
Dynamic Heterogeneous Scheduling Decisions Using
Historical Runtime Data

Chris Gregg, Michael Boyer, Kim Hazelwood, and Kevin Skadron
University of Virginia Computer Engineering Labs

Abstract. Heterogeneous systems often employ processing units with a wide
spectrum of performance capabilities. Allowing individual applications to make
greedy local scheduling decisions leads to imbalance, with underutilization of
some devices and excessive contention for others. If we instead allow the system
to make global scheduling decisions and assign some applications to a slower
device, we can both increase overall system throughput and decrease individual
application runtimes.
We present a method for dynamically scheduling applications running on het-
erogeneous platforms in order to maximize overall throughput. The key to our
approach is accurately estimating when an application would finish execution
on a given device based on historical runtime information, allowing us to make
scheduling decisions that are both globally and locally efficient. We evaluate our
approach with a set of OpenCL applications running on a system with a mul-
ticore CPU and a discrete GPU. We show that scheduling decisions based on
historical data can decrease the total runtime by 39% over GPU-only scheduling
and 29% over scheduling that places each application on its preferred device.

1 Introduction

Heterogeneous computing consists of applications running on a platform that has more
than one computational unit with different architectures, such as a multi-core CPU and
a many-core GPU. Using language frameworks such as OpenCL and software platforms
such as Twin Peaks [6], applications running on the CPU launch kernels that can run
on either the CPU or the GPU. Generally these kernels perform better on the GPU
as they are optimized for a GPU’s highly parallel architecture and GPUs typically
provide higher peak throughput. Therefore, applications preferentially schedule kernels
on GPUs, leading to device contention and limiting overall throughput. In some cases,
a better scheduling decision runs some kernels on the CPU, and even though they
take longer than they would if run on the GPU, they still finish faster than if they
were to wait for the GPU to be free. Furthermore, by utilizing all available processors
for computational work, the total throughput of the system is increased over a static
schedule that runs each kernel on the fastest device.

This dynamic approach to heterogeneous scheduling hinges on the solution to the
problem of being able to predict how long an application will run when it is assigned1

to a given device. We propose that by capturing and using historical runtime informa-
tion, a scheduling algorithm is able to make a decision about the tradeoff of forcing an
application to run its kernel on a slower device against waiting for the faster device to
become available. As a database of application runtimes gets built, scheduling decisions
become better. In this work, we show that the database can be as simple as keeping
an average runtime for each application, along with information about the input data
size. From this information we also show that a dynamic scheduler can improve overall

1 We describe the process of specifying on which device an application will run its kernel(s)
as assigning an application to a device. Note that in the case of a GPU, the serial phases of
the application will still run on the CPU, and only the kernel(s) will execute on the GPU.

throughput considerably over a statically scheduled solution that only assigns applica-
tions to the GPU, and can also improve throughput against a scheduler that assigns
an application to whichever device runs it fastest.

Application runtimes also depend on the amount of data that must be processed.
Being able to predict the runtime of an application with a different data size than that
which is captured in the historical database is also an important factor. We show that
it is possible to look at trends in a small data set and predict runtimes for different
input sizes for the same application. Because the scheduling methodology we describe
analyzes a queue of applications that are ready to launch, some applications later in the
queue may finish prior to those that were placed into the queue earlier. However, the
algorithm we describe does not unfairly penalize individual applications, and we show
that applications continue to progress in the queue (i.e., they are not starved), and they
will almost always finish no later than they would have finished using other scheduling
methods that launch application in the order they were placed into the queue. We
investigate the fairness of the algorithm in Section 4.1.

The contributions of this paper are as follows:

– We present an algorithm that analyzes a queue of applications and assigns them
to devices of a heterogeneous system such that overall computational throughput
is increased over a statically scheduled solution. We demonstrate that even if all
applications natively run faster when assigned to one device, there are situations
where assigning an application to a slower device allows that application to complete
before it would have if it had waited for the faster device. Furthermore, this solution
preserves fairness for an individual’s placement in the queue.

– We describe a history database structure that collects and averages runtime data
for each application, providing the information to the scheduling algorithm so it
can predict when devices will be free.

– We demonstrate how runtime predictions for applications with unique data inputs
can be made from data input size differences.

