
ers
 on

nt
time.
but

].

by
che
put
set.
in to
 all
ses,
se,
put
nce
s of
ered
in
f a

st
not

the

ck

, but
nd
rms

Caches As Filters: A Framework for the Analysis of Caching Systems

Dee A. B. Weikle†, Sally A. McKee‡, Kevin Skadron†, Wm.A. Wulf †

†Department of Computer Science
University of Virginia

151 Engineer's Way, PO Box 400740
Charlottesville, VA 22904-4740

{daw4q|skadron@virginia.edu, wwulf@nae.edu}

‡Department of Computer Science
University of Utah

50 S. Central Campus Dr., #3190
Salt Lake City, UT 84112-9205

{sam@cs.utah.edu}
Abstract
This paper introduces a new analytical framework for
analyzing and designing caches. It consists of four major
parts: TSpec notation, into which reference traces can be
transformed; equivalence classes, which abstract away
chance effects of address bindings and specific inputs; the
functional filter model, which operates on TSpec traces
and provides a formal description of cache operation; and
new metrics, which evaluate cache performance. This
paper gives an overview of TSpec notation and
equivalence classes, and then illustrates how the
functional filter model can be used to derive better
understanding of cache behavior.

1. Introduction

The work of today’s cache designer is becoming
increasingly difficult. It is well-accepted that there is a
processor-memory performance gap that must be
compensated for with the caching system [4, 10, 17].
Every time there is an increase in the speed of a
microprocessor, the cache and corresponding memory
system must be redesigned to feed the increased need for
instructions and data to operate on. There continues to be
a constant level of research and improvement to cache
functionality, but such research typically focuses more on
improvements to the cache system itself and less on the
process or underlying theory behind cache design. The
most common approach is to modify the cache hierarchy
and then simply judge that design by running benchmarks
through a simulator to determine hit rates or average
memory access times. Occasionally in the past and more
often now, researchers are taking a different approach and
attempting to design not just a better cache, but better ways
to design and analyze caches through new models or
measures [1, 3, 5, 7, 8, 9, 12, 13, 14, 16].

This paper describes an analytical framework for cache
design. There are four major components that form the
framework, each of which is a contribution on its own.
First, the TSpec notation is a more formal way for
researchers to communicate with clarity about memory
references generated by a processor. Second, the concept
of an equivalence class of memory references provides an
abstraction for eliminating the random address placement
effects of actions such as declarations, certain compiler
and linker decisions, heap allocation or specific inputs.

Third, the functional cache filter model uses the TSpec
notation and equivalence class concept to allow design
to more clearly understand the effects of cache systems
particular memory references. Fourth, new metrics
provide more insight into cache design than curre
measures such as hit rate or average memory access
This last aspect is beyond the scope of this paper,
introduces two new measures, instantaneous hit-rate and
instantaneous locality. Interested readers should see [16

2. Proposed Approach
The analysis approach discussed here is inspired
viewing a cache as a filter. As depicted in Figure 1, a ca
filters out the references that hit and transforms an in
set of references into another, hopefully sparser, output
Thus, designing memory hierarchies can be seen as ak
designing a compound optical lens: no single lens has
the desired properties, but by cascading several len
optical designers can achieve amazing acuity. Likewi
we can view a cache as a filter that transforms an in
sequence of data references into an output seque
representing a subset of its input. By composing a serie
such caches, as many references as possible are filt
from the request string before it is presented to ma
memory. To get the best overall performance, the goal o
particular level of cache is not only to filter out the mo
references, but to filter out those that the next level can
capture.

In the following analysis, we define a reference string to
be the list of addresses (read or write) presented to
memory system, and denote it as a sequence, <a0, a1, a2,
a3, a4, …>. The subscript indicates the position in the
reference string, and is only loosely related to wall-clo
time. At first it may seem that ax and the filtered ax’ will
always be the same address. In most cases, this is true
if an entire line is fetched to fill the cache, the order a
value of the address may change. In this paper the te

T = <a0, a1, a2, a3, …> T’ = <a0’, λ, a1’ , …>cache
filter

f(T, S)S = initial cache state S’ = final cache state

Figure 1: The Cache Filter Model
In proceedings of the 3rd Grace Hopper Celebration of Women in Computing- 2000, September 14-16,
Cape Cod, Massuchusetts.

