
Minimal Subset Evaluation: Rapid Warm-up for Simulated Hardware State

John W. Haskins, Jr. Kevin Skadron
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

fpredator,skadrong@cs.virginia.edu

Abstract

This paper introducesminimal subset evaluation(MSE) as a way
to reduce time spent on large-structure warm-up during the fast-
forwarding portion of processor simulations. Warm up is com-
monly used prior to full-detail simulation to avoid cold-start bias
in large structures like caches and branch predictors. Unfortu-
nately, warm up can be very time consuming, often representing
50% or more of total simulation time. Previous techniques have
used the entire fast-forward interval to obtain accurate warm up,
which may be prohibitive for large parameter-space searches, or
chosen a short but ad-hoc warm-up length that reduces simulation
time but may sacrifice accuracy.

MSE probabilistically determines a minimally sufficient frac-
tion of the set of fast-forward transactions that must be executed
for warm up to accurately produce state as it would have ap-
peared had the entire fast-forward interval been used for warm up.
The paper describes the mathematical underpinnings of MSE and
demonstrates its effectiveness for both single-large-sample and
multiple-sample simulation styles. In our experiments, MSE yields
errors of less than 1% in IPC measurements with cycle-accurate
simulation, while reducing simulation times by an average factor
of two or more.

1 Introduction
This paper introduces a new technique for minimizing the
amount of simulation required to place large processor
structures like caches and branch predictors in an accurate
state before full-detail simulation. Research in computer ar-
chitecture almost always requires simulation, because sim-
ulated processor models are easier, faster, and cheaper to
develop than hardware prototypes and vastly more flexible.

Detailed processor studies requirecycle-accuratesim-
ulation that can model the step-by-step flow of instruc-
tions through today’s complex processor pipelines. Unfor-
tunately, these simulations are terribly slow, with slowdown
factors of hundreds or thousands compared to native exe-
cution. With cycle-level simulations, running many of the
SPEC95 benchmarks to completion with reference inputs

takes days or weeks [8], and running some of the SPEC
2000 benchmarks takes over a year [5].

Copyright c
 2001 IEEE. Published in the Proceedings of the2001 International Conference on Computer Design (ICCD), September, 2001, Austin, Texas. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be
obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

To combat these long simulation times, most simula-
tion strategies either take data from multiple short samples
throughout the program, “fast-forwarding” between sam-
ples [2], or else fast-forward to a single, large simulation
window of 50–100 million instructions [8]. Both save time
when advancing to a zone of full-detail simulation by per-
forming minimal work between samples. A third approach
to reduce simulation times is to use reduced inputs, but this
raises the question of the reduced input’s accuracy.

Unfortunately, the accuracy of simulation within these
full-detail samples depends on avoidingcold-start bias,
which requires each that each sample start with accu-
rate cache and branch predictor state [2]. This typically
means that fast-forwarding must not only update the pro-
gram’s architectural state, but must also perform cache and
branch-prediction simulation for the entire fast-forward in-
terval if large-structure state is to be completely accurate or
“warmed up” at the beginning of a sample. Unfortunately,
despite the time savings realized by not modeling pipeline
state, cache and branch prediction simulation is still slow,
and this makes state warm-up during fast-forwarding pro-
hibitive, especially if it must be repeated for multiple simu-
lations with varying parameters or to reach samples deep in
a benchmark’s execution. Checkpointing simulation state
at the beginning of each sample would be one solution,
but separate checkpoints would be required for each desired
combination of cache and branch predictor configurations.

Current approaches [2, 4] use ad-hoc heuristics to reduce
warm-up1 length. MSE is a more formal mathematical ap-
proach that determines a minimal length of the warm-up
period necessary to conform to a user-specified probability
of accurate large-structure initialization. MSE is also flexi-
ble, being directly applicable to any desired hardware con-
figuration or sampling regime. MSE therefore permits the

1By “warm up,” we refer to the concluding portion of the fast-forward
interval where transactions to large structures (e.g., memory references’
interactions with the cache) are simulated.



user to either tune the warm-up interval to specific cache
and branch predictor configurations or to select a warm-up
interval that provides at least the desired probability of ac-
curate warm-up for every configuration of interest. MSE is
very simple to implement and apply to any desired simula-
tion system. We have developed software that facilitates its
use in conjunction with theSimpleScalar[1] software suite.

This paper presents the MSE approach for both direct-
mapped and set-associative structures, and presents results
using direct-mapped caches for both a single-large-sample
interval as in [8] and results using set-associative caches for
multiple-sample intervals as in [2]. For maximum flexibil-
ity, the MSE approach also makes no assumptions about the
starting state of the structures to be warmed up. This allows
the approach to work with both the single-large-sample and
the multiple-sample approaches.

