
Dynamic Voltage Scaling in Multitier Web
Servers with End-to-End Delay Control

Tibor Horvath, Tarek Abdelzaher, Member, IEEE,

Kevin Skadron, Senior Member, IEEE, and Xue Liu, Member, IEEE

Abstract—The energy and cooling costs of Web server farms are among their main financial expenditures. This paper explores the

benefits of dynamic voltage scaling (DVS) for power management in server farms. Unlike previous work, which addressed DVS on

individual servers and on load-balanced server replicas, this paper addresses DVS in multistage service pipelines. Contemporary Web

server installations typically adopt a three-tier architecture in which the first tier presents a Web interface, the second executes scripts

that implement business logic, and the third serves database accesses. From a user’s perspective, only the end-to-end response

across the entire pipeline is relevant. This paper presents a rigorous optimization methodology and an algorithm for minimizing the total

energy expenditure of the multistage pipeline subject to soft end-to-end response-time constraints. A distributed power management

service is designed and evaluated on a real three-tier server prototype for coordinating DVS settings in a way that minimizes global

energy consumption while meeting end-to-end delay constraints. The service is shown to consume as much as 30 percent less energy

compared to the default (Linux) energy saving policy.

Index Terms—Power management, voltage control, soft real-time systems, network servers, pipeline processing, distributed

algorithms, optimization methods.

Ç

1 INTRODUCTION

COMPLEX Web services are commonly realized by multi-
tier Web server systems in order to functionally

distribute computation across several computers. The differ-
ent tiers perform different parts of request processing. For
example, an e-business service usually consists of an HTTP
server tier, an application server tier, and a database server
tier. Client requests to these systems generally have highly
varying and unpredictable resource requirements at each tier.
Requests for static content, such as images or binaries, are
often served by the first tier alone, with no resource usage in
the others. On the other hand, an online purchase transaction
would likely have a large processing demand on the
application server and the database server, with the HTTP
server only transferring a trivial amount of data.

In this paper, we consider the energy efficiency of

multitier Web servers hosting soft real-time services with

guaranteed end-to-end response times. These Web servers

are often significantly overprovisioned in order to meet

target response delay constraints even under peak loads.

This practice, however, leads to poor overall energy

efficiency since such systems are typically underutilized.

The energy (and cooling) costs of large server farms are

reported to be a significant part of their total upkeep and

maintenance expenses [1], [2]. Excess power consumption
not only hurts the operator economically, but it also limits
the number of servers per unit volume (in the machine
room) due to heat dissipation considerations [3]. Hence,
there is an increasing need for solutions that reduce the
system’s energy consumption with as little effect on
performance guarantees as possible.

Dynamic voltage scaling (DVS) is a powerful technique
that allows significant energy savings by sacrificing some
system performance. Reducing voltage requires a roughly
proportional decrease in frequency, but power decreases
quadratically with voltage. One of the key advantages of DVS
(compared to other schemes, such as turning machines off) is
that the overhead of performance adjustments is very low
and, thus, it allows for an aggressive power saving policy.

Previous research has studied DVS in a single Web
server or a single-tier Web server cluster with performance
guarantees [1], [2], [3], [4], [5]. However, straightforward
extensions of these are not sufficient to reasonably optimize
power in server pipelines. In a pipeline, the end-to-end
delay is composed of highly variable stage delays; therefore,
independent stage delay control achieved by single-server
algorithms cannot be effective in controlling the end-to-end
delay. Further, since such independent DVS algorithms
have no concept of end-to-end delay, their power optimiza-
tion cannot be optimal because they lack the proper solution
constraint. To our knowledge, no work has been done to
address DVS in multitier Web servers with end-to-end
delay constraints.

In this paper, we design, implement, and evaluate a
coordinated distributed DVS policy for a traditional three-
tier Web server system, based on distributed feedback
control driven by a simple stage delay model. The policy is
designed for realistic CPUs with discrete DVS frequency

444 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 4, APRIL 2007

. T. Horvath and K. Skadron are with the Department of Computer Science,
University of Virginia, 151 Engineer’s Way, PO Box 400740, Charlottes-
ville, VA 22904-4740. E-mail: tibor@cs.virginia.edu.

. T. Abdelzaher and X. Liu are with the Department of Computer Science,
University of Illinois at Urbana-Champaign, 201 N. Goodwin Ave.,
Urbana, IL 61801-2302.

Manuscript received 14 Apr. 2005; revised 27 Feb. 2006; accepted 26 July
2006; published online 1 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0112-0405.
Digital Object Identifier no. 10.1109/tc.2007.1003.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

settings. Decisions on frequency adjustments are made on
each stage locally, governed by a decentralized self-
coordination scheme. The self-coordination ensures that
each stage can individually compute the globally optimal
solution and apply it to itself, without the need for a central
entity. We also present the formulation of the problem of
determining the globally optimal DVS policy for such
systems. We show experimental results from our prototype
implementation confirming that our solution is efficient and
stable. We experimentally verify that the proposed coordi-
nated scheme outperforms uncoordinated single-machine
power management. In particular, we compare it to the
default Linux power management as a baseline. Additional
energy savings in excess of 30 percent are observed.

It should be observed that the DVS-based approach
explored in this paper does not exclude the usage of other
power saving schemes. Typically, different schemes would
be employed at different time-scales. For example, relatively
long-term load fluctuation patterns (such as day/night
fluctuations) can be accommodated by turning machines on
or off to match the anticipated load, as proposed in earlier
literature [4]. In such an on/off scheme, extra capacity would
typically be left on each stage to accommodate shorter-term
bursts. Hence, given a particular configuration of machines
that are on, the protocol described in this paper can be used to
determine their power-optimal DVS settings. Consequently,
energy savings are increased by taking advantage of load
fluctuations on shorter time-scales. Moreover, if machines in
each tier are roughly load-balanced, their actions would
typically be symmetric within the tier. Hence, in order to
investigate coordinated DVS schemes across the pipeline, it is
enough to consider a pipeline of one machine per stage. In
thicker pipelines, assuming homogeneous servers with
appropriate load-balancing in each stage, all machines within
a stage will likely behave identically. With that in mind, we
focus in this paper on deriving and implementing coordi-
nated power-optimal DVS schemes for thin pipelines (i.e.,
those with one machine per stage) that respect end-to-end
latency constraints.

The main contributions of this paper are the theoretical
optimization of the energy efficiency of soft real-time
multitier Web servers and the detailed case study and
evaluation of our prototype testbed implementation.

The rest of the paper is organized as follows: Related
work is presented in Section 2. Section 3 presents the
general system architecture and DVS solution. Section 4
details the implementation. Performance evaluation is
presented in Section 5. The paper concludes with Section 6.

2 RELATED WORK

The importance of reducing both energy and power
consumption in server systems is now well-known and
has become a major research topic. Several papers [1], [2],
[3] have made the case by pointing out the negative
environmental effects, high operating costs, power density
problems, and expensive infrastructure requirements of
large server sites.

Earlier DVS research primarily addressed standalone,
battery-operated, embedded mobile devices, which still
remains an active research area, as demonstrated by the

literature overview in [6]. Families of DVS algorithms
integrated with an RTOS scheduler are proposed for
periodic hard real-time task sets in [7], [8], [9]. DVS
algorithms assuming similar task sets and a continuous
frequency setting model are presented in [10] for multi-
processors. Recently, [11] presented the first feedback
control-based DVS framework with EDF scheduling in
hard real-time systems. A soft real-time energy-efficient
scheduler for periodic tasks in embedded systems is
presented in [12]. It employs a DVS algorithm similar to
the most aggressive one1 in [7], but it is based on CPU cycle
demand distribution histograms built online. It can save
more energy while providing statistical performance
guarantees.

Much of the previous literature is focused on multimedia
task sets. The authors of [13] devise a DVS algorithm for
portable systems which relies on offline workload char-
acterization and probabilistic online detection of arrival or
service rate changes. Other DVS algorithms targeted at soft
real-time systems predict near-future processing require-
ments (load) based on past history. PAST [14], one of the
first such algorithms proposed by Weiser et al., simply
assumes that the predicted (next) time window will have
the same amount of idle time as the previous window had.
Govil et al. presented and evaluated other prediction
schemes [15], including AGED_AVERAGES, which uses a
moving average of past samples with geometric decay, and
PEAK, which expects short peaks in load and was shown to
outperform PAST. Recently, the authors of [16] applied
control theory to predict the future workload. They
designed an algorithm, nqPID, that outperforms the
aforementioned ad hoc algorithms, while its performance
is also less dependent on parameter tuning. However, their
results were validated only by simulation against a periodic
task model. Feedback control techniques are used with DVS
in [17], [18] to save energy while guaranteeing frame rate in
multimedia workloads. The prediction is calculated based
on a queuing model. In [17], similar energy savings are
reported with reduced computation and improved quality
of service over [13]. The authors of [18] use a dead-zone
control method to provide strong real-time guarantees
without requiring prior workload knowledge like many
multimedia DVS schemes. However, since it controls buffer
levels, it is not applicable to systems that do not tolerate
buffering latency.

