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Abstract

General purpose computing on graphics processing
units (GPUs) introduces the challenge of scheduling in-
dependent tasks on devices designed for data parallel or
SPMD applications. This paper proposes an issue queue
that merges workloads that would underutilize GPU pro-
cessing resources such that they can be run concurrently on
an NVIDIA GPU. Using kernels from microbenchmarks and
two applications we show that throughput is increased in all
cases where the GPU would have been underused by a sin-
gle kernel. An exception is the case of memory-bound ker-
nels, seen in a Nearest Neighbor application, for which the
execution time still outperforms the same kernels executed
serially by 12-20%. It can also be beneficial to choose a
merged kernel that over-extends the GPU resources, as we
show the worst case to be bounded by executing the kernels
serially. This paper also provides an analysis of the latency
penalty that can occur when two kernels with varying com-
pletion times are merged.

1. Introduction
Specializedacceleratorhardware shows great potential

for high performance computing, sacrificing generality to
achieve greater throughput and energy efficiency. As a sepa-
rate coprocessor, the programming model generally consists
of identifying tasks orkernelsto be offloaded. This model
is present, for example, in the main languages for general-
purpose computing on graphics processors–CUDA [14],
OpenCL [13], and Brook [4]. GPUs are of particular inter-
est because their high parallelism and memory bandwidth
offer very high performance across a range of applications
[5] as well as considerably improved energy efficiency [3]
in a low-cost commodity platform that is PC-compatible.
Both Intel and AMD have announced products that will in-
tegrate the GPU onto the same chip as the CPU. At the same
time, the shift to multicore CPUs already poses a require-
ment for parallel programming, so this aspect of the GPU
does not constitute a major additional burden.

Many kernels do not present enough work to fully uti-
lize the coprocessor, and unfortunately few systems al-

low tasks from different processes to run concurrently on
a single coprocessor. In fact, CUDA and OpenCL do
not even allow independent kernels from the same process
to run concurrently.1 However, GPUs employ such deep
multithreading—the highest end GPU today, the GTX 280,
currently supports 30,720 concurrent thread contexts—that
underutilization is common. Moore’s Law is likely to lead
to even greater thread capacities, making it harder to fill the
GPU with enough threads and hence even further reducing
utilization. We conjecture that allowing independent ker-
nels (from the same or different processes) to share the GPU
would boost throughput and energy efficiency substantially.

In order to support concurrent execution, a system-level
scheduler must be able to examine pending kernels, decide
whether co-scheduling is desirable, and initiate the desired
concurrent execution. Co-scheduling decisions should en-
sure that resources are not over-subscribed, including thread
contexts, memory capacity, memory bandwidth, and in the
case of GPUs, possibly other resources such as registers,
constant memory, and texture memory2, and that the ex-
pected run-times of the co-scheduled kernels are as equal
as possible. The current method for issuing work to a co-
processor pushes the programmer to define kernels if and
only if substantial work is to be done in order to make-up
for the cost of the offload. Instead, an issue queue that co-
schedules independent kernels would allow the programmer
to define more modular kernels – possibly a larger number
of these that would be considered insubstantial for offload
under the current programming model – with the certainty
that efficiency and concurrency will be achieved behind the
scenes.

This paper presents a runtime environment that inter-
cepts the stream of kernel invocations to an accelerator,
makes scheduling decisions, and merges kernels as neces-
sary. Our prototype solution targets CUDA and NVIDIA
GPUs, and currently supports merging a maximum of two

1This restriction appears to be limited to general-purpose applications,
since OpenGL and Direct3D applications do use multiple concurrent ker-
nels to set up the graphics pipeline.

2Although constant and texture memory spaces are abstractions unique
to the GPU, they have proven to be valuable in accelerating GPGPU appli-
cations [5])



kernels. It has primarily been tested with microbenchmarks
to show feasibility, but we also present results with a full-
size, data-intensive program, nearest neighbor (NN) search,
and another compute-intensive program, Gaussian Elimina-
tion. Both the microbenchmark and NN results show that
issuing merged kernels via our proposedcusub success-
fully boosts throughput from the existing First Come First
Serve approach to launching kernels. When both kernels
fit simultaneously on the GPU, execution time is reduced
to the larger of the two instead of the sum; in the case that
the merged kernel requests more threads than the GPU can
execute, the resulting performance is at least as good as the
serial execution.