ns
n

 is
fied

ents

 of

hree

y

”,

g
g to
 in
is

om

ers

path
ple
to
s or
es

ese

any
 on
are
 in

nd
 be
et of

 of

ed

 3,
it

ass
reference string, reference sequence, and trace are used
interchangeably, and are denoted by the capital letter “T”.
We use the symbol λ to indicate the position of a reference
removed by a cache filter. This allows correlation between
the input and output reference strings. For instance, the
input <a, a, a> generates the output <a, λ, λ> for most
caches. We view the cache as a filter function, f, on the
input of the reference string, T, and the state of the cache,
S. The output of a filter function f(T;S) consists of an
output trace, T’ , and an output state, S’ (represented as the
pair T’ ;S’). Figure 1 illustrates this relationship. The trace-
only portion of the output of a filter function is denoted
fT(T;S), and the state-only portion is denoted fS(T;S).

To supplement the cache filter model, we have developed
a new transform that is specific to cache design and
simplifies modeling of the cache in the new domain. The
domain to which we transform reference strings is the
TSpec notation outlined below. In addition, viewing
reference strings as combinations of primitive TSpec
reference patterns allows us to determine the overall effect
of a cache on that reference string in a straightforward
manner.

3. Overview of TSpec Notation

Figure 2 shows an example of the TSpec for an inner loop
that copies one vector to another. The code has been
simplified to three assembly instructions to allow the
pattern to be easily seen in the reference string (one might
think of these three instructions as loading an element
from the source vector, storing that element in the
destination vector, and branching back). The following
paragraphs explain this example in detail. The most basic
TSpec element is a trace atom, a single address or
reference in the trace. It can be represented by either a
literal, by λ, or by a variable. A literal is an explicit
(constant) numerical address, (e.g., 100 in the reference
string below). A variable represents a regular sequence of
addresses, and is specified by a base address and an
increment (stride). In the copy example, c, f, and t are all

variables. c represents the addresses of the code
references, and has a base address of 100 and an increment
of four. f represents the addresses of the source vector from
which data is being copied in the example, and t represents
the addresses of the destination vector into which the data
is being stored. For simplicity, references to i are assumed
to be to a register and not represented here. A variable can
be initialized (denoted #x) to set its current value to its base

address. (Note in the example below, all the initializatio
are preceded by !, which simply suppresses the generatio
of an address. A variable can also be post-incremented
(e.g., c+) so that after its current value is used, the value
updated to be the sum of itself and the increment speci
in its definition. In the example above, the first c+ in the
specification represents the address 100 and increm
the value of c to 104, so that the next occurrence of c+
represents the address 104.

A trace is represented by a concatenation of atoms
separated by commas. A variable or a concatenation
variables can then be repeated with the iteration operator,
* . So in the example above, the *3 after the parentheses
causes the trace within the parentheses to be used t
times. Notice that since the initialization for c is within the
parentheses, the address represented by c for each iteration
are the same, but since the initializations for f and t are not
within the parentheses, the addresses represented bf+
and t+ change in each iteration. A * with no explicit
iteration count simply means “zero or more repetitions
by analogy to the Kleene star in regular expressions.

The last TSpec operator required here is merge, denoted
T1 & T2. It is easiest to visualize this operation by linin
the traces up one above the other as if they were goin
be “added”, and merging each set in the same position
the reference string. The merge of multiple traces
formed one atom at a time. The merge of a single at
with any number of λs is defined to be the atom. The
merge of any number of λs is defined to be λ. The merge
of multiple non-λ atoms is undefined. For example,
 < a1, λ, a3, λ> & < λ, a2, λ, a3> = < a1, a2, a3, a4>.

4. Equivalence Classes

When analyzing a memory system, cache design
traditionally work with specific traces for which the
address bindings and the input data, and hence the
through each program, are known, much as in the exam
trace from Figure 2. Sometimes it may be beneficial
abstract away artifacts due to chance address binding
specific inputs, or to consider the set of all possible trac
from a certain piece of source code. To address th
issues, we introduce the concept of equivalence classes.
We divide the set of traces that can be generated by
specific piece of source code into four sets, depending
whether or not the address bindings and input data
known. The relationship among these groups is shown
Figure 3.

