
Federation: Repurposing Scalar Cores for Out-of-Order
Instruction Issue

David Tarjan, Michael Boyer, and Kevin Skadron
University of Virginia, Department of Computer Science

Charlottesville, VA 22904
{dtarjan,boyer,skadron}@cs.virginia.edu

ABSTRACT

Future SoCs will contain multiple cores. For workloads with
significant parallelism, prior work has shown the benefit of
many small, multi-threaded, scalar cores. For workloads
that require better single-thread performance, a dedicated,
larger core can help but comes at a large opportunity cost
in the number of scalar cores that could be provisioned in-
stead. This paper proposes a way to repurpose a pair of
scalar cores into a 2-way out-of-order issue core with mini-
mal area overhead. “Federating”scalar cores in this way nev-
ertheless achieves comparable performance to a dedicated
out-of-order core and dissipates less power as well.

Categories and Subject Descriptors

C.1.2 [Multiple Data Stream Architectures]: Multiple-
instruction-stream, multiple-data-stream processors (MIMD)

General Terms

Design, Performance

Keywords

Federation, CMP, multicore, out-of-order

1. INTRODUCTION
Embedded systems composed of multiple processing cores

are becoming increasingly popular. There is a tradeoff be-
tween the complexity of each individual core and the total
number of cores that can fit within a given area. For ap-
plications with sufficient parallelism, Davis et al. [5] and
Carmean [4] show that maximum aggregate throughput is
achieved by using a large number of highly multi-threaded
scalar cores. However, for applications with limited par-
allelism or tasks that require low latency, performance is
improved with a smaller number of more complex cores.

How can these two approaches be reconciled? To improve
the single-thread performance of an existing throughput-
oriented system, one approach would be to add a dedicated
out-of-order (OO) core to the existing scalar cores. Unfortu-
nately, for a given die area, this dedicated core comes at the
cost of multiple, multi-threaded scalar cores, reducing the
aggregate throughput of the system. Simultaneous multi-
threading (SMT) of an OO core cannot compensate for the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8-13, Anaheim, California, USA
Copyright 2008 ACM 978-1-60558-115-6/08/0006 ...$5.00.

lost thread capacity because the area and power cost per
context is much higher than with scalar cores [5].

Instead, we show that a dedicated out-of-order core is not
needed. Federation uses very modest additional hardware
to allow a pair of scalar cores to act as a 2-way OO core.
This achieves 89% the performance of a dedicated 2-way
OO core without the associated area cost. A dedicated 2-
way OO core costs 2.65 multi-threaded scalar cores while
the extra hardware to federate a pair of scalar cores into an
OO core costs less than 0.08 scalar cores.

The key insights that make federation work are that it is
possible to approximate traditional out-of-order issue with
much more efficient hardware structures, replacing CAMs
and broadcast networks with simple lookup tables; and that
these “lightweight” OO structures can be placed between
a pair of scalar cores and use the fetch, decode, register-
file, cache, and datapath of the scalar cores to achieve an
ensemble that is competitive in performance with an OO
core. Merely using these lightweight OO structures in a
dedicated OO core is not sufficient; this only reduces the area
cost of the dedicated core from 2.65 to 2.06 scalar cores. The
key is that appending these lightweight structures between
two scalar cores provides OO execution with minimal cost.

Federated cores are best suited for workloads which usu-
ally need high throughput but sometimes exhibit limited
parallelism. Federation provides faster, more energy-efficient
cores for the latter case without sacrificing area that would
reduce thread capacity for the former case.

2. RELATEDWORK
Previous work on combining several smaller cores into a

single larger, more capable core was performed by İpek et

al. [8] and Kim et al. [10]. These designs focus on maxi-
mizing performance rather than minimizing area or power
and assume that the underlying cores already support OO
execution. The Voltron architecture from Zhong et al. [15]
allows multiple in-order VLIW cores of a chip multiproces-
sor (CMP) to combine into a larger VLIW core. Both Kim
and Zhong’s work require special compilers and ISAs. Fed-
eration does not assume an advanced compiler and is appli-
cable to existing RISC, CISC, and VLIW ISAs. All these
techniques, including federation, are forms of dynamic cores
as advocated by Hill and Marty [6].