This paper is organized as follows: Section 2 describes
general purpose graphics processing unit (GPGPU) com-
puting and introduces the architecture and programming
model of NVIDIA GPUs. We place our work in context in
Section 3. Section 4 describes how we achieve task paral-
lelism using CUDA on NVIDIA GPUs, describes the merge
decision process, and outlines the method used for runtime
modification. Section 5 presents analysis of results using
microbenchmakrs and two applications. Finally, Section 6
concludes the paper and provides ideas for future work.

2. Background
Lindholm et al. [11] provide an overview of the ar-

chitecture of NVIDIA GPUs, and Nickolls et al. [14] de-
scribe specifically how this is exposed for general purpose
programming through CUDA. Figure 1 is an outline of
the Simultaneous Multiprocessors (SMs) that make up an
NVIDIA GPU; one SM can execute 24 warps of 32 threads
on each of its 8 cores, making that a total of 768 active
threads per SM [15]. The number of SMs on a GPU dif-
fers across generations, increasing from 14 in the GT9800
series to 30 in the GTX280 [15]. This leads to more than
6,000 active parallel threads executing the same instructions
on independent data.

Figure 1. NVIDIA GPU Simultaneous Multipro-
cessor Architecture.

The CUDA API does not provide a mechanism to inter-
rupt a kernel that has already begun execution. This lim-
its traditional resource scheduling models, such as time-
slicing, from being part of this experimentation because
the GPU resources are not accessible in the same way as
CPUs. In general, the programming model for GPGPUs

is a master-slave model, where the CPU thread is the mas-
ter that launches slave threads on the GPU [15]. The GPU
driver holds ready kernels in an issue queue until these are
processed in a first come, first serve fashion.

A CPU thread that launches a kernel continues execution
up to acudaThreadSynchronize() barrier, at which
point the process blocks until the kernel is finished3. In this
context, the throughput of the GPU becomes important if
many CPU processes are attempting to launch kernels. If a
kernel is already running on the GPU and another kernel is
launched–either by the same process or another process–the
second kernel is blocked until the first kernel finishes. The
latency of a kernel call (how long it takes to receive results
from a kernel) is also affected by how many kernels are in
the queue; the longer the queue, the greater the latency for
the CPU thread waiting for that kernel’s results. For our
development and testing we assume an environment where
the GPU is a heavily contended resource, guaranteeing a
populated issue queue and hence an opportunity to combine
kernels before they are executed.

3. Related Work
Heterogeneous architectures with specialized coproces-

sors such as GPUs show great promise for high performance
computing, because the specialized nature of the coproces-
sors allows them to dedicate more area toward computa-
tional resources (at the expense of general-purpose flexibil-
ity). In addition to GPUs, the Cell BE and FPGAs are also
frequently mentioned as potential coprocessors.

In the context of GPU computing, a variety of applica-
tions have shown as much as 100-200X speedups compared
to single-core CPUs. These are generally data-parallel ap-
plications, but the GPU can also be effective at exploiting
task parallelism; for example, Boyer et al. [3] reported 98X
speedup with the GPU over a single-core CPU implemen-
tation and 26X speedup over a quad-core implementation
for leukocyte detection and tracking in video microscopy
sequences. Hwu et al. [16] have published work on op-
timizing single applications for CUDA, Aji and Feng [2]
have investigated increasing the performance of data-serial
applications on NVIDIA GPUs using CUDA, and similarly
Duran et al. [8] extend to the OpenMP programming model
in the search for task parallelism. In our work, however, the
performance improvements are a result of a novel approach
to issuing tasks to an accelerator, and not due to identifying
data or task parallelism within a workload.

Another stream of research has looked at how to in-
terface coprocessors within the system architecture. The
Merge framework from Linderman et al. [10] achieves per-
formance and energy efficiency across heterogeneous cores
via a dynamic library-based dispatch system. This approach

3Furthermore, if a kernel is currently running on the GPU, both the
cudaMalloc() andcudaMemcpy() functions block the CPU, as well.



is similar to our methodology as it is more closely related
to the work queue of an accelerator. Merge also proposes a
programming model that abstracts the architecture and re-
quires additional information from the programmer for dis-
patch decisions, whereas our approach does not modify the
existing CUDA programming model. Harmony similarly
proposes a programming and execution model to improve
scheduling decisions considering a heterogeneous comput-
ing environment as an entity instead of individual cores [7].