The rest of this paper is organized as follows. We dis-
cuss related work in Section 2. Section 3 presents the for-
mal MSE approach, and Section 4 presents our experimen-
tal methodology. Finally, we present our results in Section
5 and conclude in Section 6.

2 Related Work
Because simulating benchmarks to completion is pro-
hibitive, several studies have explored ways to simulate only
portions of the program’s overall execution. Skadronet
al. [8] used a sequence of heuristics to find a single, short
but representative simulation window of 50 million instruc-
tions. The most important component of their approach is
to exclude unrepresentative start-up behavior from early in
the benchmark’s execution; [8] goes on to present a table of
fast-forward instruction counts for the SPECInt95 bench-
marks.

Conteet al. [2] instead simulate multiple different, short
samples from a benchmark’s overall execution and use sta-
tistical techniques to identify the samples and ensure that
together they capture representative behavior. Key to this
technique is ensuring the accuracy of the state in large struc-
tures like the caches and branch predictor. Their work fo-
cuses on the branch prediction structures (assuming a per-
fect cache) and shows that using stale predictor state from
the previous sample plus a short warm-up interval [7] of at
least 7,000 instructions prior to the next sample is sufficient
to minimize cold-start bias and achieve very small errors of
a few percent in the mean observed IPC. We call this warm-
up approach “short warm-up.”

Lafage and Seznec [6] refine this sampling approach
by using statistical classification methods to characterize
the entire benchmark and provide a more rigorous guaran-
tee of the chosen samples’ representativeness. A potential
problem with this approach is that finding configuration-
independent metrics for representativeness is difficult. This
work does not treat cold-start bias between samples.

Other heuristics for reducing cold-start bias are studied
by Kessleret al. [4]. They consider using half of a sam-
ple’s references for warm-up purposes; tracking only entries
that are known to contain good state; using stale state from
the previous sample; and flushing state but estimating how
much error this introduces.

In short, several formal techniques exist forsamplingex-
ecution, and these projects demonstrate the effectiveness of
sampling in reducing simulation times while preserving ac-
curacy. Yet all these techniques are dependent on accurate
warm-upof large structures prior to each sample. While
some heuristics for warm-up have been described, we are
not aware of any efforts to develop a more formal approach
to minimizing warm-up lengths while preserving accuracy.

Our MSE approach uses a combination of probabilis-
tic analysis and profiling to develop a formal technique for
identifying how long the warm-up interval must be to ob-
tain a desired level of probability of accuracy in the large
structures. To prove its effectiveness we make no assump-
tions about the prior state of the large structures. This is
more conservative than the techniques that use stale state,
but as we show, still produces short warm-up times. This
also provides more flexibility in how MSE can be applied.

3 Reducing Warm-up Times
The MSE formulas determine the probability that warming-
up only a t-instruction-long contiguous subset of fast-
forward instructions prior to the beginning of a sample will
accurately reproduce state. The MSE approach consists of
the following steps:

1. The user first selects a desired probability of accuracy
p 2 (0; 1). This value is then used to determine for
a given cache configuration, the contiguous subset of
instructions will with probabilityp reproduce the sim-
ulated hardware state exactly as if the entire set of fast-
forward instructions had been used for warm-up.

2. The user profiles the benchmark to characterize, for
any point in the benchmark, how many total instruc-
tionst must be seen in order to observem unique ref-
erences. This is a one-time cost for each benchmark–
input pair; these profiles are valid for anyp, configura-
tion, or sample set of interest.

3. The user applies the MSE formulas to the desired hard-
ware configuration and probability (p) to obtain the
numberm of unique references required in any warm-
up interval.

4. The user then uses the profile to determine, for each
simulation sample, how many total instructionst must
be executed in order to observe the desiredm unique
references and hence achieve the desired probabilityp

of accurate warm-up.

2



5. The simulation can then be run in an aggressive fast-
forward mode consisting of only functional simulation
in which just architected state is simulated. Att in-
structions prior to the beginning of the full-detail sim-
ulation sample, the fast-forward mode changes into
warm-up mode, in which updates to large structures
are now modeled. Then once the sample is reached,
these large structures will with probabilityp contain
accurate state. Alternatively, a second profiling pass
can be run in which the benchmark’s architected state
is checkpointed for each sample (using SimpleScalar
version 3.0 EIO traces, for example [1]). These check-
points must occurt instructions before full-detail sim-
ulation is to begin. Simulating each sample then entails
loading the checkpoint, warming up large structures
for t instructions, and then beginning full-detail sim-
ulation. Note that the checkpoints are independent of
processor configurations, so for a defined set of sam-
ples, these checkpoints are valid for any configuration.

