions from another instruction stream.

Low-cost microprocessors are typically in-order issue
and often only single-issue, yet this simplicity does not
preclude their suffering from pipeline stalls. In fact, some
processors contain no cache, in which case each memory
reference introduces a stall. Examples include the Motorola
DragonBall [12] used in Palm Pilots and the Zilog Z80 [13]
used in Nintendo Gameboys.

3 dMT Design overview

This Section provides a more detailed description of the
dMT organisation The baseline architecture for our design

uses the classic five-stage, single-issue RISC organisation of
the ARM10 [14].

For this discussion, we assume a dMT processor that
allows two threads to be present on the CPU at any given
time. The identity of the current active thread is held in the
thread register. Simultaneously hosting two or more
instruction streams requires that the program counter and
register file be replicated, one per hardware context. Most
importantly, (as discussed in Section 2), dMT duplicates the
pipeline registers between the fetch-decode (IF-ID),
decode-execute (ID-EX) and execute-memory (EX-MM)
stages. These duplicated pipeline registers are used to
capture in-flight instructions. If an instruction entering the
WB stage will not stall, as we currently assume, then the
MM-WB pipeline register does not need to be duplicated
(recall that in any particular stage, only one instruction is
active per cycle). The dMT pipeline organisation is depicted
in Fig. 1. Not shown is the fact that the instruction in the WB
stage needs a separate tag to indicate which thread it belongs
to and hence which register file to write to. This is necessary
because the instruction in the WB stage may be from a
different thread than previous stages.

Each data and control signal entering the duplicated
pipeline registers has a fanout of two: one copy into each
‘half’ of the pipeline register. This would probably be
implemented in a bit-sliced fashion, with the two sources of
each output signal co-located to minimise wiring length.
This can be thought of as taking the two logical copies of the
pipeline register and interleaving them. Each logical ‘half’
of the duplicated registers has a write-enable whose setting
is determined by the active thread identified in the thread
register. Only the half owned by the active thread is write-
enabled; the other half holds the state of the stalled thread.
Each signal entering the next stage requires a multiplexor to
choose the correct pipeline input from one or the other half
of the pipeline register. The thread register is also used to
control these multiplexors. Processors with longer pipelines
will require additional duplicated pipeline registers. This
increases the total cost of dMT, since more pipeline registers
must be duplicated along with the associated multiplexors.
However, as pipelines grow longer, branch costs also grow,
necessitating branch prediction unless dMT is used to hide
these costs.

In dMT, a thread that encounters a stall condition can be
thought of as having two parts: (i) a committable part; and
(ii) a dependent part. Instructions in the committable part
are unaffected by the stall and continue to flow through the
pipeline unhindered; instructions in the dependent part
cannot proceed until the stall is resolved, and are captured
and held in their respective half of the pipeline registers.
These frozen instructions continue execution once the
offending instruction (the producer) completes and the
dependence is resolved. We assume that a stall condition
can be detected sufficiently early so the new thread can take

Fig. 1 The dMT pipeline for a two-way dMT organisation.
(Reproduced from [2], q2001, IEEE by permission of IEEE). In
reality, to minimise wiring cost, the pipeline register would not be
partitioned as shown, but rather bit-sliced: each signal would have
two possible sources that are stored adjacent in the pipeline
register
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over execution immediately after the stall condition is
detected, with no wasted cycles. Although stall conditions
are probably detected late in each stage, the only additional
time required is the propagation delay to distribute the
choice of thread for the next cycle in time to set up
the multiplexors at the beginning of the next stage. If this
requires an additional cycle, and introduces one stall cycle
each time a thread is switched, the benefits we report decline
significantly. Note that no additional logic is required to
detect stall conditions; the same logic that detects hazards in
conventional processors is leveraged by dMT. The only
exception is the possibility of crossthread accesses to the
same location in the memory, which requires extra logic to
possibly stall the second thread, see below.