– We implement the scheduler on a set of sixteen OpenCL benchmark applications
and demonstrate the improvement of the algorithm over other scheduling decisions
for a system that has a CPU and a GPU. We also show that the scheduler pro-
duces an improved schedule and a high utilization for both devices even when all
applications individually run faster when assigned to the GPU.

2 Problem Definition

Scheduling computational work for heterogeneous computer systems is substantially
different than scheduling for systems with homogenous processing cores, and in this
work we focus on two of these differences. The first difference is that an application can
have a drastically different running time when assigned to different device. Reports of
GPU kernels running one hundred times faster than comparable CPU kernels are in
the literature (for example, Che et al. [4] and Ryoo et al. [13]), although more recent
research has shown that carefully controlled experiments demonstrate speedups that
generally fall in the 2x to 10x range [9]. Because of these runtime differences, assigning
an application to one of two devices necessitates knowing which device will allow the
application to run faster.

A second difference is that GPU processors do not have the capability to time-slice
workloads; i.e., kernels that are launched on a GPU run sequentially, one at a time.
The latest GPUs have limited ability for multiple kernels to run in parallel, but there
must be careful coordination to ensure that all kernels and their data fit onto the card,

and that they do not have any dependencies. Without the ability to time-slice, a kernel
launched behind other kernels must wait until all other kernels finish completely before
starting its own work. In a time-sliced environment, a scheduler would have the ability
to interleave kernels, enabling kernels with a small amount of work to finish in a shorter
time period than if they had to wait for longer kernels to finish before running. The
algorithm we describe in Section 4 provides a similar result, because fast applications
farther back in the queue end up assigned to the device where they will finish first.

Typically, when using a language framework such as OpenCL or CUDA, an appli-
cation that wishes to run a kernel on a heterogeneous platform queries the system to
determine which devices are available, and it preferentially chooses the device that will
run the kernel the fastest. In most cases, this is a GPU, and the kernel is optimized to
run on this device. Applications therefore tend to all choose the same device, and if a
number of applications attempt to launch kernels concurrently, this leads to contention
on a device. Furthermore, this type of scheduling ignores devices on the system that
can potentially run the kernels and finish them before they would be finished if they
were launched on the faster device in queue-order. We propose that instead of letting
applications determine where kernels should be launched, a scheduler instead deter-
mines the best device at a given time for each kernel by analyzing predicted runtimes
of the applications. This scheduler has historical runtime information about the other
applications in the queue, and knows which kernels, if any, are currently running.

Given a set of queued applications that are not queued for a specific device, the
scheduling problem becomes one of judiciously assigning the applications to devices
to maximize computational throughput while remaining fair to the queue order. Many
factors can go into this scheduling decision for a given application, including the number
of applications ahead in the queue, the application or applications that are currently
assigned to the devices on the system and their runtimes, how much data must be
transferred between device memory systems, and the relative speed of the application
when assigned to each device in the system.

One assumption that we make in order to implement our scheduling algorithm
is that kernels can be run on more than one device in a system. Our implementation
utilizes OpenCL, which supports running the same kernel across both CPUs and GPUs.
Kernels can be compiled for available devices prior to or at runtime, and when a kernel
is launched onto a specific device, the OpenCL runtime uses the correct binary for
that device. Not all frameworks support running kernels on different devices, however
our scheme allows for implementations that have separate versions of a kernel for each
available device (e.g., one written in CUDA for GPUs and in OpenMP for CPUs),
and the runtime similarly chooses the correct binary once a device decision has been
made. Indeed, if an application developer knows that a program is going to be run
on a heterogeneous system, it might be appropriate to provide optimized copies of
the kernels for all available computational devices. We believe that in the future more
frameworks will be cross-compilable for multiple devices (as OpenCL is already), and
more applications will ship with kernels that are able to run on more than one device.

To summarize, there are two primary differences between scheduling for a homoge-
neous set of devices and a heterogeneous set of devices: (1) on the latter, the running
time for the same application can be widely different for each device; (2) GPUs do
not have the ability to time slice kernels, and a FIFO queue may penalize applications
that finish quickly because they have to wait for longer running kernels to complete.
We address both problems by using a historical database that contains runtimes for
applications on each device and determining a schedule that runs applications on the
device in which they will finish first.