3. OUT-OF-ORDER PIPELINE
To demonstrate the benefits of our approach, we augment

a baseline multicore system to support federation. We as-
sume that the baseline architecture is throughput-oriented
and is therefore composed of multi-threaded, scalar cores.
Specifically, we assume that each core contains four hard-

����� ����� 	

���

����������� ������� ��� ��������� ������������������
Figure 1: The pipeline of a federated core, with the
new pipeline stages in shaded boxes.���� !"#$ %� !"#$%$" &$'()*$ +, (-$./ 0-* (1 -$*#+$!2)3 4 56�� !"#$ %� !"#$%$" &$'()*$ +, (-$./ 0-* (1 -$*#+$!2)3 4 56&$74 --8" �0) �0)�0)9: ;< =9: ;< >
Figure 2: A simplified floorplan showing the ar-
rangement of two in-order cores with the new struc-
tures necessary for federation in the area between
the cores.

ware thread-contexts. But as Table 4 shows, the area over-
head of multi-threading is not very large, making federation
an attractive option even for single-threaded cores.

The main goal of federation is to add OO execution capa-
bility to the existing in-order cores with as little area over-
head as possible. Thus, each federated core is relatively
simple compared to many dedicated OO implementations.
Specifically, each federated core is single-threaded and two-
way issue with a 32-entry instruction window. The federated
cores implement the pipeline shown in Figure 1, with the ad-
ditional pipeline stages not present in the baseline in-order
cores shown in shaded boxes. A simplified view of a possible
floorplan is shown in Figure 2.

In order to minimize the area overhead of federation, we
strive to avoid adding any significant CAMs or structures
with a large number of read and write ports. Table 1 lists
the sizes of the new structures required to support OO exe-
cution, as well as whether or not each structure could poten-
tially be implemented by re-using the existing register file of
the underlying multi-threaded core, while Table 2 lists the
new wiring required. The following subsections provide an
overview of the operation of each pipeline stage in the fed-
erated core, along with a discussion of the design tradeoffs
that were made. Additional details appear in [14].

Branch Prediction: Branch prediction is implemented
using Next Line and Set prediction (NLS) [3, 9] instead of a
branch target buffer.

Fetch: The fetch stage starts by receiving a predicted
cache line from the NLS, a return address from the RAS,
or, in the case of a misprediction, a corrected PC from the
branch unit in the execute stage. It then initiates the fetch
by forwarding this request to the instruction cache. When
federated, the individual instructions caches of the two cores
are combined into a single cache with double the associativ-
ity and random replacement.

Decode: Since each core can only decode a single instruc-
tion, the second instruction (if valid) is sent to the second
core for decoding. So that this extra wire does not influence
cycle time, we allocate an extra pipeline stage for copying

Structure
Size

Type
Reuses

(Bits) RF
Branch Predictor (NLS) 6,144 SRAM No

Branch Predictor (Bimodal) 4,096 SRAM No
Unified Register File 4,096 Reg Yes
Smaller Structures 3056 both No

Worst Case Total (Bits)
10,496 SRAM
6,844 Register

Assumed Total (Bits)
10,496 SRAM
1,852 Register

Table 1: Area estimates for the new structures
added to the baseline in-order processor. The worst
case total assumes that none of the structures can
reuse the register file.

New Wiring Width
Cross Core Value Copying 2 * (64 + 6) bits
Mem Unit to 2nd D-Cache 2 * 64 bits
Cross I-Cache to Decode 32 bits

Decode to Allocate 64 bits

Table 2: The size of wires that must be added to the
baseline core in order to support federation.

the instruction to the second core, buffering the first instruc-
tion in a pipeline register.

Allocate: During the allocate stage, each instruction
checks for space in several structures required for OO ex-
ecution and stalls the frontend if space is not available.

Rename: Because branches are only resolved at commit
time, there is no need to checkpoint the state of the RAT for
every branch. If a branch misprediction or another kind of
exception is detected, the pipeline is flushed and a bit asso-
ciated with each RAT entry is set to indicate that the most
up-to-date version of the register is in the non-speculative
RAT. As soon as an instruction in the rename stage writes
to a particular register, this bit is reset to indicate that the
speculative version is the most up to date.