A thread switch affects only those stages in the dependent
part; all these stages switch in unison immediately. A thread
switch does not affect those stages in the committable part.
For example, on a data-cache miss, all instructions after the
cache are potentially data dependent. The dependent part
therefore consists of instructions in the IF, ID and EX
stages; the committable part consists of the pending memory
operation and the instruction in the WB stage. When the
data cache detects a miss, dependent instructions are frozen
in their respective half of the pipeline registers. As another
example, a branch creates a control hazard that prevents
further fetching from that thread. An I-cache miss similarly
prevents further fetching. In these cases, the committable
part consists of all instructions currently in the pipeline
(including the branch in the case of the control hazard). The
dependent part simply consists of the PC of the stalled
thread; the PC can be thought of as another pipeline register
preceding the fetch stage. If no thread’s stall condition is
resolved, the pipeline experiences a true stall until one
thread or the other can proceed. A detailed itemisation of
possible stalls and their treatment can be found in [2].

Since some exceptions and many external interrupts
require all active threads to be suspended, it is probably
easiest to always suspend all threads on any kind of
exception or interrupt. This means that both register files
and PCs must be saved, which will modestly increase the
cost of handling an exception. Since exceptions should be
rare, the extra tens of cycles per exception should be
negligible.

The input multiplexors to the ID, EX and MM pipeline
stages and the extra register file will inevitably place
pressure on the processor cycle time. The multiplexor can
actually be implemented as a wired-OR of the tri-state-
enabled possible outputs, so one extra gate delay is a
reasonable expectation for the associated overhead. A useful
rule of thumb is that the cycle time might be lengthened by
as much as 10% for every extra gate delay [15]. The detailed
design of these multiplexors and their associated overhead is
subject to a variety of design choices. A detailed
implementation is beyond the scope of this discussion, so
we focus on cycle-level simulations. Some of the increased
throughput from dMT’s ability to recapture stall cycles will
be offset by the increase in cycle time. For example, if we
indeed assume that the dMT’s clock runs 10% slower, then
throughput improvements of about 10% or better will likely
exhibit actual speedups. In other words, the increase in
throughput can be thought of as the breakeven point in terms
of how much reduction in clock speed (due to the extra dMT
hardware) can be tolerated by dMT before it performs worse
than a conventional organisation.

We will assume that dMT configurations never include
branch prediction. Our focus is on throughput and we find
that the branch predictor confers a minimal benefit from this
standpoint. Indeed, as we show later, a dMT configuration

without branch prediction does better than a non-dMT
configuration with branch prediction! Branch prediction
does impact end-to-end execution time of a single thread,
but misprediction handling in the dMT configuration is
more complex than in a conventional pipeline; either rolling
back all extant threads (contravening our throughput goal),
or requiring extra hardware to squash only mis-speculated
instructions in the mispredicting thread. Adding and
evaluating branch prediction in a dMT pipeline is an
interesting area for future work.

Finally, it is worthwhile to comment on the impact of
dMT on multithreaded programs. From a correctness
standpoint, a dMT implementation is no different than any
other MT or CMP processor; namely consistency must be
enforced by appropriate synchronisation. Coherence, on the
other hand, is a non-issue here, because the dMT threads
share a common cache. Accesses to the same physical
address (for example, the first thread may take a cache miss
when reading some location, and while that thread is stalled,
the other thread may attempt to write to the same location)
do need to be identified but can be treated as data hazards.
From a performance standpoint, it is true that synchronisa-
tion delays will sacrifice some of the reported improvements
in throughput. But even for many MT programs, these
delays should not be ubiquitous to the point where all the
improvement is forfeited. We will focus on the performance
of independent programs on a dMT machine; evaluating
multithreaded programs is an interesting area for future
work.

4 Simulator and benchmarks

We model BMT and dMT by using Wisconsin’s Simple-
Scalar 3.0a software package [16] We assume that in the
absence of other stalls, all instructions take one cycle to
execute. Our baseline assumption is that the cache miss
penalty for the first-level cache is five cycles (to a second-
level cache or to some form of embedded DRAM); later we
also consider a longer miss penalty of ten cycles.