3 Collecting and Using Historical Runtime Data

Our method for heterogeneous scheduling relies on historical data about application
runtimes. We propose a method for collecting and amalgamating this data such that it
is accessible quickly and provides enough information about a given application to be
useful for making predictions about how long an application will take when assigned to
a device. Table 1 shows the lightweight and extensible data structure we use to store
the data. The data structure presented in Table 1 is not exhaustive, but we believe
that in this form it is both robust enough to provide worthwhile data and lightweight
enough to be useful for fast access.

An application is uniquely defined by a combination of appName, device, and
appVars. The count value shows how many times the application with a given set
of inputs has been assigned to the device, and is used to calculate a running average
(appAvg) and standard deviation (appStdev) for the historical runtimes. In order to
calculate the running standard deviation, the sum of squares of differences from the
mean (appM2) is kept as well. The minimum and maximum runtimes are kept in or-
der to maintain a high and low bound for the running times. The dataRecvTime and
dataSentTime values denote how long it takes an application to transfer data to and
from the device where the kernel is run. The dataRecv and dataSent values denote
the size of the data (in MB) that is transferred between devices. The appVars value
denotes the size of each data input to the application.

Key Value Example Bits

appName hash “MatrixMul” 64
count int 171 32
device hash “gpu” 64
appAvg float 0.04097 32
appMax float 0.04854 32
appMin float 0.03749 32
appM2 float 0.00104 32

appStdev float 0.00248 32
dataRecv float 8.0000 32

dataRecvTime float 0.02735 32
dataSent float 4.0000 32

dataSentTime float 0.01841 32
appVars dict. {x:2048, y:2048} 128

Table 1: Data Structure used to store his-
torical data. Data is kept serialized in a set
of dictionary key/value pairs. Each time an
application is run the data structure is read
and updated.

Application GPU
(ms)

CPU
(ms)

GPU
Spdup

BinarySearch 60 4 0.07
BitonicSort 933 9122 9.8

FastWalshTrans 77 236 3.1
DCT 49 503 10.3

DwtHaar1D 842 924 1.1
EigenValue 712 1448 2.0

FFT 1.6 0.2 0.13
FloydWarshall 45 527 11.7
MatrixMult 41 4475 109

MatrixTranspose 999 3736 3.7
PrefixSum 112 3 0.03

QuasiRandSeq 18 441 25
Reduction 26 340 13

ScanLargeArrays 17 154 9
SimpleConv 287 481 1.7
SobelFilter 8 13 1.63

Table 2: Applications

4 The Scheduling Algorithm

In this section we describe our dynamic scheduling algorithm that uses the history
database described in Section 3. We assume that applications are placed into a first-
in-first-out queue and each kernel can run on any of the available devices. For clarity,
we also assume that there are two devices available, a CPU and a GPU, although the

algorithm could easily be extended to include an arbitrary number of devices. We also
assume that most applications will run faster when assigned to the GPU.

4.1 Overview of the Algorithm
In essence, the scheduler we describe implements a greedy algorithm that assigns appli-
cations to devices based on a comparison between the predicted times for the application
to finish on all available devices. Even if an application would run faster assigned to
a particular device, if there are enough applications ahead of it in the queue for that
device, it may finish faster assigned to the slower device because that device is free.

Our scheduling algorithm is laid out as follows. We create a sub-queue for each
device, and place applications in those sub-queues from the main queue according to
the following rules:

1. If the main queue contains applications, attempt to keep all devices busy. If a sub-
queue has applications and the device for that sub-queue becomes free, assign the
next application in the sub-queue on that device.

2. If one device is busy but the other device is free and the next application in the main
queue has not been assigned to that device before, assign it to that device in order
to build the database. This is a one-time penalty for applications that run slowly
assigned to a particular device, but it is necessary to build the database. Assume
that most applications will run faster assigned to the GPU, so if an application only
has GPU runtime data but the GPU is free, assign the application to the GPU.

3. If only one device is free and the next application in the main queue runs slower
assigned to that device, estimate how long the other device will be busy using the
history database and include other application also scheduled to be assigned to that
device in its sub-queue. If the next application in the main queue will finish faster
by being assigned to the slower device, assign it to that device. If not, put it into
the sub-queue for the busy device.