In the figure, T represents a trace for which addresses a
input values are bound. The set of traces that would
generated with the same source code and the same s
address bindings as T, but with different input data, is
denoted {Td}, and is referred to as the equivalence class
traces under varying data input. Similarly, {Tb}
represents the equivalence class of traces under varying
address bindings. (Note that {Tb} is essentially a
generalization of the translation group for arrays describ
by Harper et al. [8].) The sections that follow apply our
analysis techniques to the copy example from Section
and in the process, extend the notation to perm
descriptions of other members of the equivalence cl

C Code: for i=1 to 3 t[i] = f[i];

TSpec: c(100, 4); f(200, 4); t(300, 4);
 <!#f, !#t, (!#c, c+, f+, c+, t+, c)*3>

Reference
String: 100, 200, 104, 300, 108,
 100, 204, 104, 304, 108,
 100, 208, 104, 308, 108

Figure 2: Copy example

st
ing
f

of
of
 be
ed
ms
de
e

ey

ess,
nd

ial
ses,
of
is

g
s.
th

he
f
 be
his
 It
s
is
fy
in

he,

ot
he

nt

le
ls.
at
{ Tb}. The notation is expanded by a conditional construct
and used to describe members of the equivalence classes
{ Tb} and {Tbd} in [15].

5. Analysis Method

5.1 Overview
We first set the stage for our analysis by:

1) Characterizing a set of “primitive” traces that,
when merged, describe the input trace, and

2) Defining filter functions, fcache(T, S), as syntactic
operators that characterize various caches.

Then we can perform the steps of our analysis
method on an example by:

3) Transforming the trace to be analyzed into
primitive traces, and

4) Applying the filter functions of the cache system to
the primitive traces singly, then

5) Recombining the filtered primitive traces via a
TSpec merge to see the effect of the cache system on the
trace.

For this approach to work, F(T1 & T2, S) = F(T1, S) &
F(T2, S) and the definition of merge must be extended to
include trace-state pairs. If all references fit in the cache,
the trace-state merge simplifies to the trace-only merge.
The examples below show the implications of these
general ideas. The point here is to understand that because

F(T1 & T2, S) = F(T1, S) & F(T2, S), we can analyze mo
common caches on a wide spectrum of traces by defin
cache-filter functions for only a relatively small number o
primitives.

Characterizing Primitive Traces
Despite the fact that there are an infinite number
possible source programs with an infinite number
inputs, the reference patterns that they generate can
described by combinations of a small set of parameteriz
primitive patterns. This is true because source progra
are themselves composed of combinations of similar co
constructs. The simplest two families of these primitiv
patterns are the code loop and the stream. The f and t
variables in Figure 3 are examples of streams. Th
consist of a base address and an increment(stride). c is an
example of a code loop. These consist of a base addr
an increment that defines the length of the code word, a
a number of loop iterations. Note that the essent
difference is that the stream has no repeated addres
while the code loop does. There are other families
primitives, but their description is beyond the scope of th
paper. Extending the use of λ as a placeholder, we can
show the frequency of a primitive within a reference strin
without describing the particulars of the other primitive
For example, a stream primitive could appear every 4
reference in a code loop and be described as <(f+, λ, λ,
λ)*>.

Defining Filter Functions
Once the primitive set is defined, we must define the cac
filter function for each primitive and for each type o
cache. In general, the filtering function for a cache can
defined one reference at a time as shown below. T
function describes the output of a traditional cache.
could be a write-back cache (where dirty/modified line
are written back to the next level only when the line
evicted) or a write-thru cache (where all writes modi
main memory by writing the cache line and ma
memory).

In the first situation, where the line is dirty and a misses,
the output trace consists of the line evicted from the cac
(d(a)),and the line that includes the new reference a, (l(a)).
The new state of the cache is denoted S’where S’ = S - d(a)
U l(a). The write-through version of the cache would n
have a dirty line to evict, so the output would just be t
reference to fill the line that includes the new referencea,
(l(a)), and the new state (S’). If a hits, the contents of the
state remain the same, but the new state is denoted S’’ to
indicate the potential for change in the replaceme
algorithm.