Several papers address DVS in standalone servers and
server clusters. The authors of [1] present a soft real-time
feedback control-based DVS policy combined with request
batching. Simulation results show up to 42 percent savings
of CPU energy in a standalone Web server when 90 percent
of the response times are within the target deadline. They
do not, however, validate their results by implementation in
a real system nor do they measure total system energy
savings. A real DVS policy is implemented in [5] for
standalone Web servers with multiple QoS service classes
which have soft real-time deadlines. The system builds on a
proven schedulability bound for aperiodic tasks, due to

HORVATH ET AL.: DYNAMIC VOLTAGE SCALING IN MULTITIER WEB SERVERS WITH END-TO-END DELAY CONTROL 445

1. The “Look-Ahead RT-DVS” algorithm, which is the most “aggressive”
as it spends the greatest effort to exploit opportunities to reduce power
consumption.

which it can sustain less than 2 percent deadline miss ratio.
However, the work is restricted to a single tier server.
Elnozahy et al. present and evaluate by simulation five
different power management schemes for single-tier server
clusters [4]. The schemes employ VOVO (vary-on/vary-off,
i.e., turning nodes on and off depending on cluster load)
and/or independent or coordinated (across the cluster)
DVS. VOVO attempts to consolidate all workloads to just as
many nodes as necessary, leaving enough slack for load
spikes. An independent DVS policy (IVS) is completely
node-local, while a coordinated one (CVS) is constrained to
a small frequency range around the cluster average. VOVO
combined with CVS is shown to be superior. However, they
do not address service pipelines.

A power-aware scheduler for distributed systems with
hard real-time end-to-end delay constraints is proposed in
[19]. It is capable of determining an optimal voltage
schedule in a single task chain (such as a multitier Web
server), but it assumes periodic task chains and requires
worst-case execution times. Our work is different from the
above literature in that we present and evaluate the first
system implementation of a feedback control-based DVS
policy in a multitier (i.e., pipeline) service that is not
restricted to periodic task instances.

3 ARCHITECTURE

Our multitier Web service architecture consists of a pipeline
of several processing stages. The processing at each stage
invokes services of the next stage in a request-response
fashion. Requests from a client are addressed to the first stage.
Depending on content, they may be processed by subsequent
stages sequentially. Such processing is typically in response
to calls to business logic scripts and database queries.
Eventually, calls and queries return to their originating stage
with a response to be sent back to the client.

The nontraditional element in our energy-efficient
architecture is that the server machines in the aforemen-
tioned pipeline have DVS-capable processors. By employ-
ing our novel coordinated DVS policy, the servers minimize
the overall power consumption of the Web service while
satisfying the (soft) real-time end-to-end delay constraints
on request processing. The controlled variable is the end-to-
end response delay, with the set-point (i.e., the target value
of the controlled variable) being a preconfigured end-to-end
delay value. To prevent frequent DVS changes in response
to delay fluctuations, a dead-zone is imposed. In other
words, no corrective action is taken as long as the measured
end-to-end delay lies within an acceptable range between a
low and a high threshold. If either threshold is violated, the
feedback loop changes DVS settings in the pipeline to
recover from the violation.

3.1 Delay Characteristics

End-to-end delays are continuously measured at the first
stage, where client requests enter and responses leave. The
average CPU utilization, Ui, is measured at each stage i with
sampling period T . The measured end-to-end delay, D, can
be broken into a delay component, Di, for each stage i.
Hence, for an N-stage system, D ¼

PN
i Di. In turn, the

delay Di, on stage i, can be broken into a CPU processing

delay, denoted DCPU
i , and a blocking delay, such as I/O

blocking, denoted Dblock
i . This delay is incurred by a request

when waiting on or using a resource other than the CPU.
The DVS mechanism manipulates CPU speed and

voltage only. Thus, it can only control the CPU delay
components, DCPU

i . In contemporary multitier servers,
significant non-CPU delay components, Dblock

i , are typically
present due to network latency and database I/O. This
happens to be a fortunate circumstance from the perspec-
tive of DVS schemes, as opposed to a disadvantage. The
reason is that DVS schemes opportunistically increase CPU
delay, DCPU

i , whenever possible (by slowing processors
down) in order to save energy. If the end-to-end delay is
primarily a function of Dblock

i and not DCPU
i , more

aggressive energy savings can be accomplished without
adverse effects on overall delay performance. Observe that
it could be argued that the reverse is also true. Namely, if
the I/O blocking delay, Dblock

i , is very large and if the disk is
the bottleneck, the system will needlessly try to increase
CPU speed when it is overloaded. This will decrease power
savings without affecting the actual bottleneck delay.
Fortunately, this situation is easy to prevent at runtime by
disallowing machines with a low CPU utilization from
speeding up their CPU. Hence, unless the CPU is the
bottleneck at some machine, power savings will not be
needlessly impaired. The algorithm described below adopts
this restriction.

3.2 Simple Dynamic Voltage Scaling

In a first attempt to design an optimal feedback-based DVS
scheme in terms of energy savings, we only assume that the
CPU delay, DCPU

i , at stage i is a convex function gðUiÞ of the
CPU utilization, Ui, at that stage. In other words, stage delay
increases progressively more steeply as CPU utilization
increases. Formally, the second derivative, d2gðUiÞ=d2Ui, is
positive. For example, given a Poisson arrival process and
exponentially distributed execution times, we know from
queuing theory that DCPU

i ¼ Ti=ð1� UiÞ, where Ti is a
constant. Hence, d2gðUiÞ=d2Ui ¼ 2Ti=ð1� UiÞ3, which is
positive for Ui < 1.

This assumption is generally true of busy servers and it
is intuitively supported by the observation that real-life
Web servers tend to increasingly saturate when operating at
higher CPU utilizations, leading to steeply increasing
latencies. When the algorithm described below is applied
to workloads for which this assumption does not hold, the
resulting system will still maintain the end-to-end delay
within constraints, albeit with poorer performance and
energy efficiency. For instance, the assumption may be false
in completely sequential workloads (i.e., in workloads with
no parallel tasks), where CPU utilization has no effect on
delay. However, typical Web server workloads are highly
concurrent in nature because of the large number of
independent clients.

The convexity assumption leads to a simple set of rules
for adjusting CPU speed to globally maximize energy
savings subject to delay constraints. Namely, if the
measured end-to-end delay, D, exceeds an upper threshold,
step up the frequency of the most loaded machine.
Similarly, if the delay drops below a lower threshold, step
down the frequency of the least loaded machine.

446 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 4, APRIL 2007

Intuitively, when the end-to-end delay exceeds the
desired value, some processor’s frequency must be stepped
up to decrease that processor’s utilization and, conse-
quently, decrease delay. The convexity of the utilization-
delay function implies that stepping up the frequency of the
most utilized processor is a good rule-of-thumb because it
results in the maximum reduction in delay for the same
reduction in utilization. Hence, hopefully, delay can be
brought down to the set point with the least additional
energy expenditure.

By the same token, when the end-to-end delay is below
the threshold, stepping down the frequency of the least
utilized processor is a good choice because it results in the
least impact on delay for the same increase in utilization.
Hence, this processor can presumably be slowed down the
most, resulting in the most energy savings.

The main advantage of the above algorithm is simplicity.
It uses two simple rules that require only per-machine total
utilization measurements and a measurement of end-to-end
delay. In particular, it does not need to know individual
stage delays, task execution times, or processor power
characteristics.

The algorithm does not actually lead to an optimal
solution to the energy minimization problem because it
implicitly assumes that energy savings are proportional to
utilization changes. In general, this is not true. Fortunately,
if the processors’s power-frequency curve and the work-
load’s utilization-delay function are known, the above
optimization algorithm can be easily adapted to produce
the optimum energy consumption, as shown below.