Issue: The area and power constraints of our design pre-
vent the implementation of a traditional CAM-based issue
queue (IQ). Instead, we use a simple table in which con-
sumers“subscribe”to their producers by writing their IQ po-
sition into one of the producer’s IQ entry’s consumer fields,
similar to a scheme evaluated by Huang et al. [7].

In addition to the usual opcode, register ids, and imme-
diates, each IQ entry also holds several consumer id fields
and two ready bits; the ready bits are set when the left and
right operands become available, respectively. When issued,
an instruction checks its consumer fields and sets the appro-
priate ready bits for its consumer(s). If both input operands
are ready (i.e., both ready bits are set), the ready signal for
that entry is sent to the scheduler. The number of consumer
fields per entry is a design choice; we found that having only
two fields per entry had a negligible impact on performance.

The normal scheduling logic for an out-of-order proces-
sor attempts to issue the oldest instructions first. Achiev-
ing this age-prioritization is costly in terms of both area
and power. Instead, we implement a much simpler pseudo-
random scheduler [13] which uses a simple static priority
encoder and does not take into account the age of instruc-
tions. For a small instruction window, this simplified sched-
uler only reduces performance by around 1%.

For simplicity, we use a näıve scheduling algorithm that
only schedules instructions on core one if core zero is already
busy. Additionally, all load and store instructions are issued

only to core zero to avoid the need to maintain memory
ordering across the two cores.

Execute: Each instruction executes normally on the core
to which it was assigned during the issue stage. The only
change to the bypass network is the addition of circuitry for
copying the result to the register file of the opposite core.

Memory Access: The two individual data caches are
merged into a unified cache in the same way as the instruc-
tion caches, by doubling the associativity and assigning half
of the ways of the unified cache to each individual cache.

To eliminate the LSQ, we employ a similar approach to the
Store Vulnerability Window (SVW) [12] by using a Memory
Alias Table (MAT), which provides approximately the same
functionality and performance as the SVW while using an
order of magnitude fewer bits per entry. We do not allow
memory bypassing; instead, we flush the pipeline when we
detect that a load and a store instruction which access the
same address have executed out-of-order. The MAT is a
simple hash table indexed by memory address, where each
entry is a small counter which is incremented by a load on
issue and decremented on commit. Stores check the MAT on
commit and cause a pipeline flush if they find their counter
to be non-zero, which indicates that a younger load has col-
lided with the store and received a stale value. Sharing the
most significant counter bits between neighboring entries re-
duces the cost to less than two bits per entry. We found that
a MAT reduces performance by only 2% compared to a large
LSQ—for further details, see [14].

Write Back: Similar to the Alpha 21264 [9], all writes go
to the register files on both cores to avoid generating explicit
copy instructions for consumers on the other core.

Commit: Branch mispredictions are handled at commit
time, obviating the need to maintain multiple snapshots of
the speculative rename table or walk the active list in the
case of a branch misprediction. Commit time branch recov-
ery reduces performance by 5%. This cost can be reduced
by handling mispredictions at branch resolution. Adding
just two snaphshots of the rename table almost completely
eliminates this performance degradation. However, since our
focus is on simplicity, results in this paper assume commit
time branch recovery for the federated core.

4. SIMULATION SETUP
We evaluate our design using a simulator based on the

SimpleScalar 3.0 framework [1] with Wattch extensions [2].
Static power has been adjusted to be 25% of max power,
which is closer to recently reported data [11]. We use the
full SPEC2000 suite with reference inputs compiled for the
Alpha instruction set. See [14] for more details.

5. RESULTS
The federated core is compared against: the baseline scalar,

in-order core from which the federated core is built; a 2-way
in-order core, designated federated in-order, built from two
scalar cores; and dedicated 2-way and 4-way OO cores. The
parameters of the non-federated cores are shown in Table 3.

5.1 Area Impact of Federation
To estimate realistic sizes for the different units of a core,

we measured the sizes of the different functional units of an

Parameter scalar 2-way 4-way
Active List none 32 128

IQ none 16 32
LSQ none 16 64

Data Cache 8KB 16KB 32KB
Instr. Cache 16KB 32KB 32KB
Unified L2 256KB 256KB 2MB

BTB none 512 4K
Dir Pred not-taken 2K bimodal 16K tour.
Memory 100 Cycles, 64-Bit

Table 3: Simulation parameters for different cores.