While the above definition is very general, it provides litt
insight into what happens on the primitive or kernel leve
We are developing a catalog of cache filter functions th

{T bd}

{T b} {T d}

T

Same data
S

am
e

b
in

d
in

g
s

Y N

Y

N

T

{T b}

{T d}

{T bd}

 Figure 3: Equivalence Classes
The relationship among traces generated by a
specific source program, varying bindings only
({T b}), input data only ({Td}), or both bindings
and input data ({Tbd}).

f a S(,)

d a() l a() S';,

l a() S';

λ S'';

=
if write-back, dirty, a not in S
if write-thru, and a not in S

otherwise

not
ine
e

onds
m,
n

ce
ch

ile

the
o

ugh
s.

e
t
or
be

one

e:
ts 3
n
s

he

ses
ach

wn
e
ut
 if

rst
 our

 15
ase.

ts.
t fit
operates much like a set of integration tables. The
primitives are listed with parameters for the number of
repetitions, λs, cache size, and cache associativity. Each
primitive can be filtered as a whole instead of one
reference at a time by looking it up in the catalog and
substituting specific values for the parameters. The whole
catalog would be inappropriate here, but we give one
example and then use results from the catalog in the
examples below.

To understand the single catalog entry, an explanation of
the state representation is needed. The state is an ordered
set of index-value pairs <i, v> and, with the addition of one
more construct, can be represented in TSpec. The caches
in the examples below use LRU replacement. To write
TSpec with LRU order, it is useful to start from the end of
a TSpec construct, rather than the beginning. By analogy
with !#c, we define !c# to initialize a variable to its last
value in the trace. In the catalog entry below, the x
variables represent parameters.

fFAILRU(<!#a, (λ*x1, a+, λ*x2)*x3>; S) = T’; S’
 where T’ = <!#a, (λ*x1, a+, λ*x2)*x3> and
 S’ = !a#, a-*x3, S

This catalog entry says that for any stream, with any
number of intervening λs, the filtering effect of a fully
associative infinite LRU cache with a line size of one
word, will result in an output trace that is the same as the
input trace and a new cache state that is the reverse stream
concatenated with the old state.

5.2 Example Analysis

Transforming Traces
For the purpose of our analysis methods we choose the
representative of the trace from its equivalence class {Tb}
without any chance address bindings. This representative
is depicted by describing the shape of the trace’s
primitives without the specific address bindings. It can be
described by the TSpec notation without the base address
information and allows us to see the underlying form of
the references. As an example of the transformation that
must take place, consider the copy example of Figure 3.
This segment consists of three primitive traces, one code
loop and two streams. They are described as follows:

 T1 = (!#c, c+, λ, c+, λ, c)*3
 T2 = !#f, (λ, f+, λ, λ, λ)*3
 T3 = !#t, (λ, λ, λ, t+, λ)*3

Applying Filter Functions
We are now able to apply the filter functions to the
individual primitives in the previous section. For our
complete example, we will use the reference string in
Figure 3 and consider its output from two different styles
of cache. The first cache, DM, will be a direct-mapped
cache and the second cache, FA, will be a fully associative
cache with LRU replacement. The rule-of-thumb in the
cache community has been that in most situations, FA
would be the more effective cache.

Consider what happens when the reference string will
fit into either cache. Let the caches be of size 4 with a l
size of one reference. Transforming T into its primitiv
traces generates the traces T1–T3 above. T1 corresp
to the code references, T2 to the vector being copied fro
and T3 to the vector being copied to. The filtering functio
is now applied to each of the primitives singly. The tra
portion of the output prior to merging is the same for ea
cache in this example. The code output is:

fDM
T(T1, S) = fFA

T(T1, S) = T1’
 = (!#c, c+, λ, c+, λ, c+), λ*10.

This shows that the first iteration of the code misses wh
subsequent iterations all hit in both caches. The ten λs at
the end represent the 10 filtered references from
second and third iterations (5 from each). Filtering the tw
data stream primitives yields

fDM
T(T2, S) = fFA

T(T2, S) = T2’
 = !#f, (λ, f+, λ, λ, λ)*3 = !#f, (f+, λ*4)*3 = T2 and

fDM

T(T3, S) = fFA
T(T3, S) = T3’

 = !#t, (λ, λ, λ, t+, λ)*3 = !#t, (t+, λ*4)*3 = T3.