3.3 Optimality Conditions

Let us assume that the power consumption Pi of stage i is a
general function of CPU utilization:

Pi ¼ piðUiÞ: ð1Þ

Second, assume that the delay DCPU
i of a stage i is

approximately related to its utilization Ui by the queuing-
theoretic equation:

DCPU
i ¼ Ti

1� Ui
; ð2Þ

where Ti is the mean service time of each stage. In reality,
this equation is not exact since studies suggest that Web
workloads in general follow a heavy-tailed distribution [20].
Unfortunately, queuing models with heavy-tailed interarri-
val and service times are very difficult to analyze [21].
However, our model provides a reasonable approximation
for deriving a practical optimality condition for typical
multitier Web workloads. The intuition is that, with similar
distributions in each tier, the relative estimation error
diminishes and the resulting deviation from the optimal
system state is insignificant compared to the deviation
arising from the inherent discreteness of the system (i.e.,
small number of available frequencies). Our experimental
results also support this intuition by showing improved
performance with the proposed model. For other workloads
where the model is inappropriate, the same analysis can be
carried out with a different delay approximation equation.

Summing over the entire pipeline, the total power
consumption P of the N-stage system can be expressed by:

P ¼
XN
i¼1

piðUiÞ: ð3Þ

Our objective is to minimize that power consumption
subject to the constraint

PN
i¼1 D

CPU
i þDblock

i � L, where L is
the maximum desired latency. Taking the equality condi-
tion as the limiting case and substituting from (2), this
constraint can be rewritten as:

XN
i¼1

Ti
1� Ui

¼ K; ð4Þ

where K ¼ L�
PN

i¼1 D
block
i , which we assume is a constant

independent of frequency settings since blocking delays are
not affected by CPU speed.

To solve the aforementioned constrained optimization
problem, we first add the Lagrange multiplier, �, which
yields:

LðUi; �Þ ¼
XN
i¼1

piðUiÞ þ �
XN
i¼1

Ti
1� Ui

�K
 !

: ð5Þ

Using the Kuhn-Tucker Theorem, we can get

@L

@�
¼ 0 ð6Þ

and, for each i,

@L

@Ui
¼ 0: ð7Þ

The solution of (6) is exactly the constraint given by (4),
thereby ensuring that it is always satisfied. From (7), we get

p0iðUiÞ þ �
Ti

ð1� UiÞ2
¼ 0; ð8Þ

which implies

p0iðUiÞð1� UiÞ
2

Ti
¼ ��: ð9Þ

Hence, the optimal solution to the general power mini-
mization problem is the following equalizing optimality
condition:

p01ðU1Þð1� U1Þ2

T1
¼ . . . ¼ p

0
NðUNÞð1� UNÞ

2

TN
: ð10Þ

Next, to arrive at a specific solution, let us consider the
following equation between system power consumption
and CPU frequency:

Pi ¼ Aif
n
i þBi; ð11Þ

where Ai and Bi are constants. The general rule of thumb
with CMOS technology is that P / V 2f / f3, that is, power
is proportional to the cube of clock frequency. The rationale
is that raising the clock frequency also necessitates increas-
ing the voltage. In reality, however, f / V is a simplifica-
tion; hence, our more general expression. This assumption

HORVATH ET AL.: DYNAMIC VOLTAGE SCALING IN MULTITIER WEB SERVERS WITH END-TO-END DELAY CONTROL 447

is accurately satisfied in realistic systems, with n ranging
between 2.5 and 3. The same power model with n ¼ 3 is
assumed for analysis in [4]. In general, it is possible to
obtain the exponent n and constants Ai and Bi by curve
fitting against empirical measurements obtained from
profiling the system.

If the workload arrival rate at stage i is �i cycles/sec, the
utilization Ui of that processor is �i=fi, where fi is the
service rate or frequency in cycles/sec. Equivalently,
fi ¼ �i=Ui. Substituting in (11) yields the specific power-
utilization function:

Pi ¼ piðUiÞ ¼ Ai
�ni
Un
i

þBi: ð12Þ

Note that the power consumption of a tier of machines
has an indirect dependence on the other tiers: The behavior
of the other tiers affects the utilization of the mentioned tier,
which in turn affects its power consumption. Our model is
simple in the sense that it does not contain a prediction
component to capture how tiers affect each other’s utiliza-
tion. However, the model is fairly accurate in representing
the true power consumption based on the observed
utilization, which does reflect the intertier dependencies.

Substituting in the general solution given in (10), we get

p0iðUiÞð1� UiÞ
2

Ti
¼ �nAi�

n
i U
�ðnþ1Þ
i ð1� UiÞ2

Ti
: ð13Þ

This finally leads us to the following equalizing optimality
condition, which provides the optimal solution to our
specific power minimization problem:

W1HðU1Þ ¼W2HðU2Þ ¼ . . . ¼WNHðUNÞ; ð14Þ

where Wi is a weight which, after simplifying (14) by ð�nÞ,
is given by

Wi ¼
Ai�

n
i

Ti

� �

and H is a transformation defined as

HðUiÞ ¼
ð1� UiÞ2

Unþ1
i

:

To minimize power consumption across the pipeline subject
to the end-to-end delay constraint, a feedback loop is added
to equalize the weighted transformed utilizations of all
stages such that it satisfies (14). Utilization is manipulated
by changing the CPU frequency settings.

3.4 Improved Algorithm with Miss Ratio
Considerations

To converge on the condition expressed in (14), average
local stage CPU utilization measurements, Ui, are broadcast
by each machine at each sampling period. Average end-to-
end delay D is computed by the first stage and also
broadcast to all stages at each sampling period. Given this
information, the distributed DVS algorithm on each
machine computes the weighted transformed utilization,
WiHðUiÞ, for each stage i. It is desirable to keep these values
as equal as possible while observing that a given deadline
miss ratio is not exceeded.

To ensure that a maximum tolerable miss ratio r is not
exceeded, one can compute (from the expected workload
distribution) the conditional probability that a deadline
miss will occur in the next sampling interval given that the
maximum delay observed in the current sampling interval
is some fraction �hi < 1 of the actual deadline L. We denote
this conditional probability by P ðD½kþ 1� > LjD½k� < �hiLÞ,
which is a function of �hi (where D½k� and D½kþ 1�
denote the delay measurements in the current and next
samples, respectively). If the maximum acceptable dead-
line miss ratio is r, we would like to ensure that
P ðD½kþ 1� > LjD½k� < �hiLÞ � r. Given an analytically de-
rived or empirically measured conditional probability
function, the equality condition P ðD½kþ 1� > LjD½k� <
�hiLÞ ¼ r can be solved for �hi simply by finding the point
where the curve of this function reaches value r. The
following two feedback rules are then applied:

. If D > �hiL (overload), machine i with
minifWiHðUiÞg steps up its frequency to the next
higher discrete setting. Note that, since H is
monotonically decreasing in the range of Ui, this
will increase the weighted transformed utilization,
effectively balancing it as desired.

. If D < �loL (underutilization), machine i with
maxifWiHðUiÞg steps down its frequency to the next
lower discrete setting (where �lo < �hi). Note that,
by symmetry, this will decrease the weighted
transformed utilization, again meaning a balancing
action.

The first rule guarantees that the conditions for a sustained
miss ratio of r or more are always corrected to reduce the
miss ratio. The second rule allows energy savings to be
applied when the system is underutilized. By applying
these rules simultaneously on each machine in the pipeline,
we arrive at a distributed algorithm that converges on the
globally optimal solution. Note that, if Wi are equal for all
stages (such as in a homogeneous system with perfectly
balanced load over the whole pipeline), the algorithm
reduces to the one described in Section 3.2.

Finally, observe that, while we described the algorithm
for a single class of clients with the same deadline, it is
straightforward to generalize to multiple classes. The only
change is that the first stage now measures the end-to-end
delay for each class separately. This delay vector is
broadcast to other stages. Let the deadline of class i be Li
and its measured end-to-end delay be Di. Each stage
executes the following two rules:

. If 9i : Di > �hiLi (overload), machine i with
minifWiHðUiÞg steps up its frequency.

. Else, if 8i : Di < �loLi (underutilization), machine i
with maxifWiHðUiÞg steps down its frequency
(where �lo < �hi).

The first rule of the aforementioned algorithm can be
further improved by excluding machines with a low CPU
utilization (i.e., Ui < Ulo) from stepping up their speed. As
mentioned earlier, this situation might arise if the disk was
the true bottleneck, making the CPU speed irrelevant. With
this improvement, CPU speed is adjusted only if the
adjustment is likely to affect delay. The resulting algorithm

448 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 4, APRIL 2007

has better energy savings in systems dominated by disk

bottlenecks.