We use a mix of benchmark programs from the SPEC95
[6], MediaBench [5], and MiBench [4] suites, and we also
used the Dhrystone benchmark [17]. Rather than show data
averaged across all benchmarks as in [1], we chose pairs of
benchmarks to run together. This lets us show a richer
variety of reactions to BMT and dMT; some benchmarks
have very distinctive behaviours. Naturally, it was imposs-
ible to present data for all possible pairs, so we chose a
subset of the benchmarks from each suite and selected the
most sensible pairs that we could derive; such as a game and
an image utility (go and ijpeg) or a speech compression/
decompression tool and an image compression/decompres-
sion tool (gsmencode and epicencode/gsmdecode and
epicdecode). Despite its well known drawbacks, we also
include the Dhrystone benchmark because it has been
extensively used so for benchmarking embedded micro-
processors. We chose to use SPEC95 over SPEC2000 [18]
because we were specifically interested in go (a game
and also a program known for its poor branch behaviour)
and ijpeg (an image-processing program).

Except for epic, jpeg, pegwit, dhrystone and MiBench,
which are short and were run to completion, all simulations
were fast-forwarded according to the methodology in [19]
(for SPEC) or 100 million instructions (for longer
MediaBench programs) in order to avoid unrepresentative
initial behaviour, and statistics were gathered for the next
100 million instructions. Because all programs run for
approximately the same length in our simulations, we report
results using simple arithmetic means.
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The benchmarks were compiled with gcc 2.6.3 and -O3
optimisation for the SimpleScalar PISA instruction set.

It would also be interesting to evaluate the benefits of
dMT from an energy-efficiency standpoint. Although the
extra register file and pipeline register bits will increase
power dissipation, a higher throughput will reduce total
execution time and hence total energy consumed for a given
workload. A detailed energy evaluation is another interest-
ing area for future work.

5 Results

5.1 Experimental configurations

To identify the different configurations we explore, each is
named in the pattern XXX-YYY, where XXX is either
‘base’ or ‘MT’ and YYY indicates the processor organis-
ation. The same configuration is used for both BMT and
dMT. The following abbreviations are used:

0: I-cache only
f: forwarding
C: large cache configuration

(16-kB I-cache and 8-kB D-cache, both
four-way)

c: small cache configuration
(8-kB I-cache and 2-kB D-cache, both two-way)

b: dynamic branch predictor

So ‘base-Cfb’ is an ARM10-like, five-stage, single-issue
processor with forwarding, a 16-kB I-cache and 8-kB
D-cache, and a bimodal branch predictor; ‘MT-cf’ is a
multithreaded processor (either BMT or dMT) with
forwarding, an 8-kB I-cache and 2-kB D-cache, and no
branch prediction. When a dynamic predictor is used, it is a
2-bit bimodal predictor with a 128-entry branch target
buffer, as in the ColdFire v4 [20].

We present data for a total of 14 different pairings of 18
different benchmark programs. We used these pairs to make

ten different comparisons of non-multithreaded and multi-
threaded processors. For the most interesting seven
comparisons, we present a graph (Figs. 2–4) that compares
their IPCs for each of the benchmark pairs. (Additional
graphs for the other configurations can be found in [7].) In
each comparison, various multithreaded organisations are
compared to a comparably configured or superior baseline
configuration. Figure 2 compares three systems with
equivalent cache, branch prediction, and forwarding
(f compared to f, etc.). These show how much extra
throughput is obtained by simply adding dMT to an existing
design. The benefits are especially notable for a configur-
ation without data caches. Figure 3 adds the ColdFire’s
dynamic branch predictor to each baseline configuration,
but for each of these comparisons, MT still omits branch
prediction, switching threads instead. These results demon-
strate MT’s robustness against control hazards. Figure 4
presents one comparison where the baseline system uses the
larger cache sizes listed above, while the MT systems use
the smaller. This demonstrates dMT’s capability to reduce
the need for larger caches. Note that some configurations
appear in more than one comparison; this is in order to
illustrate the tradeoffs dMT permits. In addition, we present
data for some of the same pairings but varying cache miss
penalty in Fig. 5, and present data for six quadruplets of
SPEC95 and MediaBench applications in Fig. 6 to show the
performance of four-way dMT. Table 1 gives the average
improvement in throughput (IPC) for each comparison. In
each Figure, we evaluate the performance of only the
blocked policy for BMT and dMT; results for the every-
cycle and prioritised policies can be found in [7].