This demonstrates that each of the streams comes thro
untouched because they contain no repeating addresse

When merging the filtered primitives, we must us
caution. Different types of caches will have differen
effects during a merge when the capacity is limited. F
direct-mapped caches the merged miss rate can
estimated based on the effects of the conflict misses of
iteration. If we evaluate using the metric expected misses,
or Em[T], this yields the following expected performanc
T1 expects 3 misses; T2 expects 3 misses; T3 expec
misses. Approximately 1 additional miss per iteratio
(other than in the first iteration) will occur due to conflict
arising from capacity issues, i.e.,1*2 = 2. Overall, then:

 Em[T] = Em[T1] + Em[T2] + Em[T3] + Em[Capacity]
 = 3 + 3 + 3 + 2
 = 11 misses

The approximate trace output of the direct-mapped cac
is fTDM(T, S) = (!#c, c+, f+, c+, t+, c+), (!#c, c+, f+, t+)*2
where the precise c+ in the second set of parenthe
depends on the particular code reference evicted e
iteration.

For a fully-associative cache experiments have sho
fT(T, S) has two possibilities for a loop of this type. Th
first is that the whole loop fits in the cache, and the outp
is only the compulsory misses. The second possibility is
the loop does not fit, in which case fT

FA(T, S) = T because
the latter references in the loop always evict the fi
references in the loop before they can be reused. For
example fTFA(T, S) = T = !#f, !#t, (!#c, c+, f+, c+, t+,
c+)*3. All of the references miss and there are a total of
misses—poorer performance than the direct-mapped c

This method of analysis has already provided two insigh
The first is that when a loop reference pattern does no

ss
of

g

.

l

n

ive
ch

d

of
S-

s
l
g

er
he

e
t

y
r

is,
on
in a fully-associative LRU cache, an MRU replacement
algorithm or a direct mapped cache provides better
performance. The second insight is that a non-fully
associative LRU cache can be viewed as several parallel
fully-associative caches, operating on separate sections of
the reference stream. By separating our initial reference
string into separate reference strings for each set in an x-
way LRU associative cache, we can perform our analysis
as outlined above. The output of each set after priming will
either be all λs (if capacity is not a problem), or exactly the
input reference stream (if there is not sufficient capacity).
Different functional rules will need to be developed for
caches (or sets) with different replacement algorithms, but
this rule covers a large number of current cache designs.

6. Summary
In this paper we have outlined a new analytical framework
to increase the effectiveness of cache design and research.
The feasibility of this analysis has been shown by
demonstrating its use on a simple example kernel, copy.
Developing this example yielded two insights regarding
fully-associative LRU caches. In addition, it sheds light on
why random replacement caches may yield more
consistent performance than LRU replacement caches. By
separating traces into primitives, we can utilize a catalog
of cache filter functions to formally determine the effects
of a cache on a general class of kernels.

Acknowledgments
This work was supported in part by the National Science
Foundation (NSF) under Award Number POWRE-
9806043. The views, findings, and conclusions or
recommendations contained herein are those of the
authors, and should not be interpreted as necessarily
representing the official views, policies or endorsements,
either express or implied, of the NSF or the U.S.
Government.

References

[1] A.P. Batson, D.W.E. Blatt, and J.P. Kearns. Structure
within locality intervals. In Proc. of the Third
International Symposium on Modeling and Performance
Evaluation of Computer Systems, 1977.

[2] A.P. Batson and A.W. Madison. Measurements of
major locality phases in symbolic reference strings. In
Proc. of the International Symposium on Computer
Performance, Modeling, Measurement and Evaluation,
March 1976.

[3] M. Brehob and R. Enbody. A mathematical model of
locality and caching. Michigan State Univ. Computer
Science Dept. Technical Report, TR-MSU-CPS-96-42,
November 1996.

[4] D. Burger, J.R. Goodman, A. Kagi. Quantifying
memory bandwidth limitations of current and future
microprocessors. In Proc.of the 23rd International
Symposium on Computer Architecture, May 1996.

[5] P. Denning. The working set model for program
behavior. Communications of the ACM 11(5), May, 1968.

[6] S. Ghosh, M. Martonosi, and S. Malik. Precise mi
analysis for program transformations with caches
arbitrary associativity. In Proc. of the Eighth International
Symposium on Architectural Support for Programmin
Languages and Operating Systems, October, 1998.