3.5 Feedback Control Model

Having defined our DVS algorithm, we proceed to describe

and analyze the design of the feedback control system we

chose to implement. Note that our goal here is not to design

an optimal controller, but rather to demonstrate the

practical usefulness of our algorithm. Hence, we develop

a simple yet effective controller, focusing on the design

limitations of our target systems, such as the small number

of available CPU frequencies. Other control-theoretic

models of absolute delay control loops with different

assumptions have been presented in [22].
The overall system is modeled by a discrete nonlinear

feedback control loop with a deadzone. The input of the

loop is the pair of threshold parameters �lo and �hi, which

define the controller deadzone. The error signal received by

the controller is then the difference between the measured

end-to-end delay (feedback) and the center of this dead-

zone. Given the error signal, the controller determines the

DVS adjustment as follows: If the error falls in the

deadzone, no adjustment is made. If the error is greater,

then the CPU frequency of one stage is adjusted by one

stepping, as selected by the algorithm given in Section 3.4.

Driven by the current CPU frequencies and the offered load,

the multitier Web server (controlled system) processes

requests with a certain end-to-end latency, which is

sampled, averaged, and fed back to compose the aforemen-

tioned error signal.
Since the available CPU frequencies in the controlled

system are limited, the presented saturated controller

cannot become unstable. Limit cycles, where the system

would only operate at the lowest or highest CPU frequency,

are also impossible (assuming that other levels are avail-

able) because the frequencies are always adjusted by a

single stepping only. However, analyzing stability is still

worthwhile for identifying the presence of harmful oscilla-

tion in the system. To assure that our controller does not

cause oscillatory behavior, it is sufficient to show that,

under constant offered load, no frequency decrease can lead

to a frequency increase. This means that, whenever the

maximum end-to-end delay falls below the lower threshold,

the average increase in delay caused by stepping down any

CPU frequency should be smaller than the deadzone.

Otherwise, the frequency decrease could drive the max-

imum end-to-end delay beyond the high threshold, which

in turn would trigger a frequency increase, resulting in

undesired oscillation in the average delay. The deadzone

constraint can more formally be expressed as follows:

Ti

1� �i
f<j�1>
i

� Ti

1� �i
f<j>i

� Z; ð15Þ

where f<j>i is the jth CPU frequency setting in stage i and Z

is the deadzone (relative to the deadline). In order to bound

the average delay increase, we observe that, for any DVS

architecture, we can find frequency bounding parameters �

and � as follows:

9�; � :8j : f<�j>
i � �f<j>i þ � < f<j>i

s:t: 0 � � < 1 and 0 � �;

where f<�j>
i ¼ f<j>i � f<j�1>

i . Using these parameters, the
following equation satisfies the deadzone constraint given
by (15):

Ti

1� �i
ð1��Þf<j>i ��

� Ti

1� �i
f<j>i

¼ Z: ð16Þ

Solving (16) for �i, we get the arrival rate �Bi , for which
the maximal delay increase arising from some frequency
adjustment equals Z. Since the delay increase function on
the left-hand side of (16) monotonically increases in �i, (15)
is satisfied for all �i � �Bi . From this, �Bi =f

<j>
i yields a

utilization bound for each frequency setting j, below which
the deadzone constraint is satisfied.

In Fig. 1, we calculate (based on profiled parameter
values) the aforementioned utilization bound for various
parameters. Fig. 1a shows the results for different deadzone
ranges. We can see from the graph that a deadzone range of
0.3, for instance, yields a utilization bound of 64 percent.
Fig. 1b demonstrates how different feasible choices of the
frequency bounding parameters affect the utilization
bound. As the graph shows, some parameter values give
tighter bounds than others. For example, for the CPUs used
in our experiments, � ¼ 0:33 and � ¼ 0 give the tightest
overall bound, 66 percent, over the whole frequency range.
Together, the graphs show that a deadzone range of 0.3 will
prevent frequency oscillation as long as the utilization of the
CPU being stepped down is lower than 64 percent. This

HORVATH ET AL.: DYNAMIC VOLTAGE SCALING IN MULTITIER WEB SERVERS WITH END-TO-END DELAY CONTROL 449

Fig. 1. Effect of parameters on the utilization bound for stable CPU

frequency reduction. (a) Varying the deadzone range. (b) Different

frequency bounding parameters.

condition is likely to be satisfied as, generally, the most
underutilized stage’s capacity is decreased to save power.
The conclusion is that the parameter �lo should be selected
based on the appropriate deadzone range that prevents
oscillatory behavior.

Note that we rely on single-step actuation as opposed to
changing multiple CPU frequencies at the same time. This is
especially significant since the number of available DVS
frequency settings for a CPU is usually small and multiple-
step actuation could easily overreact to load variations.
Having said this, the controller gain can be altered by
changing the sampling period. Smaller periods result in
higher gain since actuation is more frequent (while the
actuation step remains the same). It is important to choose a
sampling period that does not cause stability problems.
Specifically, to avoid unnecessary oscillation, it is sufficient
to ensure that the sampling period is long enough that the
effect of the last frequency adjustment appears in the newly
measured end-to-end delay. Therefore, a suitable sampling
period should be inferred from the expected workload
arrival rate and target latencies.

4 IMPLEMENTATION

4.1 Infrastructure Overview

In designing the structure of our implementation, our
primary goal was to make our DVS policy as independent
of the actual server software as possible. This is preferable
because it is unobtrusive to the server software that we
want to leave intact and extensible because it does not need
to be modified to accommodate a new server software.
There is no need to modify any existing server software on
the source code level as long as we can measure the end-to-
end processing delay on the first stage without doing so.
This may be done by taking advantage of certain hooks the
server software provides for plugin modules. The Apache
Web server [23], for example, does provide such hooks.

Our prototype three-tier platform is composed of three
laptop computers with Mobile AMD Athlon XP DVS-
capable processors. The processors have discrete frequency
levels ranging from 532 MHz to 1,529 MHz, with settling
time specified as 100 microseconds. Each computer runs
Linux 2.6. We implemented two separate three-tier Web
server systems on this platform: a Synthetic system and a
TPC-W [24] system. In the Synthetic system, the first two
computers run Apache 1.3 as an HTTP front-end and as an
application server, respectively, while the third computer
runs the MySQL 4.0 database server [25]. The TPC-W
system consists of the first computer running Apache 1.3 as
the HTTP front-end and image server, the second running
JBoss 3.2 as an application server, and the third running
MySQL 4.0. As for the actual TPC-W software, we adopted
a J2EE-based implementation of the TPC-W 1.8 benchmark
[26], which uses contemporary technologies such as entity
EJBs with container managed persistence for the best
performance. We have not been able to find a readily
available client for this server. Thus, on the TPC-W client
side, we used a compliant Remote Browser Emulator from a
separate source [27]. Several modifications were necessary to
both the server and the client to make them interoperable.

Since the client was not capable of accepting browser cookies
containing the session identifiers, we modified the server to
support session tracking using URL encoding. Further, we
modified the client’s URI fragments and patterns, as well as
resolving interface-level incompatibilities. Our DVS policy is
implemented independently as a standalone daemon to be
started on all servers. The daemons on each stage establish
TCP connections with the previous and next stages. Once
they form a pipeline, they start self-coordination and control
of the local CPU frequency.

4.2 Measurements and Actuation

Measuring end-to-end delay in practice is a challenge. True
end-to-end delay could only be measured with kernel
support. Alternatively, measuring delay in user space is a
flexible yet imprecise solution. Since Linux does not yet
provide the necessary timestamping support for TCP
packets, we chose the user-space solution, which gives a
reasonable approximation if the network is not the bottle-
neck resource on the first stage.

To obtain end-to-end delay samples, processing delays of
the first stage (and thus the whole pipeline) are measured
by our Apache extension module attached to the “post read-
request” and the “logger” hooks. The time elapsed between
the invocation of these two hooks for a given request is its
measured end-to-end processing delay. In many cases, the
implementation must also support separate request classes
with different deadlines. For instance, the TPC-W specifica-
tion defines several “Web interactions” with different delay
constraints. Hence, our extension module also provides a
new command, which allows deadline specifications for
separate request classes identified by regular expressions
against the request URI. Every sample thus consists of a
delay measurement and a corresponding deadline. The
DVS daemon running on the first stage provides a local
(System V) Message Queue IPC interface to gather these
samples. The measured end-to-end delay statistics are then
periodically sent to all subsequent remote stages via TCP/
IP messages.

At the end of each sampling period, average stage CPU
utilization is measured by the DVS daemon on all stages.
The utilization values are obtained from the Linux kernel by
reading its clocktick accounting statistics from the virtual
file “/proc/stat.” Averages for each period are computed
by subtracting the values collected at the end of the
previous period from those at the end of the current period.
The average stage CPU utilizations, along with the stage’s
current CPU frequency setting, are periodically sent from
all stages to each other also via TCP/IP messages.