It is useful to compare the hardware overhead of dMT,
although this is difficult to do since the area overhead is
heavily dependent on a myriad of design choices. However,
we can count the number of bits of each type: pipeline
register, register file and cache. We estimate that each set of
copies of the pipeline registers requires 1237 bits, so the

Fig. 2 Comparison of baseline, dMT and BMT configurations with similar organisations

a Base-f compared to MT-f
b Base-cf compared to MT-cf
c Base-Cf compared to MT-Cf
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non-dMT implementation uses 1237 bits, the two-way dMT
uses 2474, and the four-way uses 4948. For a 32-bit
machine, we estimate that each copy of the register file costs
2048 bits. Among hardware that is not duplicated, the
branch predictor requires 8192 bits; the ‘c’ cache configur-
ation requires 91 136 bits, and the ‘C’ configuration requires
215 808 bits. These estimates assume MESI state bits in the
cache and no ECC bits in the cache or register file.

The MT pipelines run both instruction streams simul-
taneously. In contrast, the baseline architecture runs the two
benchmarks back-to-back. To obtain the most comparable
results across organisations, we terminate the MT simu-
lations when one instruction stream terminates or when it
completes its simulation allotment of 100 million instruc-
tions. The baseline simulation then runs its two programs for
exactly the same number of instructions as the MT
simulation.

We also measured the frequency with which dMT
(blocking policy) switches threads. Arithmetic means
taken across our set of benchmark pairs are reported in
Table 2. As expected, with no forwarding (the ‘0’
configuration), thread switches are frequent (every 1.7
instructions), and as the configuration becomes more
aggressive, thread switches become less frequent (reaching
a level of every 5.3 instructions with ‘Cf’).

5.2 Discussion

For equivalent cache, branch-prediction, and forwarding
configurations (Fig. 2), both dMT choices obtain a

dramatically better throughput than the non-multithreaded
organisation. This is perhaps not a fair comparison, because
dMT has a small amount of extra hardware. However, it
shows that dMT does indeed recapture stall cycles and uses
them to boost throughput, and it shows that adding dMT can
improve throughput substantially; dramatically so for a
design without data caches. For two-way dMT, it boosts
throughput by 73% in a processor with no data cache, by
more than 24% in the small cache configuration, and by
slightly less than 23% in the large cache configuration, all of
which are certainly more than any performance loss due to
extra latency introduced by the multiplexors after pipeline
stages. For dMT, sometimes the blocking policy outper-
forms the prioritised policy and vice-versa, but overall, the
difference is small, a few percent. This is due to specific
reactions to cache contention. The prioritised policy will be
useful for real-time workloads where a specific thread must
complete in a specified amount of time or requires some
other determinism. The prioritised policy replicates dedi-
cated pipeline behaviour for the prioritised thread except for
the absence of branch prediction (which in any case is
probably not desirable for workloads requiring determin-
ism) and except for the possibility of cache contention
between the dMT threads.

Note that, in the large cache configuration, dMT comes
quite close to the ideal of 1 IPC, even though dMT omits a
branch predictor. Also note that dMT outperforms BMT for
all these configurations.

Figures 3 and 4 compare different organisations that
highlight the tradeoffs that multithreading permits. We find
that dMT can be used in place of a dynamic branch predictor
or to allow substantially smaller caches. Table 1 shows that
dMT can also be used in place of forwarding, although this
seems an unlikely design choice.

Of course, with only two threads, dMT is not able to
recapture all stall cycles. This means that in the extreme
cases we examine, where the MT configurations are
substantially handicapped compared to the baseline,
dMT’s performance is outpaced by the baseline architec-
ture. A few of these are shown in Table 1, but since the
results are negative, we omit corresponding graphs in the
interest of space. While dMT is not a cure-all, its ability to
recapture stall cycles is impressive, and our results suggest
that it makes possible many interesting hardware tradeoffs.