These steps are described in further detail below.

3.1 MSE
To discuss MSE in the context of cache simulation, sev-

eral more variables are necessary. LetN be the number
of sets in the cache anda be its associativity. (For direct-
mapped caches,a = 1.) The MSE formulas are then used to
determinet for anyp, a andN ; that is,t =MSE(N; a; p).

As mentioned, we take the conservative approach and
make no use of any information about prior state. This
means that our approach must find the warm-up intervalt

that touches allNa cache blocks. Since some benchmarks
will not touch all entries in a large cache, even during a
very long interval, MSE employs two more variables,�,
� 2 (0; 1]. These parameters tuneN anda in the following
way: t = MSE(�N; �a; p). Thus, if the user need only
ensure that a fraction of sets and a fraction of blocks within
each set are touched,� < 1 and� < 1. For convenience,
the experiments in this paper make the simplifying assump-
tion that� = � = 1.

Once we have selected our probability of accuracyp, we
must selectt, the number of instructions to execute during
the warm-up interval. Thet instructions of the warm-up
should contain at leastm unique memory references. By
“unique” we mean that among thesem memory references,
no two access the same address. Conceivablyt could be
chosen precisely if a trace of the memory reference stream
were available. Such traces, however, may rapidly be-
come large and unwieldy. (Previous work [3] has addressed
the cumbersome nature of traces and offer approaches that
make their use more viable.)

Instead of dealing with full (or even compressed) traces,
we obtaint using data gathered from the profiles. During
the profiling run previously mentioned, a fully-associative

cache is maintained for the stream of instruction memory
references and for the stream of data memory references; in
both cases, the cache block size is equal to the width of one
memory word. Each time a memory reference occurs, the
corresponding cache entry is logically “timestamped” with
the executed instruction count. At the conclusion of the pro-
filing run, the set of timestamps are sorted in descending or-
der; the timestamp occurringmth in the list is the number
of instructions (t) prior to the full-detail sample that must
be executed in order to encounterm unique memory refer-
ences.

Armed with t which containsm unique memory refer-
ence addresses, we are ready to discuss the critically im-
portant implicit assumptions behind the MSE approach and
apply the MSE formulas.

3.2 MSE Assumptions
The MSE formulas calculate the probability that at least

�N sets of a cache will be touched at least�a times. Our
formulas are based on the assumption thatunique mem-
ory references are typically distributed uniformly through-
out the cache. This assumption does not contradict the
well-known, empirically demonstrated principle that “hot-
spots”—regions of heightened activity due to locality—
exist in caches. The critical difference is that the hot-spot
principle considers theentirestream of memory references
(L). Our assumption, by contrast, refers only to the sub-
set of the memory reference stream that doesnot contain
duplicates (unique(L)).

By filtering out duplicate memory reference addresses
and focusing instead on only the subset of unique memory
references, the hot-spot principle is irrelevant. Indeed, uni-
form distribution of unique memory reference addresses is
exactly the ideal behavior for a cache because this would re-
duce the likelihood of conflicts. In an ideal direct-mapped
cache, for instance, data in any set would have aN�1

N

chance of surviving a unique incoming reference address.
Furthermore, the larger the N, the smaller the chance of con-
flict.

To verify the uniform distribution of unique(L)
throughout the cache analytically, we employed the�2 test.
We developed software that takes, from the profile infor-
mation, the number of references to each set of the cache
(among the unique references only). From this, we first tally
the total number of unique memory accesses,junique(L)j.
Then, we calculate a best estimate average number of hits
per set

�x =
junique(L)j

N

Using �x we group sets into bins such that the best estimate
average number of hits per bin is at least 5 [11]. Finally,
we use these data to compute~�2o, the observedreduced�2.