4. Continue through the main queue until both devices are busy running applications.
As an application finishes, update the historical database with the runtime infor-
mation, calculating the average runtime and the standard deviation, and repeat the
algorithm from the beginning.

The scheduling algorithm described above continues to improve as more data is
entered into the historical database, and each application is penalized at most once
when it is assigned to a slower device in order to build the database. Because application
runtimes are averaged into the previous runtime for a device, outlying points that could
be caused by factors unknown to the scheduler (e.g., GPU contention due to video
processing associated with the display) are smoothed out over time.

Because our scheduler assigns applications to devices that are not necessary opti-
mal for each individual application, we must discuss scheduling fairness. We define a
schedule to be fair if each application finishes no later than it would have finished if it
were allowed to execute its kernel on its preferred device. In other words, a fair schedule
does not penalize an application even if the application is assigned to its non-preferred
device. Accordingly, no starvation occurs, and applications are scheduled for a device
in queue order. The algorithm presented earlier generates fair schedules except in two
cases: if the predicted runtimes are significantly incorrect or when an application is first
encountered and is assigned to a slower device.

4.2 Application Runtime Prediction

If an application has been assigned to a device at least once with a given set of inputs,
and the same application is subsequently run with the same input size, the scheduler

!"!#

!"$#

%"!#

%"$#

&"!#

&"$#

'(
)*
+,
-.
*+
/0
#

1
23
#

1
4
56
**
+%
1
#

7(
8.
)9
*:
;.
#

<*
=5
>
*:
=0
3+
*)
=?

<:
@,
A>
*+
=0
*:
:#

B
*5
+(C
B
;:
DE
:(/
*

F+
.G
C-
;H
#

I
;*
=(
J*
)A
@H
-.

J.
A;
/D
@)
#

-/
*)
K*
+8
.L
++
*,
=#

!
"#

$
%&
'(
%

L/5;*:#

F+.A(/5.A#

Fig. 1: Actual kernel times versus predicted kernel times. The error-bars indicate the
minimum and maximum measured and the height of the bar is the average. The right-
hand bars indicate the predicted kernel times after the scheduler has been trained.

uses the average application time as a runtime prediction for that device. When an
application has been assigned at least twice to a given device with different inputs, and
is again run with another different input, the scheduler makes the prediction based on a
linear least-squares calculation, using the input sizes as one parameter, and the previous
runtimes as another. Figure 1 shows the actual runtimes versus the predicted runtimes.
The height of the left-side bars denote the average runtimes for the applications over 150
trials, and the error bars represent the minimum and maximum times. The right-side
bars denote the predicted time after the scheduler has been trained. In our experiments,
the predicted runtimes fell within the actual minimum and maximum runtimes, which
was sufficient to use for the scheduling decision.

4.3 Scheduling Overhead

Although we discuss kernels running on both the CPU and the GPU as being indepen-
dent from each other, this is not strictly the case. In current CPU/GPU architectures,
the applications that launch kernels run themselves on the CPU, and the scheduler that
runs also uses a CPU thread to coordinate the scheduling. When scheduling kernels to
run on the CPU, the kernels utilize standard operating system threads, and therefore
contribute to overall CPU usage. Any scheduler that launches kernels on the CPU in-
flicts a penalty on any applications running on the CPU, including other applications
that are or will be running kernels. When we present our results in Section 5, we point
out cases where this overhead is noticeable, but we found that our implementation still
produces a better schedule than a GPU-only solution.

Any scheduling decision incurs an overhead simply because of the time necessary
to run through the scheduling algorithm. It would be imprudent if the overhead of
making a dynamic scheduling decision decreased computational throughput relative to
a statically scheduled solution. The algorithm we have presented is very lightweight,
especially compared to the application runtimes we have investigated. With the applica-
tion database loaded into memory, our results show that the time to make a scheduling

decision averages 0.7ms with a standard deviation of 0.2ms on our test platform, de-
scribed in Section 5. GPU applications average 0.4 seconds, making the scheduling
decision much less than 1% overhead. Furthermore, our test scheduler is written in
Python and is not optimized for speed. Increases in database size and improvements to
the scheduling algorithm will add to this overhead, but because the dynamic scheduling
improves throughput significantly, even an overhead of one or two percent would still
make the scheduler worthwhile.