Figure 3 shows that block multithreading can be used to
replace a small, 128-entry, 2-bit bimodal predictor. For
base-cfb compared to MT-cf, dMT is superior for all but two

Fig. 3 Comparison of baseline, dMT, and BMT configurations with similar organisations except lack of branch prediction for MT

a Base-cfb compared to MT-cf
b Base-Cfb compared to MT-Cf

Fig. 4 Comparison of baseline, dMT, and BMT configurations
with similar organisations except that the MT configuration has
less cache (base Cf vs. MT-cf)
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Fig. 5 Comparison of base and dMT configurations for a larger cache miss penalty of ten cycles; dMT5 is the performance of the
five-cycle miss penalty configuration from previous graphs

a dMT-cf compared to base-cf
b dMT-f compared to base-f
c dMT-Cf compared to base-Cf
d dMT-cf compard to base-Cf

Fig. 6 Comparison of base and dMT configurations for four threads

a dMT-cf compared to base-cf
b dMT-f compared to base-f
c dMT-Cf compared to base-Cf
d dMT-cf compared to base-Cf
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benchmark pairs. For base-Cfb compared to MT-Cf, dMT is
superior for all but one benchmark pair, jpeg-decode &
g721-decode, which is a tie. This means that dMT is
successful in finding useful work in the alternate thread
when a branch is detected. From a hardware cost standpoint,
let us assume that the branch predictor and register file both
use minimum-size transistors [21]. Each register-file cell
will still be twice as large as than a branch predictor cell,
due to the registers’ extra read/write ports, so the extra
register file is equivalent to 4096 branch-predictor bits.
Even if each pipeline-register cell is four times larger than a
branch-predictor cell, two-way dMT and the baseline end up
almost the same in terms of hardware cost. Four-way dMT,
however, will be somewhat more expensive, because the
extra register files and pipeline registers will more than
consume the hardware savings of eliminating the small
branch predictor.

Figure 4 shows that dMT can be used to reduce cache
sizes. ‘dMT-cf’ is better than ‘base-Cf’, usually substan-
tially so, for all but two benchmark pairs. This means that
dMT can be used to reduce, without penalising throughput,
the cache configuration in an aggressive system like the
ColdFire v4, with a 16-kB I-cache and 8-kB D-cache, both
four-way associative, down to a more modest 8-kB I-cache
and 2-kB D-cache, both two-way associative. Indeed, even
after this reduction in cache, dMT’s throughput is still
10.4% better. From a hardware cost standpoint, let us
assume that the cache and register file use minimum-size
transistors. The extra register file is equivalent to 4096 cache
bits. However, the reduction in cache size is 124 672 bits.
Even when the extra register files and pipeline registers are
accounted for, both two-way and four-way dMT are clearly
still a substantial net win from a hardware standpoint.

From a throughput standpoint, neither dMT nor BMT can
be used to replace the D-cache entirely, as seen in Table 1
for ‘base-cf’ compared to ‘MT-f’, where dMT is 5% worse

and BMT more so. It remains to be seen whether a very tiny
D-cache might suffice for dMT. It is also interesting to note
in the ‘base-Cfb’ compared to ‘MT-cf’ comparison in
Table 1 that reducing both the I- and D-cache sizes and also
removing the dynamic branch predictor incur only modest
reductions in throughput for many of the benchmarks; on
average, dMT is only 7.6% worse.

Adding the required multiplexor between the multiple
pipeline registers required by dMT may slow the clock rate.
Since adjusting clock rate to accommodate these multi-
plexors is equivalent to lowering IPC for the same clock
rate, the IPC improvements in Table 1 show how much
change in clock rate can be accommodated. For example, if
we assume that dMT will reduce the clock rate by 10%,
adding dMT instead of a branch predictor (‘base-cfb’
compared to ‘dMT-cf’ or ‘base-Cfb’ compared to ‘dMT-
Cf’) may or may not be worthwhile, but even with a possible
10% penalty due to extra hardware, dMT still improves
throughput substantially for similar configurations (‘base-f’
compared to ‘dMT-f’, ‘base-cf’ compared to ‘dMT-cf’, and
‘base-Cf’ compared to ‘dMT-Cf’), and dMT allows use of
smaller caches without reducing throughput (‘base-Cf’
compared to ‘dMT-cf’). If the multiplexing can be
implemented with less overhead, other configurations may
also become competitive. Of course, it may be that even
small reductions in throughput would be tolerated if enough
hardware savings can be realised, for example the branch
predictor (‘base-cfb’ compared to ‘dMT-cf’ and ‘base-Cfb’
compared to ‘dMT-Cf’).