3



In all cases, for all benchmarks used and for everyN used,
the raw profile data achieves~�2o � 1:2 and is almost al-
ways� 0:5. The values of~�2o for each benchmark for all
testedN from the SPECInt95 benchmarks are listed in Ta-
ble 1 along withd, the number of degrees of freedom used
in the reduced�2 computation. In most cases, a value of~�2o
much greater than1 indicates that the expected distribution
(in this case, uniform) is unlikely. For our purposes—as ev-
idenced by the accurate performance of the MSE techniques
in our experiments (see Section 5)—the low reduced�2 val-
idate the uniform distribution. We performed the same test
on the profile data from the SPEC2000 benchmarks used
in a separate set of experiments also presented in this pa-
per. Experiments on these benchmarks use multiple-sample
simulation; thus we were forced to perform the�2 test for
each fast-forward period individually. The results were sim-
ilar to those presented in Table 1: suitably close to uniform
for the MSE techniques to be applicable. This conclusion
is also supported by the successful application of the MSE
techniques to the multiple-sample simulations (see Section
5).

N = 512

benchmark ~�2o (d = 254)
compress 0.001
gcc 0.587
go 1.166
ijpeg 0.534
m88ksim 0.014
perl 0.162

N = 1024

benchmark ~�2o (d = 510)
compress 0.000
gcc 0.275
go 0.000
ijpeg 0.317
m88ksim 0.022
perl 0.294

N = 2048

benchmark ~�2o (d = 1022)
compress 0.003
gcc 0.925
go 0.000
ijpeg 0.242
m88ksim 0.000
perl 0.350

N = 4096

benchmark ~�2o (d = 2046)
compress 0.000
gcc 0.037
go 0.000
ijpeg 0.303
m88ksim 0.000
perl 0.350

Table 1. ~�20 for SPECInt95 benchmarks and
various N ; d is the number of degrees-of-
freedom

3.3 Direct-mapped Formula
To calculate the probability that�N sets of a direct-

mapped cache will be touched at least once, the MSE for-
mula calculates 1 minus the probability thatN � �N + 1
or more entries will go untouched:

p = 1�

Pd�Ne�1

k=1

�
N

k

�
kmPd�Ne

k=1

�
N

k

�
km

The numerator is the sum of the number of ways to touch
at most�N � 1 entries afterm unique references. In other
words, the numerator counts the number of ways to build
a string of lengthm with fewer than�N symbols (i.e., the
number of ways to fail to touch�N sets). The denominator
counts the number of ways to fail to touch�N sets plus
the number of ways to succeed to do so. Form � �N

their quotient is the probability of failing to touch�N sets
at least once. One minus this quotient is the probability of
succeeding to touch�N entries afterm unique references.

3.4 Set-associative Formula
The formula for calculating the set-associative case is

quite different:

p =

Ph�
m

x1;x2;:::;xN�1

�???s:t: at least d�Ne xj � d�ae
i

P�
m

x1;x2;:::;xN�1

�

The sum of multinomial coefficients in the numerator is the
total number of ways to succeed to touch�N sets at least
�a times. (This is achieved by adding the restriction that all
the lower terms [i.e., xj ] in the multinomial coefficient be
greater than or equal to�a.) Naturally, the denominator is
the total number of ways to fail to touch�N sets at least
�a times plus the number of ways to succeed to do so. For
m � �N�a, their quotient is the probability to succeed to
touch�N sets at least�a times afterm unique references
to the set-associative cache.

Notice that neither sum has explicit bounds. Rather, the
bounds are implicit—inherent by the definition of the multi-
nomial coefficient: Essentially, the sum of all the lower
terms must be less than or equal to the upper term. Thus, the
exclusion of explicit bounds implies that the sum is over all
valid multinomial coefficients having upper termm. Fur-
ther restrictions are placed on the numerator to filter out
those multinomials representing the case of failing to touch
�N sets�a or more times.

3.5 Computing The MSE Formulas
Unfortunately, we have not yet found closed-form solu-

tions form given p for these formulas. Instead, we have
written software that iteratively tests different values ofm

to find the appropriatem for a specifiedp, �N , and�a.

4



The software calculates the direct-mapped formula rela-
tively quickly even on an older, 180MHz PentiumPro—the
longest calculation we tried took approximately 30 minutes.

The multinomial coefficient in the set-associative for-
mula, however, makes this calculation take many orders
of magnitude longer to compute. The complexity of this
computation is bounded by the complexity of calculating
the sum in the denominator. The problem with performing
this computation is the absence of explicit bounds on the
sum which forces us to account for all valid combinations
of lower terms in the multinomial coefficient. To combat
this, we have tested brute-force multithreading techniques
in conjunction with optimizations that exploit combina-
torics to avoid “double-counting,”e.g.,

�
8

1;2;4

�
=
�

8
2;4;1

�
. In

addition, a single pass computesp for all associativities� a

for a given�N . A less expensive algorithm for calculating
the set-associative formula is a point for future research. A
simple approximation to the set-associative MSE formula is
to multiply the result of the direct-mapped MSE formula by
the associativity,i.e., m = a � MSE(�N; 1; p). This ap-
proximation essentially emulates the case where the firstm

uniques successfully touch the required�N sets; the sec-
ondm uniques touch�N sets; ...; theath m uniques touch
�N sets. This approximation’s imprecision is due to the
fact that it does not ensure that the�N sets touched after
each bundle ofm uniques is the same�N sets touched by
the previousm uniques. However, in the case that� = 1,
this is a good and indeed conservative approximation.