What distinguishes our work from these prior research
efforts is our proposedcusub scheduler, which achieves a
finer-grained increase in performance that would benefit a
larger system-wide scheduler such as Merge or Harmony.
Jacket from AccelerEyes employs a kernel execution model
that does not guarantee immediate execution of a compute
kernel in order to provide a more optimal kernel scheduling
[1], and could also benefit from our proposed method of is-
suing more than one kernel at a time to broaden scheduling
options. There has also been industry interest in leverag-
ing GPGPU CUDA processing in cluster computing, such
as with the work done at Penguin Computing. Their solu-
tion schedules work across many GPUs, each performing
specific tasks, which is orthogonal to our method [6]. Mc-
Cool considers difficulties such as detecting and balancing
task parallelism within an application [12], however our ap-
proach to task parallelism occurs at a coarser granularity in
which independent kernels from the same or different pro-
cesses are all sources for parallelism. Many problems re-
main to be solved regarding scheduling decisions for hetero-
geneous architectures, and our work provides a new aspect
to parallel execution that increases flexibility for scheduling
decisions and can naturally be extended to other accelera-
tors.

4. Approach
There are three components to this research: the first

explores methods for coercing kernels to run concurrently
(Section 4.1). The actual merging of the kernels is per-
formed prior to runtime, but this is specific to our im-
plementation (Section 4.2). Finally, applications with
CUDA kernels are executed through a rudimentary sched-
uler,cusub, that makes the decision to run either a merged
kernel or the kernels individually (Section 4.3).

4.1. Achieving task parallelism

Given two different kernels to be executed by the GPU,
our approach to merging them into one kernel is to use the
block identifiers to assign work to the threads. All CUDA
programs define the execution configuration in two instruc-
tions preceding the kernel launch, by setting the block di-
mension and the grid dimension (variablesdimGrid and
dimBlock in Algorithm 1 respectively). The block dimen-
sion specifies the number of threads per block, and the grid
dimension is the total number of threads to be launched.

The threads that make up a block execute instructions in
lock-step, hence by assigning the kernels to threads on dif-
ferent SMs there is no concern of inflicting thread diver-
gence by adding a second kernel to be executed. Figure 2
shows the execution model achieved with block partition-
ing; two or more kernels are executed by the sum of the
number of blocks each kernel requests, and the threads ex-
ecute in parallel because they are mapped to different SMs.
Task parallelism is achieved, and the transformations at the
source code level are explained in more detail next.

The code for the merged kernel includes three differ-
ences from the original versions of the kernels. First, the
merged kernel combines the data pointers from the two
original kernels; to prevent name collisions the variables
have to be renamed, as detailed in subsection 4.2. Next,
as in Algorithm 1, the merged kernel includes the code of
the independent kernels by separating these using a single
if-else clause. Lastly, the indexes for all data accesses inthe
second kernel are updated when offsets are calculated based
on thread ID. This is a common method of writing kernels
in the CUDA programming model as it allows offsets to
be calculated by all threads executing one instruction and
hence prevents control flow divergence. Hence, the logic
for new thread ID indexing needs to replace all of the orig-
inal indexing found in the second kernel. As in Algorithm
1, the logic for having the firsta blocks work on one kernel
and the nextb blocks work on the other is a good choice
as it is straightforward and independent of the size of each
kernel.

Alternatives to block partitioning that would allow two
kernels to be issued as one with the current CUDA sched-
uler are thread interleaving and block interleaving. The first
uses the thread identifiers instead of the block indexes to in-
terleave the kernels across the threads. The occupancy of
the SMs would be increased and it would still be possible
to achieve performance improvement by reducing the over-
heads associated with a kernel launch, yet in the strictest
sense of efficiency, thread interleaving violates the SIMD
lockstep execution of threads in the same warp by inserting
control flow divergence. The latter alternative interleaves
the kernels at the block level, avoiding intra-warp thread
divergence at runtime; but the indexing pattern for memory
accesses in each kernel would have to be updated to account
for the even versus odd block indexes, increasing the com-
plexity of extending the technique to more than two kernels
compared to block partitioning.