[7] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson
Locality as a visualization tool. IEEE Transactions on
Computers, 45(11), November 1996.

[8] J. Harper, D. Kerbyson, and G. Nudd. Analytica
modeling of set-associative cache behavior. IEEE
Transactions on Computers, 48(10):1009, October 1999.

[9] B. Jacob, P. Chen, S. Silverman, T. Mudge. A
analytical model for designing memory hierarchies. IEEE
Transactions on Computers, 45(10):1180-94, October
1996.

[10] N. P. Jouppi and P. Ranganathan. The relat
importance of memory latency, bandwidth, and bran
limits to performance. In Proc. of the ISCA 97 Workshop
on Mixing Logic and DRAM: Chips that Compute an
Remember, June 1997.

[11] S.A. McKee, Wm.A. Wulf, D.A.B. Weikle. TSpec: A
specification language for reference traces. Univ.
Virginia Dept. of Computer Science Technical Report C
97-19, August 1997.

[12] K. McKinley and O. Temam. A quantitative analysi
of loop nest locality. In Proc. of the Seventh Internationa
Symposium on Architectural Support for Programmin
Languages and Operating Systems, October 1996.

[13] D. Thiebaut. On the fractal dimension of comput
programs and its application to the prediction of the cac
miss ratio. IEEE Transactions on Computers, 38(7), July
1989.

[14] J. Voldman and L. Hoevel. The software-cach
connection. IBM Journal of Research and Developmen,
25(6), November 1981.

[15] D.A.B. Weikle, K. Skadron, S.A. McKee, Wm. A.
Wulf. Caches as filters: A unifying model for memor
hierarchy analysis. Univ. of Virginia Dept. of Compute
Science Technical Report CS-2000-16, June 2000.

[16] D.A.B. Weikle, S.A. McKee, Wm. A. Wulf. Caches
as filters: A new approach to cache analysis. In Proc. of the
Sixth International Symposium on Modeling, Analys
and Simulation of Computer and Telecommunicati
Systems, July, 1998.

[17] W.A. Wulf, and S.A. McKee. Hitting the memory
wall: Implications of the obvious. ACM Computer
Architecture News, 23(4), September 1995.

	Abstract
	This paper introduces a new analytical framework for analyzing and designing caches. It consists ...
	1. Introduction

	The work of today’s cache designer is becoming increasingly difficult. It is well-accepted that t...
	This paper describes an analytical framework for cache design. There are four major components th...
	The analysis approach discussed here is inspired by viewing a cache as a filter. As depicted in F...
	In the following analysis, we define a reference string to be the list of addresses (read or writ...
	To supplement the cache filter model, we have developed a new transform that is specific to cache...
	3. Overview of TSpec Notation

	Figure 2 shows an example of the TSpec for an inner loop that copies one vector to another. The c...
	variables. c represents the addresses of the code references, and has a base address of 100 and a...
	A trace is represented by a concatenation of atoms separated by commas. A variable or a concatena...
	The last TSpec operator required here is merge, denoted T1 & T2. It is easiest to visualize this ...
	4. Equivalence Classes

	When analyzing a memory system, cache designers traditionally work with specific traces for which...
	In the figure, T represents a trace for which addresses and input values are bound. The set of tr...
	5. Analysis Method