4 Experimental Methodology
We performed two sets of experiments. In the first set,
we sought merely to establish the validity and viability of
the MSE approach by testing it against the single-large-
sample technique and SPECInt95 [10] fast-forward inter-
vals described in [8]. In the second set, we verified MSE’s
flexibility by applying the MSE techniques to the multiple-
sample simulation technique discussed in [2]; the bench-
marks for these experiments come from the more up-to-date
SPEC2000 [9] suite.

We wrote software to perform the MSE calculations ac-
cording to the formulas described in Section 3 that return
a warm-up intervalt, givenN , a andp, by iterating over
several values form. For the first set of experiments, we
chose our baseline probability of accuracyp to be 99.9%.
To achieve probabilityp = 99:9%, we found that a con-
sistently good starting point for the MSE calculation ofm

is 16�N�a. (For direct-mapped cache configurations, this
simplifies tom � 16�N .) We also test the MSE calcula-
tions forp 2 f99:0%; 95:0%g. (Table 2 shows for direct-
mapped caches, the necessarym for lower probabilities of
accuracy of 99.0% and 95.0% and gives the change inm

relative to them required for 99.9% probability of accu-
racy.)

p=99.0%

N m �m

512 5544 -32.32%
1024 11803 -28.02%
2048 25031 -23.61%
4096 52906 -19.27%

p=95.0%

N m �m

512 4710 -42.50%
1024 10135 -38.14%
2048 21693 -33.80%
4096 46230 -29.46%

Table 2. m summary for p = 99:0% and p =
95:0% compared to a baseline of p = 99:9%.

For both sets of experiments, we first ran a modified ver-
sion ofsim-cacheto perform the one-time profiling pass for
each benchmark–input pair. Then, using the MSE software
in conjunction with the profiling data, we found for each
cache configuration,t that would satisfyp.

Next, for the first set we ran the unmodifiedsim-cache—
once for each cache configuration—to examine the number
of blocks touched after warming up only thet most recent
instructions prior to the large-sample window; if the num-
ber of blocks touched is at least�N , the experiment was
successful.

Finally, for the second set we used a cycle-accurate
processor simulator that we developed within the Sim-
pleScalar framework to measure instruction throughput
(IPC). The simulator was configured as 6-stage, 4-way, in-
order pipeline with hybrid branch prediction, its instruction-
and data-cache were 2-way associative with 1024 sets and
32-byte blocks (for a total of 64 kilobytes each). Critical
to these experiments was the cache warm-up interval prior
to making IPC measurements during the full-detail simula-
tion windows. Warm-up interval was determined in three
ways: short, full and MSE. Short warms up cache state for
7,000 instructions ([2]) prior to full-detail simulation. Full
warms up cache state during all non-full-detail simulation.
MSE warms up cache state fort instructions prior to full-
detail simulation. If the IPC obtained by warming up only
the MSE-prescribedt instructions is closer to the IPC ob-
tained from full warm-up than the IPC obtained from short
warm-up and the simulation running time for MSE warm-
up is less that the simulation running time for full warm-up,
the experiment was successful.

5 Results
5.1 Single-large-sample

In the first set of experiments, we apply MSE to single-
large-sample simulations to validate its effectiveness and
accuracy. These experiments model direct-mapped caches
with set sizesN 2 f512; 1024; 2048; 4096g. Furthermore,

5



N = 512

p = 99:9% p = 99:0% p = 95:0%

benchmark % ofN % of fast-forward % ofN % of fast-forward % ofN % of fast-forward
compress 100% 0.11% 100% 0.08% 100% 0.07%
gcc 100% 4.16% 100% 3.28% 100% 3.05%
go 100% 99.90% 100% 99.90% 100% 99.90%
ijpeg 100% 0.28% 100% 0.12% 100% 0.12%
m88ksim 100% 1.43% 100% 1.06% 100% 0.05%
perl 100% 13.89% 99.61% 12.42% 99.02% 10.70%