4.2. Statically Merged Kernels

As shown in Section 4.1, the modifications to the ker-
nel source code to support merging are simple and gen-
eral. Thus, a single pass compiler can create the merged
kernel source code by renaming the variables, adding the
if-else control flow, and adding an instruction to update
indexing in the kernel that is executed by blocks that are



Algorithm 1 Code excerpt for thread interleaving.
mergedkernel<<<dimGrid,dimBlock>>>

(ptr1 1, ptr2 1, ...,
ptr1 2, ptr2 2, ...,
int dimGridKernel1 ) {

int index← blockID∗dimBlock + threadID
if blockID <= dimGridKernel1 then

kernel 1()
else if index < dimGrid then

//Update the indexing
index← index− dimGridKernel1
kernel 2()

end if

Figure 2. Block Partitioning. Each kernel con-
tains n blocks.

offset fromblockID0. Renaming the variables following
a naming scheme, such as appending variable names with
kernelID, prevents naming collisions. The kernel dis-

tribution and the indexing update are similar additions that
can be done at the source code level by a source-to-source
optimization prior to full compilation. For the experiments
presented in this paper, however, the microbenchmarks and
the application kernels were merged by hand, the evaluation
is explored in Section 5.

The time it takes for the compiler to produce the merged
kernel is not vital to the goal of this research, as it can be
done statically for different combinations of merged ker-
nels. Thus, the kernel issue queue can then look up the
appropriate merged kernel from a library of merged kernels
and execute it as detailed in Section 4.3 in place of the two
individual kernels. A more advanced implementation could,
for example, exploit nvcc’s just-in-time compilation of ker-
nels to merge the kernels at runtime.

4.3. Issue Queue

Analogous to common multiprocessor scheduling
queues, we have developed a simple issue queue for appli-
cations that are contending for use of the GPU. Applications
that will launch CUDA kernels are themselves instantiated
via cusub, the queue handling program.Cusub monitors
the applications and “hijacks” the CUDA function calls
that request memory from the device, transfer data to and
from the device, and launch the kernels. Figure 3 shows an
example of the static merge and the flow ofcusub. Note
that the kernels may belong to separate processes or the

Figure 3. Static merge and cusub operation.

same; in the case of merging the kernels from the same
process, an explicitcudaThreadSynchronize() be-
tween kernels will enforce remove these from consideration
to be merged.

As described in Section 4.2,cusub needs information
about the amount of memory requested by each kernel, and
the parameters for the number of blocks that will be needed
on the GPU. If it is the case that two kernels should be
merged, a previously-merged kernel is substituted for the
two separate kernels, andcusub handles the data transfer
from the merged kernel to the original applications. This
also implies that merging the kernels does not actually re-
move a kernel from the issue queue, and in order to not de-
mote any kernels, the new merged kernel replaces the ker-
nel with the highest priority that it has merged. This leads
to kernel promotion but not demotion, and would have to be
considered in an actual implementation of kernel merging
to prevent priority inversion.

Ideally, cusub-like functionality would be included in
the CUDA device driver, and the driver could provide real-
time merging (as opposed to static compiler pre-merging).
Ourcusub stands as a proof-of-concept demonstration of
the decision and merged-kernel launch procedure. Knowl-
edge of the GPU’s status would enhancecusub to simply
launch the ready kernel at the head of the queue if the de-
vice is free, yet there is currently no API function for deter-
mining whether the GPU is busy. Hencecusub passes the
merged kernel on to the driver and its own issue queue, only
intercepting and possibly merging the kernels for applica-
tions executed usingcusub. The technique, if housed
in the GPU driver or ultimately the OS, extends to inter-
cepting and considering all CUDA kernels launched.

4.4. The Decision to Merge

It is not always the case that multiple kernels should
be merged together; a single kernel could have enough
data parallelism to fully utilize the GPU, in which case



it should be run alone. However, most applications, es-
pecially those that cannot be termedembarrassingly par-
allel, will not be able to fully utilize the GPU. The
cudaGetDeviceProperties() function call can be
used to retrieve the number of multiprocessors and the
amount of global memory available on the GPU. The num-
ber of blocks needed for the kernel can be calculated with
the following formula:

#blocks needed =

⌈

#threads requested

#threads/block

⌉

Once the number of blocks is known, that number can be
compared to the sum of thedimGrid declarations in each
kernel; if the sum is greater than the number of blocks, the
two (or more) kernels should not be merged.