The DVS algorithm is invoked at the end of each
sampling period. Through the coordination mechanisms
described above, all stages ideally have a consistent view of
current CPU frequencies, average CPU utilizations, and the
end-to-end delay statistics; hence, they can solve the current
global DVS problem instance independently. When a
stage’s solution indicates that one of the rules needs to be
activated on itself, then that stage adjusts its CPU frequency
(i.e., steps it up or down to the next discrete setting). The
actual CPU speed setting is implemented by invoking the
standard “userspace” frequency scaling governor of the
Linux CPUFreq device driver.

450 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 4, APRIL 2007

4.3 Parameter Selection

When implementing our DVS algorithm, we must make an
appropriate choice of the upper and lower delay thresholds,
�hi and �lo, described in Section 3.4. Violations of these
thresholds trigger reactions to overload and underutilization,
respectively. As mentioned in Section 3.4, the upper thresh-
old is chosen such that P ðD½kþ 1� > LjD½k� < �hiLÞ ¼ r,
where L is the end-to-end deadline, D½kþ 1� is the end-to-
end delay in the next sampling period, D½k� is the maximum
end-to-end delay measured in the current sampling period,
and r is the maximum tolerable deadline miss ratio. In other
words, we would like the DVS algorithm to increase CPU
speed when the conditional probability of a future deadline
miss reaches the maximum tolerable miss ratio. Fig. 2 plots
the aforementioned conditional probability for our work-
load as a function of the delay threshold. This curve was
obtained empirically by observing the delays in every two
successive sampling times. The conditional probability of a
future deadline miss depends on CPU speed because, at
lower speeds, individual requests contribute more to server
delay, hence causing a larger delay variability. We imagine
that, in high-performance servers where individual requests
are very small compared to server capacity, the granularity
of individual requests will play a smaller role. Let us take
5 percent to be the largest tolerable miss ratio. From Fig. 2,
we see that a threshold of �hi ¼ 0:7 guarantees that the
maximum miss ratio will remain below 5 percent. The
lower threshold is then selected by using the analysis in
Section 3.5, where it was shown that 0.3 is an appropriate
deadzone range for our workload. Hence, we use 0.4 as the
lower relative delay threshold, which yields a deadzone
range of �hi � �lo ¼ 0:3.

In settings where the workload is not known at design
time, the parameters must be determined online. The
analysis presented above simply has to be automated by
sampling the delays in the live system. The high threshold
can then be computed from the estimated long-term
conditional probability as shown above. Finally, an adap-
tive online algorithm can determine the minimal deadzone
by measuring oscillations and adjusting the deadzone to
avoid them, leading to an appropriate low threshold for the
workload.

4.4 Control Performance

As we mentioned in Section 3.5, when choosing the
sampling period, one major concern is to limit controller

overshoot as much as possible. A conflicting concern is to
get a short response time (rise time) when the system starts
violating the performance requirements. We select a short
sampling period during overload for the sake of high
responsiveness to deadline misses. Our choice is T ¼
200 ms because, with the expected throughput of our
workload, only a small number of requests exit during this
time, which means the system quickly reacts after observing
a few samples. It also results in a low controller overhead
since coordination data will be measured and sent only five
times per second. Since in modern systems the power
consumption of the network interfaces is not significant
compared to the main components (CPUs, memories, and
disks), this communication overhead has very low effect on
total system power. Also, since at most one frequency
adjustment occurs in every sampling period, our 100 micro-
second per period frequency transition overhead stays
negligible even with this short period. However, such a
small period is not suitable during underload because it
leads to a small set of delay samples, which makes their
average not sufficiently representative. Therefore, the
sampling period during underload ranges from 4 to
10 seconds, depending on the deadlines of the workload.
The reason is that this prevents the controller from
decreasing system capacity before current request delays
can be measured, as long as deadlines are met. Therefore,
stability problems are avoided since the longer sampling
period ensures that the effects of the previous frequency
adjustment are seen before further adjustments. This much
longer sampling period does not mean, however, that the
system becomes unresponsive to deadline misses during
underload because it is implemented in terms of the short
periods by aggregating their samples. Hence, if deadline
misses occur in any short period, the controller identifies an
overload situation, which results in immediate corrective
action at the end of that short period. Our results indicate
that this yields a good compromise between soft real-time
performance and energy savings.

Another design feature that impacts control performance
is the issue of agreement in our distributed coordination
scheme. Although synchronous coordination should be
capable of guaranteeing coherence and consistency, it is
expensive to enforce. Therefore, coordination (i.e., sharing
of utilization values and end-to-end delay) is done
asynchronously. Assuming that average utilization and
average delay do not change abruptly from sample to
sample (which can be ensured by an appropriate choice of
the sampling period, discussed above), asynchrony has
very little effect since state is not very time-sensitive.
However, asynchrony does give rise to the possibility that,
in an overload or underload situation, there might be no
agreement on which stage should react (albeit there is likely
to be an agreement on whether the system is underloaded
or overutilized). As long as any stage decides to react, lack
of agreement can only increase the extent of system reaction
(as two or more machines decide to perform a corrective
action). In other words, lack of agreement increases
controller gain, which can be easily accounted for in
stability analysis by substituting the expected value of
system reaction for the actuation step size. The implication

HORVATH ET AL.: DYNAMIC VOLTAGE SCALING IN MULTITIER WEB SERVERS WITH END-TO-END DELAY CONTROL 451

Fig. 2. Choosing the upper delay threshold.

is that, if the impact is unacceptable, then a centralized
design might be preferable.

Let us also remark that, since we do not assume that
stage clocks are synchronized, the exact actuation times
may vary throughout the pipeline. We note, however, that,
in the worst case, any stage’s reaction will be late by at most
one sampling period since the last broadcast of end-to-end
delay. Since we choose the sampling period to be small
(compared to end-to-end deadlines) for fast system reac-
tion, we argue that this delay is acceptable.

5 EVALUATION

We evaluate two versions of our algorithm (the Feedback
DVS version, implementing the naive policy, and the
Weighted Feedback DVS version, implementing the optimal
policy) by comparing them to a Baseline and an Independent
DVS scheme. For the Baseline, we set the CPU frequency to
the maximum on all stages. Let us point out that this does not
necessarily mean that the CPUs will constantly run at that
frequency. Linux (together with most modern operating
systems) attempts to save power by default when the CPU is
idle, even without a DVS policy. The exact way is platform
and parameter-specific, but, usually, the CPU is turned off
until a hardware interrupt occurs. Our platform uses the
default method for x86 platforms: It executes the hlt
instruction, which halts the CPU and puts it into a low-
power state. Thus, our Baseline policy already performs such
power management. For the Independent DVS scheme, we
control the CPU frequencies independently, running an
implementation of the PAST [14] DVS algorithm on each
stage. All DVS algorithms are run on top of the Baseline
policy. Thus, our reported power savings are those above the
aforementioned policy.

The rationalization of our choice of comparison policies
is that no other reasonable and applicable algorithm exists
in previous literature to compare with. As we discussed in
Section 2, reasonable previous solutions to multistage
power optimization with real-time constraints are not
applicable to aperiodic workloads with unknown worst-
case execution times. On the other hand, algorithms devised
for standalone servers or server clusters cannot reasonably
satisfy end-to-end delay constraints in a multistage pipeline
setting unless the end-to-end deadline is partitioned such
that each stage works to satisfy a local deadline. Such
partitioning must be done dynamically in a manner
adaptive to current load, which makes it a nontrivial
extension of the single-machine policy. The obvious exten-
sion of partitioning the end-to-end deadline a priori (e.g., by
dividing by the number of stages) works very poorly
because the stage load is not balanced, leading to poor
performance and stability of such local schemes. Therefore,
we deemed that comparisons with such algorithms would
be unfair. Instead, we compare to two stable uncoordinated
power management policies.

5.1 Workloads

To evaluate the expected real performance of our algorithm,
we experiment with separate workloads for the two systems
we implemented. The workload for the Synthetic system
attempts to create a tunable server workload modeled after

that of a typical three-tier Web server. While it is less
representative of a specific application, it is very flexible. On
the other hand, while the workload of the TPC-W system
does not represent many different types of applications, it is
a very realistic model of an online bookstore application.
Our goal in implementing two different systems is to
conduct a more comprehensive evaluation and to study the
sensitivity of our algorithms with respect to the workload.

5.1.1 Synthetic Workload

As most serious services rely on large volumes of data, we
create a reasonably sized database on the third stage. We
have 500 tables, each table contains 1,000 records, and each
record consists of 20 variable character fields. All records
are initially filled with a key and 19 random fractional
numbers. The physical size of the database (220 MB)
prevents it from being entirely cached on our machine
(the maximal observed cache memory size was 126 MB),
making this stage I/O-intensive.