4.4 Scalability

Because historical data is collected and updated each time an application is run on a
device, it scales well as more applications are run on the system, or as different devices
are added or replaced. The history database is kept to a manageable size by keeping
runtime averages per application on each device. As application queue sizes increase,
there is an increased overhead to analyzing the finish time for each application at the
head of the queue, but the current finish time of all items in a device queue can be kept
as a running total, so this overhead is minimal.

One concern with adding additional applications is that there is an inherent training
period for each added application that does not have any associated history informa-
tion. Because the database continually improves as applications are run, we make the
assumption that over time the scheduler has seen most applications multiple times.
Although we limited our tests to a single CPU / single GPU system, it would not be
difficult to amend the scheduler to accept new devices in the system. As new devices
are added to the platform, the scheduler would collect runtime data steadily and up-
date the database accordingly. There would be a training period associated with these
updates, but overall throughput would be increased as soon as a device was added to
the system in most cases simply by virtue of the work being spread across more devices.

5 Experimental Results

We first describe the workload we used to test our scheduling algorithm, and then
present the experimental results, compared to other scheduling schemes.

5.1 Workload and test environment

In order to test our algorithm, we used sixteen OpenCL benchmark applications with
one kernel each, and ran the set of applications sequentially, for a total of 16 kernel
launches. The applications we used in our experiments represent a number of compu-
tational algorithms that are commonly used in scientific computing. Table 2 shows the
applications and the absolute and relative runtimes for the data sets that we tested
with. As expected, most applications had kernels that ran faster on the GPU, and
therefore the entire applications ran faster on the GPU. In order to demonstrate the
scheduler when some application were faster assigned to the CPU, we set the data size
small enough for three applications such that this was the case (Binary Search, FFT,
and Prefix Sum). In Section 5.4 we remove these applications and demonstrate the
scheduler when all applications run faster assigned to the GPU.

Our test environment was comprised of a 6-core, 3.7GHz AMD Phenom II 1090T
CPU with 4GB of main memory and an AMD 5870 GPU with 2GB of memory. All
tests were run under Ubuntu 10.04. In order to run and test the OpenCL applications,
we wrote a Python application that simulated a runtime where all sixteen applications
were placed into a scheduling queue and scheduled according to our dynamic algorithm.

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!"

'" #" (" $")" %" *" &" +" '!" ''"

!
"#

$
%&
'(
%

)*+%

Fig. 2: Scheduler training. The scheduler
was run multiple times against the queue
of sixteen applications, starting with no
initial historical data. The dashed line de-
notes the time for all applications to run
on the GPU.

!"#$%

&&#"%
&'%

"#&%

!"

#"

$!"

$#"

%!"

%#"

&!"

'()"*+,-" .()"*+,-" '()/.()"01234"

567+8"9761*:-"

'()/.()"

;-+2<74"567+8"

9761*:-"

(
)*

+
%,
-
.%
&
/
%0
1
1
2)
34
5
-
6
7%
87
9%

Fig. 3: Overall results for dynamic
scheduling compared against assigning all
application to the CPU, all applications
to the GPU, and static scheduling based
on the fastest device per application.

5.2 Training the scheduler

Figure 2 shows the improvement of our dynamic scheduler as the historical database
improves. For the purpose of our experiments, we trained the scheduler by running
the same applications in our benchmark, but with a random set of input sizes. We
also chose a sample fixed set of input sizes to test with the database after each training
run, in order to normalize the results for Figure 2. Initially, with limited or no historical
information, applications are assigned to the GPU if it is free and to the CPU otherwise.
Compared to a GPU-only scheduling solution, the scheduler performs worse on the first
few runs, but it quickly improves its performance. The database gets continually cross-
trained as it collects data on all the applications that it sees, and the scheduler benefits
any time it sees an application more than once, regardless of the data set size. The
scheduler always performs better than a CPU-only solution for this set of applications.
Results in the following section reflect data taken after five training runs.