Likewise, the amount of memory available can be com-
pared to thecudaMemcpy() function parameters, and if
the sum of the memory requests is larger than the amount
of memory available, the kernels should not be combined.
Note that by merging kernels, as detailed in Section 4.1,
the superset of the global, texture, and constant memory
footprint of the kernels needs to be considered. The shared
memory structure that is private to each multiprocessor can
be used by the kernel independent of whether it is a merged
kernel or not. A decision flowchart showing the overall
method is shown in Figure 3.

5. Performance Analysis
The method for merging two independent kernels used in

the testing is block partitioning, as it achieves concurrency
and requires only a small number of modifications that a
compiler can perform, as detailed in Section 4.1. The goal
of this research is to increase the throughput of a GPU by
executing more than one kernel at a time. Also of interest
is the additional latency that a kernel would incur compared
to dedicated usage of the processing resource.

The experimental testbed is an NVIDIA GeForce 9800
GT that has 14 SMs, 512 MB of global memory, 16 KB of
shared memory per block, and operates at 1.512 GHz. It is
hosted on a system that runs the Ubuntu 8.10 distribution of
Linux on an Intel Pentium D CPU running at a clock fre-
quency of 3.20 GHz. A second system was also used with
an NVIDIA GeForce GTX 280 that has 30 SMs. The ob-
served behavior of the merged kernels is qualitatively simi-
lar on both cards and we include only data from the first for
simplicity. The test code is written in NVIDIA’s CUDA and
executed using the CUDA 2.1 driver and toolkit.

5.1. Benchmarks
We primarily evaluate this prototype using microbench-

marks, which emphasize two opposite behaviors. First,
the Compute kernel is a computationally expensive kernel
adopted from a random number generator [9] that uses a
seed and varying number of iterations based on the thread

identifiers to generaten different random numbers. The
second kernel, termed Memory kernel, stresses the GPU
interconnect bandwidth with memory requests from each
thread, characteristic of several kernels where the threads
need source data. The kernels for both microbenchmarks
have similar execution times, but this need not be the case,
as any two kernels can be merged; related considerations are
further explored in Section 5.3. Merging the microbench-
marks allows a fine-grained analysis of penalties associated
with using more GPU resources concurrently.

The Nearest Neighbor (NN) application is part of a
benchmark suite of unstructured data applications [18] that
has been ported to CUDA. The benchmark calculates the
Euclidean distance from a target location to every record
in a data set and finds thek nearest neighbors. With 512
threads running on each multiprocessor, each NN kernel
uses a little over 3 of the available SMs. The Gaussian Elim-
ination (GE) application solves a set of linear equations us-
ing a parallel algorithm that has been ported to CUDA.

5.2. Throughput

A kernel launched on the GPU executes until it is com-
pleted and the results are explicitly copied back to the host
CPU in the source code. By executing independent tasks
in parallel our aim is to make greater use of the process-
ing units and achieve lower execution times for the merged
kernels than the current issue mechanism. Ideally, if the de-
vice has idle processing cores for each of the independent
kernels, executing them concurrently should take as long
as the most time consuming kernel. In our experiments we
discovered this is not necessarily the case.

Figure 4 shows the execution times of merged mi-
crobenchmark kernels compared to executing them serially.
In each case, one kernel is held at 3000 threads and the sec-
ond kernel launches a varying number of threads; similarly
for the sequential kernels, the first kernel uses 3000 threads
and the next kernel’s size is swept. The merged kernels in-
deed execute in the same amount of time as the longest run-
ning of the single kernels, and this is essentially half the
time on the GPU processing resources that it takes to exe-
cute the kernels back-to-back as is done by the current is-
sue queue. There are additional latencies that are amortized
by executing the kernels together instead of sequentially,
such as the amount of time to actually launch the kernel at
the software and the hardware level. Figure 4 only com-
pares the execution time on the GPU itself, and as long as
the number of blocks requested by the merged kernel is not
greater than the number of SMs available on the GPU, the
merged kernel cuts down the execution of the two single
kernels by half.