N = 1024

benchmark % ofN % of fast-forward % ofN % of fast-forward % ofN % of fast-forward
compress 100% 0.25% 100% 0.17% 100% 0.15%
gcc 100% 5.61% 100% 4.39% 100% 4.33%
go 100% 99.90% 100% 99.90% 100% 99.90%
ijpeg 100% 0.51% 100% 0.32% 100% 0.30%
m88ksim 100% 2.51% 100% 1.80% 100% 0.12%
perl 100% 14.09% 99.12% 13.95% 99.84% 13.91%

N = 2048

benchmark % ofN % of fast-forward % ofN % of fast-forward % ofN % of fast-forward
compress 100% 0.53% 100% 0.39% 100% 0.33%
gcc 100% 9.88% 100% 8.16% 100% 6.44%
go 100% 99.94% 100% 99.94% 100% 99.92%
ijpeg 100% 0.94% 100% 0.74% 100% 0.69%
m88ksim 100% 5.03% 100% 3.95% 100% 3.59%
perl 100% 14.59% 100% 14.37% 100% 14.27%

N = 4096

benchmark % ofN % of fast-forward % ofN % of fast-forward % ofN % of fast-forward
compress 100% 0.96% 100% 0.77% 100% 0.69%
gcc 100% 15.55% 99.98% 13.83% 99.98% 12.10%
go 100% 99.99% 100% 99.99% 100% 99.97%
ijpeg 100% 1.96% 100% 1.63% 100% 1.40%
m88ksim 100% 10.05% 100% 7.90% 100% 7.16%
perl 100% 15.57% 100% 15.21% 100% 15.01%

Table 3. SPECInt95 benchmark summary for p 2 f99:9%; 99:0%; 95:0%g.

we assume� = 1 since [8] gives warm-up intervals that
reach hundreds of millions of instructions within the bench-
marks. For these experiments on all benchmarks, with prob-
ability of accurate warm-up chosen to bep = 99:9%, all N
sets are indeed touched after the prescribedt warm-up in-
structions as determined by our MSE techniques. When we
adjusted the probability top = 99:0% and p = 95:0%,
the MSE-prescribedt usually touched allN sets; when it
did not, only a very small number of sets (fewer than 10)
were excluded. Of particular interest in these experiments
is the size of the warm-up subset as a percentage of all fast-
forward instructions prior to the simulation window. Our
data—the percentage ofN sets touched and the percentage
of the fast-forward interval that was warmed up—from the
first set of experiments are given in Table 3.

For all benchmarks exceptgo, fewer than 16% of all in-
structions suffices to touch all or minutely fewer thanN
sets. go’s anomalous behavior is due to the fact thatgo
accesses very few unique memory addresses after an ini-
tial burst of chaotic startup activity. Hence, it was neces-
sary to go farther back into the set of pre-full-detail simula-

tion instructions to amass the MSE-prescribedt instructions
that containedm unique memory references—in all cases,
nearly all the instructions. A suitably-chosen� < 1 for go
would mitigate this effect. The small changes in percent-
age of warm-up instructions as the probability of accuracy,
p, decreases are due to the fact that we soughtt sufficient
to touch allN sets in the cache—thus our simplifying as-
sumption that� = 1—even if some lines are dead (i.e.,
are unused or overwritten before being read during the full-
detail simulation). These first-pass results validate the MSE
technique and justify the second segment of experiments.

5.2 Multiple-sample
In the second set of experiments, we used multiple-

sample simulations. Each of the simulation’s 50 full-detail
samples was 1 million instructions long and each were sep-
arated by 499 million fast-forward instructions. To provide
a thorough test of the MSE approach, both the instruction-
and data-cache were flushed at the conclusion of each full-
detail simulation window. Doing so actually makes MSE’s
task harder by rendering the simulations unable to take ad-
vantage of previously-loaded data that would have other-

6



wise remained in the cache. This is in contrast to the mul-
tiple sample method proposed in [2] (that we used to test
short warm-up) which opts instead to maintain “stale” state
between samples. We tested two probabilities of success-
ful warm-up: p = 99:9% andp = 95:0%. Once again,
we conservatively soughtt prior to each full-detail sample
sufficient to touch allN sets at least twice (a = 2)using
the approximation for calculating the set-associative MSE
formula described in Section 3.

We measured the goodness of the MSE techniques by
two metrics. The first is the closeness of the IPCs ob-
tained using MSE-prescribed warm-up intervals to those
obtained by full warm-up. Table 4 shows the results ob-
tained and contrasts them against the IPC obtained through
short warm-up. The second metric is the fraction of sim-
ulation running time with MSE-prescribed warm-up rela-
tive to full warm-up. Table 5 gives these results and con-
trasts them against the fraction of full warm-up necessary
for short warm-up.