To explore sensitivity to cache miss latency, Fig. 5 shows
the performance of similar base and dMT configurations,
except that dMT is evaluated with both five- and ten-cycle
miss penalties. The larger miss penalty still exhibits
positive, albeit diminishing returns from dMT. This
Figure shows that dMT will maintain the same relative
performance edge at least for modestly higher-latency L2
caches or for fast embedded DRAM.

Figure 6 gives the performance of dMT with four thread
contexts. Here we formed quadruplets by selecting a mix of
threads for which we observed varying performances in the
two-thread experiments. These results show that running a
high number of threads can come quite close to masking the
penalty of an L1 cache absence, simply by switching the
active thread as necessary. There is even less need for cache
for this configuration, since the large cache configuration
does not outperform the small cache configuration by a
reasonable margin. Of course, there are other ways to run

Table 1: Baseline against MT comparisons. D IPC columns give the throughout improvement for a two-way dMT with a
five-cycle miss penalty, a two-way dMT with a ten-cycle miss penalty, and a four-way dMT with a five-cycle miss penalty
(arithmetic means)

Baseline configuration MT configuration Graph D IPC, % D IPC(dmt10), % D IPC(4X), %

Base-f MT-f Fig. 2 73.2 80.2 139.0

Base-cf MT-cf Fig. 2 24.5 9.4 43.9

Base-Cf MT-Cf Fig. 2 22.6 15.2 33.8

Base-cfb MT-cf Fig. 3 4.2 26.0 23.6

Base-Cfb MT-Cf Fig. 3 2.6 24.0 12.9

Base-cf MT-f na 24.9 223.7 37.8

Base-Cf MT-cf Fig. 4 10.4 26.4 17.2

Base-Cfb MT-cf na 27.6 222.4 8.7

Base-f MT-0 na 44.3 48.7 84.7

Base-cf MT-0 na 220.7 237.2 12.3

Table 2: Instructions between dMT instruction-stream
switches (arithmetic mean)

dMT configuration Instructions per switch

0 1.72

f 2.22

cf 3.72

Cf 5.28
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the same four threads, for example two dMT processors
each running two threads. This will give a higher per thread
performance but exhibit more hardware cost. This illustrates
the range of interesting tradeoffs that dMT opens up, an
extensive study of which is another interesting question for
future work.

6 Conclusions

We have presented dMT, an inexpensive technique for
sharing a single pipeline between multiple active threads.
The addition of duplicated pipeline registers has been shown
to enable the capture of in-flight instructions anywhere in
the pipeline. This organisation is thus able to respond not
only to data hazards and branch delays, but also to misses in
the primary I-cache and D-cache. This combines beneficial
aspects of BMT [1] and Runahead [3], and allows attractive
hardware tradeoffs. We have also shown that dMT can
reclaim a significant amount of wasted cycles. For
processors without data caches, dMT boosts throughput by
71.6% over a non-multithreaded organisation, and for
processors with cache, dMT boosts throughput by
23–24%. Better yet, instead of using dMT to increase the
throughput of more complex, single-threaded configur-
ations, it can be used, without reducing throughput, to
eliminate the dynamic branch predictor or to reduce
instruction- and data-cache sizes.

Our results also show that dMT is consistently superior to
BMT, because dMT handles a wider variety of stall
conditions. Furthermore, like the original BMT concept,
our design can take advantage of each of the thread
switching policies. Of particular note is the prioritised
switching policy, which returns control to the prioritised
thread immediately after its stall condition is resolved,
making dMT viable in real-time systems.

Our results suggest a variety of interesting avenues for
future work. Incorporating and evaluating branch prediction
in a dMT pipeline, and evaluating multithreaded, data-
sharing programs are both interesting questions. It would
also be interesting to evaluate the benefits of dMT from an
energy-efficiency standpoint. Finally, dMT opens up a new
dimension of design, allowing CPUs with various degrees of
dMT to be combined into a multiprocessor system, and the
proper balance of dMT with the number of processors is an
open question.
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