Core Size in mm2

1-way in-order 1.739
1-way in-order MT 1.914

Federated OO 3.970
Lightweight 2-way OO 3.945

2-way OO 5.067
4-way OO 11.189

Table 4: Estimated core sizes in 45nm technology.

AMD Opteron processor in 130nm technology from a pub-
licly available die photo. We could only account for about
70% of the total area, the rest being x86-specific, system
level circuits, or unidentifiable. We scaled the functional
unit areas to 45nm, assuming a 0.7 scaling factor per gen-
eration. The final area estimates for the different cores,
shown in Table 4, were calculated from the areas of their
constituent units, scaled with capacity and port numbers.
The “lightweight” core is a dedicated 2-way OO core with
the same area-efficient hardware resources as the federated
core. It is interesting to note that the ratio of the area of
the 4-way OO core to the area of the in-order core is close
to the 5-to-1 ratio in [4], even though our assumptions and
baseline design are somewhat different.

The area of the federated core was calculated by adding
the areas of all the major new functional units to the area of
two scalar in-order cores. We estimated the area needed for
the major inter-core wiring listed in Table 2 by calculating
the width of the widest new unit (the integer and floating
point rename tables laid out side-by-side) and assuming the
same 280nm wire pitch used in [8].

Based on the final area estimate, the overall area overhead
of federation is only 3.7% per pair of scalar cores. We at-
tempted to estimate this overhead as precisely as possible;
however, the point here is not the exact number, but the
order of magnitude. Suppose, for example, that the over-
head were 10% instead of 3.7% per pair. Then federating
32 cores (16 pairs) would cost 160%—less than two scalar
cores—but could approximately double performance for up
to 16 threads. A single OO core costs more (2.65 scalar
cores) and helps much fewer threads (even with SMT, the
OO core would at best accommodate 2–4 threads).

5.2 Performance-Energy Impact of Federation
The overall performance and average power consumption

of the different core types is shown in Figure 3. The 4-way
OO core achieves about twice the IPC of the federated core
but uses about three times the power, while the dedicated
2-way OO core achieves 12.9% higher performance than the
federated core but uses 30.1% more power. The dedicated
in-order core and the federated in-order core have substan-
tially lower performance, which is not fully offset by their
lower power consumption. This can be partially attributed
to the fact that all cores—except for the 4-way OO core
which has larger caches—have similar amounts of leakage in

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

scalar IO federated IO federated OO 2-way OO 4-way OO

IPC Power Energy Efficiency Area-Energy Efficiency 3.32

Figure 3: Arithmetic mean IPC, power, BIPS
3

Watt
, and

BIPS
3

Watt·mm2 , all normalized to federated OO.

their caches and thus the savings in active power are offset
to some degree by the static leakage power.

Figure 3 also shows the average energy efficiency, expressed
in BIPS3/Watt, for the different core types. The high-
performance 4-way OO core has a large advantage over the
smaller cores in energy efficiency, because it is able to use
its higher power to achieve substantially better performance.
The dedicated 2-way OO core has better efficiency than the
federated OO core in SpecInt, but lower efficiency in SpecFP.
The two in-order cores have the lowest energy efficiency, even
though they have the lowest absolute power consumption.
Once again, this is mostly due to leakage power, which pe-
nalizes cores with longer execution times.

To measure both the power- and area-efficiency of the dif-

ferent cores, Figure 3 also shows the BIPS
3

Watt·mm2 of the differ-
ent configurations. The purpose of this metric is to account

for the area cost of attaining a certain BIPS
3

Watt
value. In fact,

this metric does not even show federation’s true benefits,
since most of the area of the federated core is reused from
underlying scalar cores. In terms of BIPS

3

Watt·mm2 , federation
outperforms the dedicated, traditional 2-way OO core by
13.3% and the 4-way core by 30%.