The second stage implements its application server
functionality using CGI scripts, which perform data access
and simulate data processing. The script first requests the
database server to perform one of three different types of
data manipulation actions: query record based on primary
key, update record selected by primary key, and query
records based on textual search pattern. The requested
action is randomly chosen. In the first two cases, the key is
randomly selected from the existing valid keys and, in the
third case, the search pattern is a random 3-digit number as
a substring. This randomization helps avoid invalid results
due to disk caching by decreasing spatial locality of data
accesses. These actions are, although minimal, representa-
tive of many real applications because they consist of both
reads and writes, they involve both simple indexed lookups
and complex nonindexed searches, and they can have
highly varied execution times. Once the database access is
finished, the script performs numeric calculations to
simulate data processing. This processing, along with the
processing done by the database client library (before
sending a request to the database server), makes the second
stage CPU-intensive, with the amount of CPU processing
performed depending on the size of the data set received.

Finally, for the first stage, we create a small CGI script
that sends an HTTP GET request to the second stage and
copies the response to the client. It models the non-CPU
intensive mediator and response-assembler role the HTTP
server tier typically has.

Fig. 3 shows a histogram of the inherent end-to-end
delay distribution of this workload in the Baseline case with
no concurrent requests in the pipeline.

Test requests from the client are generated by the httperf
[28] workload generator tool at various average rates. The
request interarrival times are exponentially distributed. An
individual TCP connection is created for each request.

5.1.2 TPC-W Workload

The database was populated as per the TPC-W require-
ments, with the scaling factors of 100 Emulated Browsers
and 1,000 Items. The application server is logically further
divided into two subtiers: It uses entity EJBs for database
access (EJB tier) and servlets to provide access for clients to

452 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 4, APRIL 2007

the specified Web interactions (dynamic Web tier). In order
to achieve better scalability, we increased the size of the
database connection pool from the default 20 to 50. We also
increased the connection timeout value from 5 to 20 seconds,
the largest deadline in the TPC-W benchmark. The HTTP
front-end server is loaded with all the static data: 1,000 item
images, 1,000 thumbnails, and miscellaneous small images,
such as buttons and icons. For dynamic requests (i.e., Web
interactions), the HTTP server is set up as a proxy to the
application server. To generate realistic client requests and
to collect our statistics, we used the Remote Browser
Emulator running in real time (i.e., no slow-down factor
was used). The client workload profile used for the
evaluation is the TPC-W Shopping Mix (the basis for the
primary TPC-W metrics), which consists of an average mix
of browsing and ordering activity. We varied the offered
load by adjusting the number of Emulated Browsers, with
other parameters (e.g., think time between user interactions)
kept constant at their standard values.

5.2 Measurement Setup

We place our three server laptops on one network segment,
making sure that unintended traffic does not flood it. The
workload generator is run on a dedicated client computer
located in a separate network segment. To filter out possible
measurement errors due to lack of client resources, we
verify that close to 100 percent of system time is available
for request generation on the dedicated computer during
each test.

To measure the power consumption of the laptops, we
use three custom measurement circuits that sense the
current flowing from each laptop power supply (AC
adapter). The accuracy of the measurements was within
5 percent, similar to the solution described in [3]. Since the
adapters provide constant voltage (18.5 V), we need not
measure it. Observe that the adapter’s voltage remains the
same even when the CPU is performing DVS. Hence, our
measurements reflect the true total power consumption of
the laptop, including that of the CPU and other circuits.
During power measurements, we remove the batteries from
the laptops since we do not want to measure power
consumed to charge them and we want the laptops to
obtain power exclusively from the AC adapter. Also, since
server systems usually do not include a display, we turn off
the LCD backlighting, which drains a significant amount of
power. We do not, however, turn off the display adapter, by

which our power savings could be improved further
without affecting performance.

Current readings for all three laptops are performed
simultaneously at a rate of 2,000 samples per second per
channel, using three channels of a National Instruments
PCI-6034E data acquisition card installed in a separate
computer. The average stage power consumptions for the
test duration are then calculated offline. Performance data,
such as the deadline miss ratio, are collected from the
output of the workload generator tool.

5.3 Performance Results

5.3.1 Synthetic Workload Results

Next, we evaluate the energy savings and deadline miss
ratio of the synthetic 3-tier service that runs our DVS
algorithm. Each data point in our results is obtained by
running several experiments for 3-5 minutes and plotting
the average values along with error bars. Since we want to
show the stable behavior of the system, we eliminate
transient cold-start effects by running a short (18-30 s) lead-
in workload prior to starting each experiment.

Figs. 4a and 4b plot the deadline miss ratio of the two
comparison policies as a function of the average request
rate, which we vary from 0 (no load) to 700 requests/
minute (severe overload). We perform several sets of
experiments for different deadlines ranging from 4 to
10 seconds. These deadlines are natural for our setup for
a number of reasons. First, delays in multitier Web servers
are the sum of the delays of individual stages. As the
database tier typically has much larger delay due to I/O
than other stages, a 4-second deadline easily translates to a

HORVATH ET AL.: DYNAMIC VOLTAGE SCALING IN MULTITIER WEB SERVERS WITH END-TO-END DELAY CONTROL 453

Fig. 3. Synthetic workload end-to-end delay distribution at sequential

load.

Fig. 4. Performance of the comparison algorithms (synthetic).

(a) Baseline. (b) Independent DVS.

subsecond delay bound to the first two stages in our three-
tier prototype. Second, the typical e-business server work-
loads that we model usually include computationally
complex operations that work on large data sets. These
operations can cause delays to be on the order of seconds in
these systems. Note that the TPC-W specified delay
constraints are also in a similar range (3-20 seconds).
Another factor is that our testbed computers are slow
compared to real-life Web server hardware. Obviously, on
faster machines, shorter deadlines are possible. Never-
theless, real studies with e-business Web site users in [29]
show that these deadlines are in the tolerable range in most
cases. The Baseline graph (Fig. 4a) shows that the system
begins to saturate at 450 requests/minute in each case and
that saturation is naturally slower with higher deadlines.

Fig. 5a presents the miss ratio of the (simple) Feedback
DVS algorithm. This first version is one where all weights
Wi are assumed to be equal (as an approximation). The
advantage of this version is that it does not require
knowledge of the power characteristics of the CPUs and
characteristics of machine workload. If such information is
available, however, it is possible to compute the coefficients
Wi derived in Section 3.4. Fig. 5b shows the resulting
improved (optimal) Weighted Feedback DVS algorithm
using weights derived from empirical measurements. We
can see that, when the system is underloaded, our
algorithms have a slightly higher deadline miss ratio than
the comparison algorithms, but still within our specified
tolerable limit, 5 percent. This means that the end-to-end
delays are successfully controlled so that deadlines are
statistically (at least 95 percent of the time) still met.

Therefore, the increased miss ratios are acceptable in soft
real-time systems such as our multitier Web service. As we
see next, the increased miss ratios are the results of
improved power savings with our novel algorithms.

To illustrate what energy savings are achieved, in Fig. 6,
the total power consumption of the three servers using the
feedback DVS policies is compared to the total power
consumption using the two comparison policies. For each
load level, the power samples are obtained by performing
individual measurements for each deadline. The lines
connect the averages of these samples, while the error bars
show the minimum and maximum values. (We note that, at
many data points, the power measurements were so
consistent across our experiments that the corresponding
error bars are not visible graphically.) We can verify that the
Baseline power saving policy in fact saves a considerable
amount of power in itself when the system is underutilized:
It achieves an approximately 80 W base power consumption
out of the highest observed power of over 180 W.

Finally, Fig. 7 displays the overall power savings
attained by the two feedback DVS policies and the
Independent DVS policy. We can see that both of our
algorithms can achieve above 30 percent total power
savings under medium load. The graph also demonstrates
that the improved algorithm in fact slightly outperforms the
original algorithm. As conjectured, both of our algorithms
also have a great advantage over the Independent policy.
Let us observe that approximately 20 percent power is
saved even when the system is idle because background
processes and periodic kernel operations such as the timer
handlers all run at lower frequency. The highest relative
power savings are realized at medium load (150-225 re-
quests/min). The shape of the curves is explained by the fact

454 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 4, APRIL 2007

Fig. 5. Performance of our novel algorithms (synthetic). (a) Feedback

DVS. (b) Weighted feedback DVS.

Fig. 6. Total system power consumption (synthetic).

Fig. 7. Total DVS power savings (synthetic).

that, in light load (0-75 requests/min), the CPU is often idle;
therefore, most of the power saving opportunities are
exploited by the Baseline policy and little can be added by
the DVS algorithms. As load increases, there is less chance for
the hlt instruction to be executed. Our policy wins because it
can run the processor at a lower frequency. Progressing
toward heavier loads (above 300 requests/min), there is no
longer much opportunity to lower processor frequencies.
Therefore, the power savings diminish. Since most server
farms are normally overprovisioned, a substantial power
reduction is possible using our schemes.