5.3 Results

Figure 3 shows the time needed to run the set of 16 applications for four different
scheduling algorithms. In the CPU only and GPU only cases, all applications were
assigned to each respective device. For the “CPU/GPU Static using history” case, each
application is assigned to its preferred device. The final column shows the results using
the dynamic scheduler we have described. As the figure indicates, the dynamic scheduler
that uses historical information is 29% faster than the static scheduler that knows which
device provides each application its best performance, and 39% faster than a scheduler
that assigns all applications to the GPU.

Figure 4 shows the results of two schedules that perform better than a GPU-only
solution. Figure 4(a) a static schedule based solely on running application on the fastest
device per application. Because only three short application ran faster assigned to the
CPU, the utilization of the CPU is only 17%, and most of the applications were assigned
to the GPU. Figure 4(b) shows the results from our algorithm, demonstrating 67% CPU
utilization, and 39% faster than the GPU-only solution (shown in both Figures 4(a)

5 10
Time (s)

BinarySearch

BitonicSort

FastWalshTransform

DCT

DwtHaar1D

EigenValue

FFT

FloydWarshall

MatrixMultiplication

MatrixTranspose

PrefixSum

QuasiRandomSequence

Reduction

ScanLargeArrays

SimpleConvolution

SobelFilter
gpu

cpu

(a) Fastest device per application, static deter-
mination. CPU utilization: 17%, GPU utiliza-
tion: 100%. Time: 10.0 seconds. The dashed line
is the time to run all applications on the GPU.

5 10
Time (s)

BinarySearch

BitonicSort

FastWalshTransform

DCT

DwtHaar1D

EigenValue

FFT

FloydWarshall

MatrixMultiplication

MatrixTranspose

PrefixSum

QuasiRandomSequence

Reduction

ScanLargeArrays

SimpleConvolution

SobelFilter
gpu

cpu

(b) Historical data, dynamic decision, based on
algorithm from Section 4. CPU utilization: 67%,
GPU utilization: 100%. Time: 7.1 seconds. The
dashed line is the time to run all applications on
the GPU.

Fig. 4: Execution flow for the set of sixteen applications. In (a), all applications were
assigned to the GPU. In (a), the static scheduler utilizes the CPU, but only for ap-
plications that are faster on that device. In (b), the dynamic scheduler balances the
application well across both devices, leading to a much higher throughput.

and 4(b) with a dotted line). Our scheduler out performs the static scheduler based on
the fastest device per application by 29%.

5.4 Running the scheduler when all applications are faster on the GPU

So far, we have described scheduling results from a mixed set of applications that
includes some applications that run faster assigned to the CPU rather than the GPU. In
practice, it is rare to find applications that run faster assigned to the CPU for anything
other than very small data sets, as application developers generally target and optimize
kernels to run on GPUs. Our dynamic scheduler is still able to produce worthwhile
scheduling results even when each individual application is faster when assigned to one
device, especially as the application queue sizes increase. As an illustration, consider a
queue of ten identical applications that each run 5x faster when assigned to the GPU
instead of the CPU. As soon as the sixth application gets assigned to the GPU, it is
beneficial to assign the seventh to the CPU, even though it will take five times as long,
because it will finish before it would have if it waited for the previous six applications
to finish. Furthermore, instead of 0% CPU utilization, it is very high.

Figure 5 shows the results of running the dynamic scheduler on a set of thirteen
applications where all applications run faster assigned to the GPU. The scheduler is
able to decrease the runtime for all application by assigning a number of applications
to the CPU, and this schedule produces a 90% CPU utilization and is 33% faster
than the GPU-only schedule. As can be seen by comparing the time for BitonicSort
and Matrix Transpose between (a) and (b), both applications take longer assigned
to the GPU when scheduled alongside a CPU application, demonstrating the overhead
mentioned in Section 4.3. This overhead does increase the time to run some individual
applications, but the overall results demonstrate that the benefit from running the
dynamic schedule over a GPU-only schedule.

5 10
Time (s)

BitonicSort

FastWalshTransform

DCT

DwtHaar1D

EigenValue

FloydWarshall

MatrixMultiplication

MatrixTranspose

QuasiRandomSequence

Reduction

ScanLargeArrays

SimpleConvolution

SobelFilter
gpu

cpu

(a) GPU only. CPU utilization: 0%, GPU uti-
lization: 100%. Time: 10.1 seconds.