Over-extending the processing cores on the GPU is also
shown in Figure 5, where a jump in the execution time for
the merged kernel can be seen when the total number of
threads launched exceeds the number of SMs available on
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the 9800GT. When a kernel requestsm processing elements
on a GPU withn SMs, wherem > n, the hardware exe-
cutes the kernel on the available SMs for the firstn blocks
requested, and the remainingm − n blocks of the kernel
execute once the SMs become available again. In the case
of a merged kernel that requests more processing elements
than available on the GPU, the execution time for the kernel
requires two or more executions of the kernel. As in Figure
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Figure 6. Nearest Neighbors Throughput
5, over-extending the processing resources doubles the exe-
cution time of the merged compute and memory kernel than
when it requests the same number of thread blocks or less
than the available SMs. The increase in execution time is
not a clearly defined step, but rather a jagged and incremen-
tal increase. We hypothesize that this behavior is due to the
hardware mechanism for issuing thread blocks to multipro-
cessors as soon as these are available; since thread blocks
are not uniform in execution time, in particular when ac-
cessing memory, the thread blocks that are generated in the
interval of the jump in execution time are not fully popu-
lated and hence execute faster than two full iterations of the
kernel.

The increase in execution time in Figure 5 would also
occur when the kernels are executed serially, and the differ-
ence in execution times would in fact be more than doubled.
For example, if the compute kernel requesteda SMs and the
memory kernel requestedb SMs wherea > n andb > n but
a + b < 2n, and both kernels execute in one time unit, exe-
cuting the kernels independently require four units of com-
pute time whereas the merged version would complete in
three time units. Hence, a merged kernel that requests more
blocks than the GPU’s number of available SMs is bene-
ficial as its worst case execution time will still outperform
executing the single kernels independently, as can be seen in
Figure 4. The kernels execute using 512 threads per block,
thus one block executes per SM and up to 7,168 can exe-
cute at a time on the 9800GT. In the sequential cases, the
first kernel executes for 3000 threads followed by the sec-
ond kernel executing anywhere between 64 to 7,168 threads
before launching a third wave if it requires more than 7,168
threads. Executing the same merged kernels with a smaller
block-size of 256 threads per block rather than 512 threads
per block results in an equivalent jump also occurring at a
block usage of fifteen or greater. As expected, the behavior
is qualitatively similar on the GTX280; when the number of
blocks being used on the device exceeds thirty, the execu-
tion time jumps.

Figure 7 compares the execution time of running two
kernels (NN and GE) independently versus the same ker-
nels merged using block partitioning. The execution times
in the figures reflect the cumulative time spent executing the
kernel code. Table 1 shows the average execution time of a
single NN kernel and that of two NN kernels merged as one.
The merged kernel takes more time to execute than a single
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Merged
NN Kernel

Single
NN Kernel

Execution time per kernel 34µs 21µs
Throughput per kernel 37.7MB/s 30.5MB/s

Table 1. Average Execution Time for Single
and Merged Nearest Neighbor Kernels

NN kernel, but less time than the two kernels issued inde-
pendently. For the different number of records used in the
tests, the execution time of the merged kernel is from 12%
to 20% less than that of the independent kernels. This re-
sult is a success but not as close to the original expectation
that the kernels will execute in the same amount of time as
a single kernel.

In NN, the threads load data from global memory on
the device prior to computing the Euclidean distances, and
the bandwidth of the global memory to shared memory be-
comes a limiting factor. Running a bandwidth test included
in the NVIDIA SDK shows a transfer rate of 44.2 GB/s on
device memory, compared to the peak bandwidth listed at
86.4 GB/s[15]. Even executing at peak bandwidth, the num-
ber of threads executing the same fetch from global memory
can easily saturate the interconnect. The 44.2 GB/s transfer
rate from the bandwidth test can be divided by the clock fre-
quency and expressed as 29 bytes/clock cycle. In compar-
ison, the merged NN kernel has 3,000 threads each trying
to load 32 bytes, and although different warps may execute
the load at different times, even within a warp the requested
transfer rate is 1024 KB/clock cycle which is far beneath the
transfer rate perceived from the bandwidth test. It is com-
mon and recommended to move data from global memory
to shared memory to prevent repeated expensive latencies.
Hence, this is both standard behavior and also a well known
performance bottleneck[17]. In fact, a single NN kernel is
deemed bandwidth limited as most of its execution time is
due to global memory access, and thus merging the kernels
only aggravates the problem. A possible solution is to uti-
lize faster memory for input data, such as constant or texture
cache[15], though that is an optimization of the kernel itself
and out of the scope of this project. The merging of kernels
is still a success as evidenced by Figure 7(a) for a bandwidth

limited kernel, and in the case of kernels not limited by this
bottleneck we have seen the execution time of the merged
kernel to be almost the same as that of a single kernel.