5.3.2 TPC-W Workload Results

In this section, we describe the experimental results
obtained from our 3-tier TPC-W service. Every data point
reports the results of multiple repeated experiments,
showing the average behaviors and the observed devia-
tions. Each individual test run consists of a 10-minute ramp-
up period, a 30-minute measurement interval, and, finally, a
5-minute ramp-down period. The load placed on the system
is identical throughout each test run, but data collection
takes place solely in the measurement interval. The ramp-
up period is used to warm up the system to the desired
operating point, while the purpose of the ramp-down
period is to keep the system at that point even as the
measurement finishes. Thus, test startup and shutdown
effects are eliminated from the results. These test runs are
much longer than the ones we performed with the synthetic
workload in order to meet the TPC-W requirements. The
long measurement interval is necessary, for instance, to
collect sufficient samples from each individual Web inter-
action type.

Fig. 8 displays the performance (deadline miss ratio) of
each algorithm we considered with the TPC-W workload.
Since every TPC-W Web interaction type (class) has a
specified end-to-end deadline, the plotted data points
reflect the aggregate miss ratios, i.e., the number of
interactions that missed their deadline per the total number
of interactions. The graph shows that our performance goal
(5 percent miss ratio) is met by each policy when the system
is not overloaded.

Figs. 9 and 10 show the results of the power measure-
ments. The first plots the absolute total system power
consumption, while the second visualizes the gains of each
considered algorithm relative to the Baseline scheme. We
can make similar observations to the ones about the
Synthetic system. Both of our new algorithms exhibit

improved power savings over both comparison policies.
Again, our Weighted algorithm slightly outperforms our
simple one, as expected. Bigger differences can be expected
between the two policies in heterogeneous systems, where
the simple algorithm would become less useful. For this
workload, the Independent DVS policy saves somewhat
more power at the highest loads, but with a slightly higher
deadline miss ratio than the Weighted DVS algorithm. In
conclusion, overall we have obtained very similar results
for the TPC-W workload as for the Synthetic one, which
suggests that our schemes are not sensitive to a specific
workload type.

5.3.3 Discussion

To understand why our algorithms perform better than the
competition, the key is to realize that the inputs available to
each algorithm are different. Since the local (independent)
algorithms have no knowledge of the global performance of
the system (i.e., whether end-to-end deadlines are met),
they can only assess how much CPU capacity the machine
should provide based on local metrics, such as the CPU
utilization. As periods of high CPU utilization can occur in
some machines without causing global performance pro-
blems (deadline misses), in such cases, the local algorithms
waste power by unnecessarily increasing the overall
capacity. By contrast, our global (coordinated) algorithms
allow machines to run at lower capacity and, hence, lower
power as long as the actual performance constraints are not
violated. As we saw on the graphs, the difference, i.e., the
wasted power to provide unnecessary capacity, varies with
the offered load. Moving from low to medium load, it
increases because the number of periods with high CPU

HORVATH ET AL.: DYNAMIC VOLTAGE SCALING IN MULTITIER WEB SERVERS WITH END-TO-END DELAY CONTROL 455

Fig. 8. Comparative performance (TPC-W). Fig. 9. Total system power consumption (TPC-W).

Fig. 10. Total DVS power savings (TPC-W).

utilization but no performance constraint violations grows.
At medium load, the growth stops as violations start
occurring and, moving toward high load, the difference
decreases because the increased capacity gradually becomes
more necessary and thus less wasteful.

One might wonder if our algorithms have any advantage
over a static scheme that configures the CPUs to run at
some fixed clock speed. Since such a scheme is open-loop
by nature, our algorithms possess all the advantages of
closed-loop systems, most notably: decreased sensitivity to
parameter variations in the controlled system and im-
proved rejection of transient disturbances. In other words,
since the static scheme must be calibrated for a specific
system and workload, it could not achieve optimal
performance because of persistent errors in calibration
and transient noise in the system. Further insight can be
gained by measuring the average number of CPU speed
adjustments during experiments with constant average
load. The results shown in Table 1 indicate that significant
variability exists in the system even if the load is kept
constant. (Note that we verified that the adjustments were
not controller-induced oscillations.) Therefore, an open-
loop algorithm such as the aforementioned static scheme is
unlikely to achieve similar performance.

5.3.4 Parameter Sensitivity

We performed additional experiments to evaluate the
effects of varying the thresholds of our algorithm. As we
shall see, decreasing these thresholds generally reduces
both deadline misses and power savings. In Fig. 11, we
verify that 0.7 is a good choice for the high threshold
because it yields a lower miss ratio than the higher ones and
it saves more power than the lower ones. Next, in Fig. 12a,
we can see that a low threshold of at most 0.6, which
corresponds to a deadzone of at least 0.3 (since the high
threshold is fixed at 0.9), yields a low miss ratio. At the
same time, Fig. 12b shows good power savings when the
low threshold is at least 0.4. Reconciling with our selected
high threshold of 0.7 and our minimum deadzone require-
ment of 0.3, we verify that 0.4 is indeed a good choice for
the low threshold.

5.3.5 Observations

Let us note that, for both systems (Synthetic and TPC-W),
data points that are compared to calculate the power
savings for a specific load level are obtained from
experiments of approximately the same duration and

amount of work, with negligible differences. Thus, the

measured average power consumption was proportional to

the total energy spent during compared experiments. From

456 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 4, APRIL 2007

TABLE 1
Number of CPU Speed Adjustments

with the Weighted Algorithm

Fig. 11. Effects of different high thresholds (low threshold = 0.5).

(a) Effects on deadline miss ratio. (b) Effects on power savings.

Fig. 12. Effects of different low thresholds (high threshold = 0.9).

(a) Effects on deadline miss ratio. (b) Effects on power savings.

this, it can be seen that the total energy savings are
approximately equal to the total power savings presented.
Our intuition is also supported by Fig. 13, where we plot the
energy savings in the TPC-W experiments. The basis of
comparison is the metric of total system energy spent per
Web interaction, which is obtained by dividing the average
total system power by the average Web interactions per
second (WIPS, a standard TPC-W metric).

Four important points are made from the experimental
results. First, nontrivial power savings can be achieved
using our DVS scheme while maintaining the miss ratio at a
low rate. Second, the optimal savings occur when the
weighted transformed utilizations of all machines are equal
and not when utilizations are perfectly balanced. This
interesting observation is confirmed both theoretically and
experimentally. Third, balancing machine utilizations is an
adequately good heuristic that is very easy to implement,
largely independently of load and machine characteristics.
Finally, the scheme does not require any modifications to
server code. We therefore believe that our algorithms are
both practical and efficient, which makes them a good
candidate for implementation in real-life systems.

6 CONCLUSIONS

In this paper, we presented a distributed DVS control
algorithm that minimizes overall power consumption in a
server pipeline subject to end-to-end latency constraints.
While the algorithm was described for a single class of
clients, straightforward extensions to multiple classes are
possible. A formal derivation of optimality conditions was
given, together with a feedback control architecture that
drives the system to satisfy these conditions. Interestingly, it
was shown that the optimal power savings do not always
coincide with the load balanced condition of equal utiliza-
tion on all servers. However, in practice, such load
balancing is a good approximation. A functional prototype
of this system was implemented and experimentally
evaluated. Empirical measurements confirm theoretical
results and show that our system consumes up to 30 percent
less energy than the default Linux power saving mode.
These savings have a significant effect on the operation cost
of large server farms.

This work will be extended to larger server clusters with
multiple machines per stage and multiple classes of clients
with different timing constraints. Our future work also

includes the investigation of more advanced control

strategies and the development of a comprehensive power

management solution by integrating our DVS algorithms

with the handling of other system power states.

ACKNOWLEDGMENTS

This work was funded in part by US National Science

Foundation grant no. CNS-0306404, US Army Research

Office grant no. W911NF-04-1-0288, and a grant from Intel

MRL. The authors would also like to thank the anonymous

reviewers for their helpful comments.

REFERENCES

[1] M. Elnozahy, M. Kistler, and R. Rajamony, “Energy Conservation
Policies for Web Servers,” Proc. Fourth USENIX Symp. Internet
Technologies and Systems, Mar. 2003.

[2] R. Bianchini and R. Rajamony, “Power and Energy Management
for Server Systems,” Computer, special issue on Internet data
centers, vol. 37, no. 11, Nov. 2004.

[3] P. Bohrer, E.N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, and R.
Rajamony, “The Case for Power Management in Web Servers,”
Power-Aware Computing, R. Graybill and R. Melhem, eds., Kluwer
Academic, Jan. 2002.