From Table 4 it is clear that the MSE-prescribed warm-
up in general yields superior IPC precision relative to short
warm-up. Of fifteen benchmarks, fourteen yielded IPCs that
are closer (i.e., have a smaller absolute value percent dif-
ference) than the short warm-up for bothp = 99:9% and
p = 95:0%. The singular benchmarkappluwas probably
adversely affected by the fresh-state approach our experi-
ments took, flushing the instruction- and data-cache at the
conclusion of each full-detail simulation window.

Short warm-up is clearly superior in terms of wall-clock
running time for simulations, never taking longer than 22%
of the time required for full warm-up simulation. The
running times obtained by MSE are also smaller than full
warm-up, taking only as much as 86% or as little as 26%
for p = 99:9% and as much as 69% or as little as 22% for
p = 95:0% of the time required by full warm-up. These
running times reflect the number of fast-forward instruc-
tions that were used for warm-up between the full-detail
intervals. In a simulation such asvpr (the highest rank-
ing benchmark forp = 99:9%), the explanation for its
nearly 86% measurement is the fact that each 499-million-
instruction fast-forward was sparsely populated byunique
memory references. Therefore, the MSE-prescribedt mem-
ory references during the fast-forward periods had to be
large to capture them necessary uniques in order to achieve
probabilityp of accurate warm-up. In fact, for some of the
benchmarks, several of the fast-forward intervals were so
sparse with unique memory references that they did not con-
tainm uniques; for these fast-forward intervals, the MSE-
prescribedt is the entire fast-forward window. A more effi-
cient solution to this situation is already under investigation.

In conclusion, short warm-up reduced simulation times
by roughly a factor of 2.75 compared to MSE99:9% warm-
up simulation times and by roughly a factor of 2.05 com-

% error
benchmark Full Short MSE99:9% MSE95:0%
applu 0.7857 -1.425% -1.769% -1.769%
crafty 1.3946 -2.373% -0.029% -0.029%
equake 0.6146 0.358% -0.016% -0.016%
facerec 1.2042 -4.293% -0.008% -0.008%
fma3d 0.8492 1.896% -0.742% -0.565%
gcc 1.0665 -7.979% -0.169% -0.291%
gzip 1.5224 -1.399% -0.085% -0.099%
lucas 0.7439 0.255% 0.121% 0.121%
mesa 1.3797 -1.160% 0.210% 0.275%
parser 1.0851 -9.833% -0.065% -0.175%
perlbmk 1.0542 -1.916% 0.844% 1.157%
twolf 1.2008 -2.682% -0.167% -0.208%
vortex 1.1118 -1.727% 0.072% -0.063%
vpr 1.0675 -16.42% -0.019% -0.206%
wupwise 0.9783 -2.361% -0.020% -0.307%
MEAN 3.738% 0.289% 0.353%

Table 4. Result summary for 50-sample sim-
ulation IPCs. This table compares the IPC
from full warm-up to the percent difference
(IPC�IPCfull)

IPCfull
in IPC for both short and MSE

warm-up. The mean of percent differences
was calculated using their absolute values.

% of original running time
benchmark Full Short MSE99:9% MSE95:0%
applu 26572 17.53% 54.59% 38.98%
crafty 27175 19.80% 34.01% 27.00%
equake 27220 19.35% 63.14% 47.92%
facerec 26190 20.28% 55.11% 37.93%
fma3d 27591 17.65% 55.96% 42.17%
gcc 28377 19.07% 42.10% 32.30%
gzip 27037 21.24% 62.73% 46.94%
lucas 25739 17.70% 84.07% 68.73%
mesa 26602 20.30% 42.14% 32.48%
parser 27735 17.98% 35.48% 26.59%
perlbmk 27905 18.98% 26.27% 22.59%
twolf 27967 19.64% 47.90% 35.67%
vortex 28301 19.40% 25.49% 22.27%
vpr 28235 19.96% 85.53% 54.67%
wupwise 26173 17.66% 76.32% 54.93%
MEAN 19.10% 52.72% 39.41%

Table 5. Result summary for 50-sample simu-
lation running times (in seconds). This table
compares the running times for full warm-up
to the percentage of this time for both short
and MSE warm-up.

pared to MSE95:0%; MSE99:9%, on the other hand, yields
results that are roughly 12.9 times more accurate than short
warm-up and MSE95:0% is roughly 10.6 times more accu-

7



rate (see the MEAN entries of Table 4 and Table 5). This
is an exciting result: A decreased probability of accurate
warm-upp reduces simulation running time, yet in general
still achieves a more accurate IPC measurement than short
warm-up. As hypothesized, the MSE technique’s rigorous
mathematical approach to determining suitable fast-forward
warm-up intervals is more reliable than previous, more ad-
hoc methods.