5 10
Time (s)

BitonicSort

FastWalshTransform

DCT

DwtHaar1D

EigenValue

FloydWarshall

MatrixMultiplication

MatrixTranspose

QuasiRandomSequence

Reduction

ScanLargeArrays

SimpleConvolution

SobelFilter
gpu

cpu

(b) Fastest device per application, dynamic de-
cision. CPU utilization: 90%, GPU utilization:
100%. Time: 7.6 seconds.

Fig. 5: Execution when all applications inherently run faster when assigned to the GPU.
The dynamic scheduling finishes all applications 33% faster than the statically scheduled
GPU-only solution.

6 Related Work

The idea of using historical data for heterogeneous scheduling decisions has been dis-
cussed in other work, although very few have targeted GPU computing. Ali et al.
show that using a historical prediction database is worthwhile for grid computing [1],
and Siegel et al. [14] discuss automated heterogeneous scheduling where one stage is
to profile tasks and to perform analytical benchmarking of individual tasks. This in-
formation is then used in a later stage to predict runtimes for applications based on
current processor loads. Similarly, our approach profiles applications as they run, but
also extrapolates runtimes for applications with different input sizes from an analytical
assessment of the collected data. Topcuoglu et al. describe the “Heterogeneous Earliest-
Finish-Time” (HEFT) algorithm [15], which, like our approach, attempts to minimize
when individual applications finish. Maheswaran et al. [11] describe a set of heuristics
that inform a dynamic heterogeneous scheduler. Their Min-min heuristic calculates
which device will provide the earliest expected completion time across a set of tasks
on a system. The task in the queue that will complete first is scheduled next. Both
Topcuoglu et al. and Maheswaran et al. were written prior to the advent of GPU com-
puting, and they simulated their algorithms. Our approach differs from both Topcuoglu
et al. and Maheswaran et al. by considering fairness, ensuring that applications do not
get pre-empted by other applications, and we also tested our scheduler on CPU/GPU
heterogeneous hardware.

Jiménez et al. [8] demonstrate two predictive algorithms that use performance his-
tory to schedule a queue of applications between a CPU and a GPU: history-gpu,
that schedules work on the first available device that can run an application, and
estimate-hist, that estimates the waiting time for each device and schedules an ap-
plication to the device that will be free the soonest. Our proposed scheduler expands
on their work by also predicting when the application that is next in the queue will
complete, and scheduling it on whichever device will allow it to complete the fastest. We
also describe methods for looking at runtime trends to predict runtimes for applications
with unique data size inputs.

Luk et al. [10] use a historical database for Qilin that holds runtime data for ap-
plications it has seen before, although Qilin focuses on breaking a single application
across multiple devices instead of running multiple applications across multiple devices,
as we do. Augonnet et al. [2] use performance models to provide scheduling hints for
their StarPU scheduler, and programmers who write applications for StarPU can pro-
vide a “cost model” for each application that enables the scheduler to predict relative
runtimes. Our approach does not require programmers to modify their code. Becci et
al. [3] use performance and data transfer overhead history to inform a dynamic het-
erogeneous scheduler for legacy kernels, focusing on postponing data transfer between
devices until it is actually needed.

Harmony [5] also uses performance estimates in order to schedule applications across
a heterogeneous system. They propose an online monitoring of kernels and describe a
dependence-driven scheduling that analyzes how applications share data and decides
on processor allocation based on which applications can run without blocking. Our
approach considers applications to be independent, and schedules applications from
multiple applications concurrently.

Several researchers have proposed using performance models to predict runtime
(e.g., Meng and Skadron [12] and Hong et al. [7]), but performance models have high
overhead and are generally not portable between hardware generations. We believe that
using historical runtime data provides a better prediction for kernel runtimes.

7 Conclusions

In this paper, we described and demonstrated a dynamic scheduling algorithm for
heterogeneous computers that schedules application based on a historical database of
runtime values. We showed that by storing and using the historical information, a
scheduler can determine how to assign applications to heterogenous processors that
utilize all devices available and allow for a greater computational throughput than
simply assigning all applications to one device, or by other static scheduling means. The
resulting schedule fairly schedules applications according to their order in the queue,
and if the runtime prediction is relatively accurate, applications will finish running prior
to when they would have if they had all been statically scheduled onto the GPU, or if
they had been scheduled to run on the device on which they run fastest. Furthermore,
we demonstrated that a scheduler that utilizes all available devices even when each
application runs faster assigned to one particular device can still provide better overall
throughput even though some applications get assigned to slower devices.