[4] E. Elnozahy, M. Kistler, and R. Rajamony, “Energy-Efficient
Server Clusters,” Proc. Workshop Power-Aware Computing Systems,
Feb. 2002.

[5] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu,
“Power-Aware QoS Management in Web Servers,” Proc. IEEE Int’l
Real-Time Systems Symp., p. 63, 2003.

[6] O.S. Unsal and I. Koren, “System-Level Power-Aware Design
Techniques in Real-Time Systems,” Proc. IEEE, special issue on
real-time systems, vol. 91, no. 7, pp. 1055-1069, July 2003.

[7] P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” Proc. ACM Symp.
Operating Systems Principles, pp. 89-102, 2001.

[8] H. Aydi, P. Mejia-Alvarez, D. Mosse, and R. Melhem, “Dynamic
and Aggressive Scheduling Techniques for Power-Aware Real-
Time Systems,” Proc. IEEE Real-Time Systems Symp. (RTSS ’01),
p. 95, 2001.

[9] P. Mejia-Alvarez, E. Levner, and D. Mosse, “Power-Optimized
Scheduling Server for Real-Time Tasks,” Proc. IEEE Real-Time and
Embedded Technology and Applications Symp. (RTAS ’02), p. 239,
2002.

[10] D. Zhu, R. Melhem, and B. Childers, “Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multi-
Processor Real-Time Systems,” Proc. IEEE Real-Time Systems Symp.
(RTSS ’01), p. 84, 2001.

[11] Y. Zhu and F. Mueller, “Feedback EDF Scheduling Exploiting
Dynamic Voltage Scaling,” Proc. IEEE Real-Time and Embedded
Technology and Applications Symp., pp. 84-93, May 2004.

[12] W. Yuan and K. Nahrstedt, “Energy-Efficient Soft Real-Time CPU
Scheduling for Mobile Multimedia Systems,” Proc. ACM Symp.
Operating Systems Principles, pp. 149-163, 2003.

[13] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G.D. Micheli,
“Dynamic Voltage Scaling and Power Management for Portable
Systems,” Proc. 38th Conf. Design Automation, pp. 524-529, 2001.

[14] M. Weiser, B. Welch, A.J. Demers, and S. Shenker, “Scheduling for
Reduced CPU Energy,” Proc. USENIX Symp. Operating Systems
Design and Implementation (OSDI ’94), pp. 13-23, Nov. 1994.

[15] K. Govil, E. Chan, and H. Wasserman, “Comparing Algorithms
for Dynamic Speed-Setting of a Low-Power CPU,” Proc. First Ann.
Int’l Conf. Mobile Computing and Networking, pp. 13-25, 1995.

[16] A. Varma, B. Ganesh, M. Sen, S.R. Choudhury, L. Srinivasan, and
J. Bruce, “A Control-Theoretic Approach to Dynamic Voltage
Scheduling,” Proc. Int’l Conf. Compilers, Architectures, and Synthesis
for Embedded Systems, pp. 255-266, 2003.

[17] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron,
“Control-Theoretic Dynamic Frequency and Voltage Scaling for
Multimedia Workloads,” Proc. Int’l Conf. Compilers, Architecture,
and Synthesis for Embedded Systems, pp. 156-163, 2002.

HORVATH ET AL.: DYNAMIC VOLTAGE SCALING IN MULTITIER WEB SERVERS WITH END-TO-END DELAY CONTROL 457

Fig. 13. Total DVS energy savings (TPC-W).

[18] Z. Lu, J. Lach, M.R. Stan, and K. Skadron, “Reducing Multimedia
Decode Power Using Feedback Control,” Proc. 21st Int’l Conf.
Computer Design, pp. 489-496, Oct. 2003.

[19] D.-I. Kang, S. Crago, and J. Suh, “Power-Aware Design Synthesis
Techniques for Distributed Real-Time Systems,” Proc. ACM
Workshop Languages, Compilers, and Tools for Embedded Systems
(LCTES ’01), pp. 20-28, June 2001.

[20] A. Williams, M. Arlitt, C. Williamson, and K. Barker, Web Workload
Characterization: Ten Years Later. Springer, Aug. 2005.

[21] M.J. Fischer, D.M. Masi, D. Gross, and J.F. Shortle, “One-
Parameter Pareto, Two-Parameter Pareto, Three-Parameter Par-
eto: Is There a Modeling Difference?” The Telecomm. Rev., pp. 79-
92, Mitretek Systems, 2005.

[22] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher, “Queuing Model Based
Network Server Performance Control,” Proc. 23rd IEEE Real-Time
Systems Symp., Dec. 2002.

[23] The Apache Software Foundation, “The Apache HTTP Server,”
http://www.apache.org/, 2007.

[24] Transaction Processing Performance Council, “TPC Benchmark W
(Web Commerce),” http://www.tpc.org/tpcw/, 2007.

[25] MySQL AB, “MySQL Database Server,” http://www.mysql.
com/, 2007.

[26] A.A. Totok, “J2EE-Based Implementation of the TPC-W Bench-
mark,” New York Univ., Feb. 2004, http://www.cs.nyu.edu/
~totok/professional/software/tpcw/tpcw.html.

[27] ObjectWeb Consortium, “TPC-W Benchmark,” based on the
implementation from Univ. of Wisconsin-Madison, http://jmob.
objectweb.org/tpcw.html, 2007.

[28] D. Mosberger and T. Jin, “httperf: A Tool for Measuring Web
Server Performance,” Proc. First Workshop Internet Server Perfor-
mance, pp. 59-67, June 1998.

[29] N. Bhatti, A. Bouch, and A. Kuchinsky, “Integrating User-
Perceived Quality into Web Server Design,” Proc. Ninth Int’l
World Wide Web Conf. Computer Networks, pp. 1-16, May 2000.

Tibor Horvath received the BEng degree in
engineering informatics from the Kando Kalman
College of Engineering, Budapest, Hungary, in
1999 and the MS degree in computer science
from the University of Szeged, Hungary, in 2001.
He is currently working toward the PhD degree
at the University of Virginia. His research
interests include power-aware systems, compu-
ter architecture, and wireless sensor networks.

Tarek Abdelzaher received the BSc and MSc
degrees in electrical and computer engineering
from Ain Shams University, Cairo, Egypt, in
1990 and 1994, respectively. He received the
PhD degree from the University of Michigan in
1999. He has been an assistant professor at the
University of Virginia. He is currently an associ-
ate professor in the Department of Computer
Science at the University of Illinois at Urbana-
Champaign. He has authored/coauthored three

book chapters and more than 60 refereed publications in leading
conferences and journals in several fields including real-time computing,
distributed systems, sensor networks, and control. He is editor-in-chief
of the Journal of Real-Time Systems, served as program chair of RTAS
2004, finance chair of IPSN 2006, sensor networks vice chair of RTSS
2005 and ICDCS 2006, system vice-chair of DCoSS 2006, and general
chair of RTAS 2005. He is currently finance chair of Sensys 2006,
program chair of RTSS 2006, and general chair of IPSN 2007. His
research interests lie broadly in understanding and controlling the
temporal properties of software systems in the face of increasing
complexity, distribution, and degree of embedding in an external
physical environment. He is a member of the IEEE and the ACM.

Kevin Skadron received the BSEE and the BS
degree in economics from Rice University,
Houston, Texas, and the MA and PhD degrees
from Princeton University, Princeton, New Jer-
sey. He joined the Department of Computer
Science, University of Virginia, Charlottesville, in
1999 and is now an associate professor. His
research interests focus on the implications of
technology trends and physical constraints (e.g.,
power, temperature, reliability) for future, highly

multicore architectures. Dr. Skadron was the recipient of three Best
Paper Awards, US National Science Foundation ITR, CRI, and
CAREER Awards, cochaired MICRO 2004 and PACT 2002, was
program cochair for PACT 2006, and is founding associate editor-in-
chief of IEEE Computer Architecture Letters. He is a senior member of
the IEEE and a member of the ACM.

Xue Liu received the BS degree in applied
mathematics and the MEng degree in control
theory and applications from Tsinghua Univer-
sity in 1996 and 1999, respectively. He is a PhD
candidate at the University of Illinois at Urbana-
Champaign. His research interests include real-
time and embedded computing, performance
and power management of server systems,
sensor networks, fault tolerance, and control.
He has authored/coauthored more than 20 re-

fereed publications in leading conferences and journals in these fields.
He received the Ray Ozzie Fellowship, the Saburo Muroga Fellowship,
the C.W. Gear Outstanding Graduate Award, and the Mavis Memorial
Fund Scholarship Award from the University of Illinois at Urbana-
Champaign. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

458 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 4, APRIL 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