6. CONCLUSIONS
Multicore embedded systems composed of many simple

but multi-threaded cores will need the ability to cope with
limited thread count by boosting their per-thread perfor-
mance. This paper shows how 2-way OO capability can be
built from very simple, in-order cores, with 92.4% better per-
formance than the in-order core, 30% lower average power
than a dedicated 2-way OO core, and competitive energy
efficiency compared to a 2-way OO core.

Using a subscription-based issue queue and eliminating
the load/store queue in favor of the memory alias table,
we have shown that no major CAM-based structures are
needed to make an OO pipeline work. Federation requires
several new structures, but with very low area overhead—
less than 2KB of new SRAM tables and less than 0.25KB
of new register-type structures in the pipeline per pair of
cores—only 3.7% area overhead per pair. Put another way,
for a set of 32 scalar cores, augmenting each pair to support
federation only adds an aggregate area equivalent to 0.59
cores or 0.373 MB of L2 cache. Federation provides greater
energy efficiency per unit area than the dedicated cores—

specifically, 13.3% better BIPS
3

Watt·mm2 than a 2-way OO core
and 30% better than a 4-way OO core.

The option of adding federation removes the need to choose
between high throughput with many small cores or high

single-thread performance with aggressive OO cores and the
associated problems of selecting a fixed partitioning among
some combination of these. This is particularly helpful in the
presence of limited parallelism as it allows a multicore chip
to trade off throughput for latency on a very fine-grained
level at runtime. Federation thus allows multicore SoCs to
provide higher performance across a wider spectrum of work-
loads with different amounts of thread-level parallelism, as
well as deal with workloads which exhibit different amounts
of parallelism across different phases of execution.

7. ACKNOWLEDGMENTS
This work was supported by NSF grant nos. CCR-0306404,

CNS-0509245, and IIS-0612049. We would also like to thank
Michael Frank, Doug Burger, Mircea Stan, Jeremy Sheaffer
and the anonymous reviewers for their helpful comments.

8. REFERENCES
[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An

Infrastructure for Computer System Modeling. IEEE

Computer, pages 59–67, Feb. 2002.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
Framework for Architectural-Level Power Analysis
and Optimizations. In ISCA, 2000.

[3] B. Calder and D. Grunwald. Next Cache Line and Set
Prediction. In ISCA, 1995.

[4] D. Carmean. Future CPU Architectures: The Shift
from Traditional Models. Intel Higher Education
Lecture Series.

[5] J. D. Davis, J. Laudon, and K. Olukotun. Maximizing
CMP Throughput with Mediocre Cores. In PACT,
2005.

[6] M. D. Hill and M. R. Marty. Amdahl’s Law in the
Multicore Era. IEEE Computer. To appear.

[7] M. Huang, J. Renau, and J. Torrellas. Energy-Efficient
Hybrid Wakeup Logic. In ISLPED, 2002.

[8] E. İpek, M. Kırman, N. Kırman, and J. Mart́ınez.
Core Fusion: Accommodating Software Diversity in
Chip Multiprocessors. In ISCA, 2007.

[9] R. Kessler, E. McLellan, and D. Webb. The Alpha
21264 Microprocessor Architecture. In ICCD, 1998.

[10] C. Kim, S. Sethumadhavan, M. S. Govindan,
N. Ranganathan, D. Gulati, D. Burger, and S. W.
Keckler. Composable Lightweight Processors. In
MICRO, 2007.

[11] F. J. Mesa-Martinez, J. Nayfach-Battilan, and
J. Renau. Power Model Validation Through Thermal
Measurements. In ISCA, 2007.

[12] A. Roth. Store Vulnerability Window (SVW):
Re-Execution Filtering for Enhanced Load
Optimization. In ISCA, 2005.

[13] P. G. Sassone, J. R. II, E. Brekelbaum, G. H. Loh, and
B. Black. Matrix Scheduler Reloaded. In ISCA, 2007.

[14] D. Tarjan, M. Boyer, and K. Skadron. Federation:
Out-of-Order Execution using Simple In-Order Cores.
Technical Report CS-2007-11, Dept. of Comp. Sci.,
Univ. of Virginia, Aug. 2007.

[15] H. Zhong, S. A. Lieberman, and S. A. Mahlke.
Extending Multicore Architectures to Exploit Hybrid
parallelism in Single-thread Applications. In HPCA,
2007.