We presented a robust yet compact historical database data structure that contains
enough data to make predictions for application runtimes, and we described how the
database gets populated and trained. We demonstrated that our dynamic scheduling
algorithm can increase the computational throughput for a set of sixteen applications by
over 30% over a GPU-only static scheduling solution, and we showed that the algorithm
also provides device utilization that is over 80% for all devices in the system.

For future work, we will take a look at how a historical scheduler could be used
in a cluster of CPU/GPU machines, and for other heterogeneous machines including
Cell/B.E. or embedded systems. Additionally, we will investigate how historical predic-
tion for dynamic scheduling can be used for applications with interdependencies.

Acknowledgments

This work was supported in part by NSF grants CNS-0747273, CSR-0916908, and CNS-
0964627, SRC GRC task number 1790.001, and a grant from Microsoft. We would also
like to thank the anonymous reviewers for their helpful comments and suggestions.

References

1. A. Ali, A. Anjum, J. Bunn, R. Cavanaugh, F. van Lingen, R. McClatchey, M. A. Mehmood,
H. Newman, C. Steenberg, M. Thomas, and I. Willers. Predicting the resource require-
ments of a job submission. In Computing in High Energy Physics, pages 130–134, Inter-
laken, Switzerland, September 2004.

2. C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier. StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures. In Euro-Par Conference on
Parallel Processing, pages 863–874, 2009.

3. M. Becchi, S. Byna, S. Cadambi, and S. Chakradhar. Data-aware scheduling of legacy
kernels on heterogeneous platforms with distributed memory. In ACM Symposium on
Parallelism in Algorithms and Architectures, pages 82–91, 2010.

4. S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, and K. Skadron. A performance study
of general-purpose applications on graphics processors using CUDA. Journal of Parallel
and Distributed Computing, 68(10):1370–1380, 2008.

5. G. F. Diamos and S. Yalamanchili. Harmony: an execution model and runtime for het-
erogeneous many core systems. In 17th International Symposium on High Performance
Distributed Computing, pages 197–200, Boston, MA, 2008.

6. J. Gummaraju, L. Morichetti, M. Houston, B. Sander, B. R. Gaster, and B. Zheng. Twin
peaks: a software platform for heterogeneous computing on general-purpose and graphics
processors. In 19th Conference on Parallel Architectures and Compilation Techniques,
pages 205–216, Vienna, Austria, 2010.

7. S. Hong and H. Kim. An integrated gpu power and performance model. In Proceedings
of the 37th annual international symposium on Computer architecture, ISCA ’10, pages
280–289, New York, NY, USA, 2010.

8. V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and N. Navarro. Predictive
runtime code scheduling for heterogeneous architectures. In 4th Conference on High Per-
formance Embedded Architectures and Compilers, pages 19–33, 2009.

9. V. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. Nguyen, N. Satish, M. Smelyanskiy,
S. Chennupaty, P. Hammarlund, et al. Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and GPU. In 37th International Symposium
on Computer Architecture, pages 451–460, 2010.

10. C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism on heterogeneous multi-
processors with adaptive mapping. In 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 45 –55, 2009.

11. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic matching
and scheduling of a class of independent tasks onto heterogeneous computing systems.
page 30, Los Alamitos, CA, 1999.

12. J. Meng and K. Skadron. Performance modeling and automatic ghost zone optimization
for iterative stencil loops on gpus. In Proceedings of the 23rd international conference on
Supercomputing, ICS ’09, pages 256–265, 2009.

13. S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W. Hwu.
Optimization principles and application performance evaluation of a multithreaded GPU
using CUDA. In 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, pages 73–82, Salt Lake City, UT, 2008.

14. H. J. Siegel, H. G. Dietz, and J. K. Antonio. Software support for heterogeneous comput-
ing. ACM Computing Surveys, 28(1):237–239, 1996.

15. H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algorithms for heterogeneous
processors. In 8th Heterogeneous Computing Workshop, pages 3–14, 1999.