The Gaussian Elimination (GE) algorithm launches two
back-to-back kernels, in order to perform a forward substi-
tution to transform a square,n × n matrix into triangular
form. The merged-kernel version of the application merges
the two kernels from one GE problem with the two kernels
of a second GE problem. Figure 7(b) shows that the merged
application completes in less time than two single applica-
tions running sequentially, averaging a1.3x speedup.

Even though the GPU does not provide results at a con-
stant rate, throughput normalizes the amount of data re-
ceived from the device with time. Thus, Figure 6 compares
the throughput achieved by a single NN kernel with that
of the merged kernel. Although the motivation for this re-
search led us to hypothesize that the throughput could be
doubled, the bandwidth bottleneck also affects the through-
put. In the worst case that a single kernel has fully saturated
the global memory bandwidth, merging this kernel with an-
other will still output at the same throughput as the fully
saturated kernel. Hence, our approach does not degrade the
throughput of a given memory-bound kernel and for certain
kernels could increase it given a kernel that makes full usage
of caches with higher bandwidth than global memory.

5.3. Latency

Although the motivation for this project is to increase the
throughput of the GPU by increasing the usage of available
cores, the effect of this approach on application latency is
also a concern, since the GPU does not return results un-
til the execution of the entire kernel has completed. This
means that a low latency kernel could be merged with one
that runs much longer and hence its results will be available
later than had it been executed alone.

Using NN this phenomenon can be seen by merging a
kernel that executes the full Euclidean distance calculation
with one that always returns a constant value. Indepen-
dently, one execution of the low latency NN kernel returns
in 16µsec, whereas a full NN kernel returns in28µsec.
When merged the latency of one kernel execution is34µsec.
This result once again shows the effect on performance of
the limited global memory bandwidth as both kernels need
to store their results to device memory before it is trans-
ferred back to the host. Thus, the CPU thread that is waiting
on the low latency kernel results sees a much larger latency
- longer even than the28µs that is the maximum of the in-
dividual kernels.

The best case latency for a low latency kernel that is
merged with a high latency kernel is the execution time of
the high latency kernel. In the worst case, the execution
time achieved will degrade to the sum of the two indepen-
dent execution times if both kernels fully saturate the global
to shared memory interconnect. There is no method to fully



prevent a low latency kernel from being merged with a high
latency one as the execution time of a given kernel is not
known prior to execution. However, the static merging ap-
proach can be tuned to take into consideration number and
types of operations in each kernel before merging them. Ap-
plications that are latency intolerant could also signal the
issue queue to not consider their kernels for merging. Al-
ternatively, a history of execution times for kernels couldbe
used to approximate future behavior of the same kernel and
consider it in the merging decision.

6. Conclusions and Future Work
This paper analyzed methods for running general pur-

pose task parallel workloads on a graphics processing unit
designed for data parallel workloads. We demonstrate how
merged CUDA kernels can increase the throughput on a
computing platform that utilizes an NVIDIA GPU for gen-
eral purpose computing tasks, and we implement an issue
queue that decides when to merge kernels for concurrent
processing. We also provide a description of a simple kernel
queue manager that makes the decision to run merged ker-
nels based on the selection of a single or multiple kernels.
Using microbenchmarks, a Nearest Neighbor search, and a
Gaussian Elimination, we showed that a merged kernel ex-
ecutes in the same amount of time as the longest running of
the single kernels. An exception proves to be kernels where
the runtime is dominated by global-to-local memory trans-
fers, and merging such kernels increases the stress on the
device interconnect such that an improvement of only 12-
20% over executing the kernels sequentially is observed. In
the case of merging kernels beyond the processing resources
of the GPU, our experiments confirm that some of the work
must be serialized on the device, yet this alternative can en-
hance schedulers as it can be beneficial when, for example,
two single kernels that over-extend the processing resources
themselves are merged.

Future work includes a more thorough benchmarking us-
ing a larger selection of CUDA applications, and an im-
proved queue manager. Research is still needed regarding
how to merge kernels programmatically, and whether it is
feasible to do so in real time. Further investigation of how
to generalize the process for generic task-parallel to data-
parallel translation is also needed. Scheduling general pur-
pose work on a system with heterogeneous cores is an ex-
isting problem that will become more prevalent in next gen-
eration processors, and our dynamic approach to increasing
concurrency and efficiency on GPUs improves the ability of
a system-wide scheduler to achieve more optimal execution.
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