6 Conclusions and Future Work
Minimal subset evaluation is a formal mathematical tech-
nique for determining a reduced number of instructions nec-
essary to warm-up simulated hardware state. Our research
extends prior work by using probability theory to more rig-
orously make this determination. The MSE formulas pre-
sented here are predicated upon a uniform distribution of
uniquememory references throughout the cache; we were
able to verify this behavior using the�2 test. The test-bed
for our research was caches.

A crude heuristic for obtainingm—the necessary num-
ber of unique memory references—to obtain a probability
of accurate warm-up of 99.9% ism � 16�N�a whereN
is the number of sets anda is the associativity of each set;
�, � 2 (0; 1] tune the number of sets and blocks per set to
be touched, respectively.

Our results show that MSE yields highly accurate sim-
ulations while substantially reducing simulation times. For
p = 99:9%, the average error in IPC was 0.3% and the av-
erage reduction in simulation running time was 47%; for
p = 95:0%, the average error in IPC was 0.4% and the av-
erage reduction in simulation running time was 60%. MSE
is flexible while maintaining accuracy.

MSE is a new approach; its refinement is the subject
of future research. We will next apply MSE techniques to
other hardware structures such as the prediction history ta-
bles of dynamic branch predictors and to deeper levels of
the cache hierarchy. Efficiently dealing with benchmarks
that have a sparse population of unique memory references
is also a topic for future research. Finally, the develop-
ment of a mathematically tractable solution for comput-
ing the set-associative MSE formula is a point of further
research. The current algorithm’s extremely long running
time makes it suitable only for computations with a very
small number of sets (e.g., N = 16). For the case where
� = 1, a conservative approximation to the set-associative
formula is a times the direct-mapped MSE solution,i.e.,
m = a �MSE(N; 1; p).

Acknowledgments
This material is based upon work supported in part by
the National Science Foundation under grant no.CCR-
0082671. The authors would also like to thank Dr. Dee
A. B. Weikle, Prof Margaret Martonosi and the anonymous
reviewers for their valuable feedback and insights.

References
[1] T. M. Austin. SimpleScalar home page.

http://www.simplescalar.org.

[2] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing
state loss for effective trace sampling of superscalar proces-
sors. InProceedings of the 1996 International Conference
on Computer Design, Oct. 1996.

[3] E. N. Elnozahy. Address trace compression through loop de-
tection and reduction. InProceedings of the ACM SIGMET-
RICS Conference on Measurement and Modeling of Com-
puter Systems, pages 214–15, May 1999.

[4] R. E. Kessler, Mark D. Hill, and David A. Wood. A Com-
parison of Trace-Sampling Techniques for Multi-Megabyte
Caches. Technical Report 1048, University of Wisconsin-
Madison Computer Sciences Department, Sep. 1991.

[5] AJ KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja.
Adapting the SPEC 2000 benchmark suite for simulation-
based computer architecture research. InProceedings of the
Third IEEE Annual Workshop on Workload Characteriza-
tion, pages 73–82, Sep. 2000.

[6] T. Lafage and A. Seznec. Choosing representative slices of
program execution for microarchitecture simulations: A pre-
liminary application to the data stream. InProceedings of
the Third IEEE Annual Workshop on Workload Characteri-
zation, pages 102–110, Sep. 2000.

[7] Subhasis Laha, Janak H. Patel, and Ravishankar K. Iyer.
Accurate Low-Cost Methods for Performance Evaluation of
Cache Memory Systems.IEEE Transactions on Computers,
37(11):1325–1336, Nov. 1988.

[8] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark.
Branch prediction, instruction-window size, and cache size:
Performance tradeoffs and simulation techniques.IEEE
Transactions on Computers, 48(11):1260–81, Nov. 1999.

[9] Standard Per-
formance Evaluation Corporation. SPEC CPU2000 Bench-
marks. http://www.specbench.org/osg/cpu2000.

[10] Standard Performance Evaluation Corporation. SPEC
CPU95 Benchmarks. http://www.specbench.org/osg/cpu95.

[11] J. R. Taylor.An Introduction to Error Analysis: The Study of
Uncertainty in Physical Measurements. University Science
Books, Mill Valley, California, 1982.

8