	We first set the stage for our analysis by:
	1) Characterizing a set of “primitive” traces that, when merged, describe the input trace, and
	2) Defining filter functions, fcache(T, S), as syntactic operators that characterize various caches.
	3) Transforming the trace to be analyzed into primitive traces, and
	4) Applying the filter functions of the cache system to the primitive traces singly, then
	5) Recombining the filtered primitive traces via a TSpec merge to see the effect of the cache sys...
	For this approach to work, F(T1 & T2, S) = F(T1, S) & F(T2, S) and the definition of merge must b...
	Despite the fact that there are an infinite number of possible source programs with an infinite n...
	Once the primitive set is defined, we must define the cache filter function for each primitive an...
	In the first situation, where the line is dirty and a misses, the output trace consists of the li...
	While the above definition is very general, it provides little insight into what happens on the p...
	To understand the single catalog entry, an explanation of the state representation is needed. The...
	fFAILRU(<!#a, (l*x1, a+, l*x2)*x3>; S) = T’; S’
	where T’ = <!#a, (l*x1, a+, l*x2)*x3> and
	S’ = !a#, a-*x3, S
	This catalog entry says that for any stream, with any number of intervening ls, the filtering eff...
	For the purpose of our analysis methods we choose the representative of the trace from its equiva...
	T1 = (!#c, c+, l, c+, l, c)*3
	T2 = !#f, (l, f+, l, l, l)*3
	T3 = !#t, (l, l, l, t+, l)*3
	We are now able to apply the filter functions to the individual primitives in the previous sectio...
	Consider what happens when the reference string will not fit into either cache. Let the caches be...
	fDMT(T1, S) = fFAT(T1, S) = T1’
	= (!#c, c+, l, c+, l, c+), l*10.
	This shows that the first iteration of the code misses while subsequent iterations all hit in bot...
	fDMT(T2, S) = fFAT(T2, S) = T2’
	= !#f, (l, f+, l, l, l)*3 = !#f, (f+, l*4)*3 = T2 and
	fDMT(T3, S) = fFAT(T3, S) = T3’
	= !#t, (l, l, l, t+, l)*3 = !#t, (t+, l*4)*3 = T3.
	This demonstrates that each of the streams comes through untouched because they contain no repeat...
	When merging the filtered primitives, we must use caution. Different types of caches will have di...
	The approximate trace output of the direct-mapped cache is fTDM(T, S) = (!#c, c+, f+, c+, t+, c+)...
	For a fully-associative cache experiments have shown fT(T, S) has two possibilities for a loop of...
	This method of analysis has already provided two insights. The first is that when a loop referenc...
	In this paper we have outlined a new analytical framework to increase the effectiveness of cache ...
	Acknowledgments

	This work was supported in part by the National Science Foundation (NSF) under Award Number POWRE...
	References

	[1] A.P. Batson, D.W.E. Blatt, and J.P. Kearns. Structure within locality intervals. In Proc. of ...
	[2] A.P. Batson and A.W. Madison. Measurements of major locality phases in symbolic reference str...
	[3] M. Brehob and R. Enbody. A mathematical model of locality and caching. Michigan State Univ. C...
	[4] D. Burger, J.R. Goodman, A. Kagi. Quantifying memory bandwidth limitations of current and fut...
	[5] P. Denning. The working set model for program behavior. Communications of the ACM 11(5), May,...
	[6] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis for program transformations with ...
	[7] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson. Locality as a visualization tool. IEEE Tr...
	[8] J. Harper, D. Kerbyson, and G. Nudd. Analytical modeling of set-associative cache behavior. I...
	[9] B. Jacob, P. Chen, S. Silverman, T. Mudge. An analytical model for designing memory hierarchi...
	[10] N. P. Jouppi and P. Ranganathan. The relative importance of memory latency, bandwidth, and b...
	[11] S.A. McKee, Wm.A. Wulf, D.A.B. Weikle. TSpec: A specification language for reference traces....
	[12] K. McKinley and O. Temam. A quantitative analysis of loop nest locality. In Proc. of the Sev...
	[13] D. Thiebaut. On the fractal dimension of computer programs and its application to the predic...
	[14] J. Voldman and L. Hoevel. The software-cache connection. IBM Journal of Research and Develop...
	[15] D.A.B. Weikle, K. Skadron, S.A. McKee, Wm. A. Wulf. Caches as filters: A unifying model for ...
	[16] D.A.B. Weikle, S.A. McKee, Wm. A. Wulf. Caches as filters: A new approach to cache analysis....
	[17] W.A. Wulf, and S.A. McKee. Hitting the memory wall: Implications of the obvious. ACM Compute...
	Caches As Filters: A Framework for the Analysis of Caching Systems
	Dee A. B. Weikle†, Sally A. McKee‡, Kevin Skadron†, Wm.A. Wulf†
	†Department of Computer Science
	University of Virginia
	151 Engineer's Way, PO Box 400740
	Charlottesville, VA 22904-4740
	{daw4q|skadron@virginia.edu, wwulf@nae.edu}
	‡Department of Computer Science
	University of Utah
	50 S. Central Campus Dr., #3190
	Salt Lake City, UT 84112-9205
	{sam@cs.utah.edu}

